
symmetryS S

Article

Schur-Convexity for Elementary Symmetric Composite
Functions and Their Inverse Problems and Applications

Tao Zhang 1,2, Alatancang Chen 1,2, Huannan Shi 3, B. Saheya 1,2,* and Boyan Xi 4

����������
�������

Citation: Zhang, T.; Chen, A.; Shi, H.;

Saheya, B.; Xi, B. Schur-Convexity for

Elementary Symmetric Composite

Functions and Their Inverse Problems

and Applications. Symmetry 2021, 13,

2351. https://doi.org/10.3390/

sym13122351

Academic Editor: Nicusor Minculete

Received: 15 November 2021

Accepted: 3 December 2021

Published: 7 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022, China;
zhangtaomath@imnu.edu.cn (T.Z.); alatanca@imu.edu.cn (A.C.)

2 Center for Applied Mathematical Science, Hohhot 010022, China
3 Department of Electronic Information, Teacher’s College, Beijing Union University, Beijing 100011, China;

sfthuannan@buu.edu.cn
4 College of Mathematics, Inner Mongolia University for Nationalities, Tongliao 028043, China;

baoyintu78@imun.edu.cn
* Correspondence: saheya@imnu.edu.cn

Abstract: This paper investigates the Schur-convexity, Schur-geometric convexity, and Schur-harmonic
convexity for the elementary symmetric composite function and its dual form. The inverse prob-
lems are also considered. New inequalities on special means are established by using the theory
of majorization.
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1. Introduction

Throughout the article, the n-dimensional Euclidean space is denoted by Rn, and
Rn
+ = {(x1, . . . , xn) | xi > 0, i = 1, . . . , n}. R1 is denoted by R for simplicity.

In 1923, Schur [1] introduced the concept of the Schur-convex function. It can be
applied to many aspects, including extended mean values [2–7], isoperimetric inequal-
ities on the polyhedron [8], theory of statistical experiments [9], gamma and digamma
functions [10], combinational optimization [11], graphs and matrices [12], reliability [13],
information theoretic topics [14], stochastic orderings [15], and other related fields.

Zhang [16] and Chu et al. [17] proposed the notations of Schur-geometric convexity
(or “Schur-multiplicative convexity”) and Schur-harmonic convexity, respectively. Then
the theory of majorization was enriched [18–27].

Let x = (x1, . . . , xn) ∈ Rn, the k-th elementary symmetric function and its dual form,
denoted by Ek(x) and E∗k (x), respectively, are defined as

Ek(x) = ∑
1≤i1<···<ik≤n

k

∏
j=1

xij , E∗k (x) = ∏
1≤i1<···<ik≤n

k

∑
j=1

xij , k = 1, 2, . . . , n.

Let f : I → R be a function on an interval I ⊆ R. In this paper, the k-th elementary
symmetric composite function and its dual form are denoted by

Ek( f , x) = Ek( f (x1), . . . , f (xn)), E∗k ( f , x) = E∗k ( f (x1), . . . , f (xn)).

Clearly E1( f , x) = E∗n( f , x), En( f , x) = E∗1 ( f , x).
Schur [1] obtained that Ek(x) is Schur-concave, increasing on Rn

+. Shi et al. [21–23]
proved that E∗k (x) is increasing Schur-concave on Rn

+, Ek(x) and E∗k (x) are increasing Schur-
geometrically convex and Schur-harmonically convex on Rn

+. Xia et al. [24], Guan [25],
Shi et al. [26], Sun [27], Chu et al. [17] constructed and studied the Schur-convexity, Schur-
geometric convexity, and Schur-harmonic convexity of various special cases of Ek( f , x) and
E∗k ( f , x); many interesting inequalities were established and proved.
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Schur [1], Hardy et al. [28] studied the Schur-convexity of E1( f , x) ( or E∗n( f , x) ) and
obtained that:

Theorem 1 ([1,28]). E1( f , x) (or E∗n( f , x)) is Schur-convex on In if f is convex on I ⊆ R.

If f is continuous, the inverse problem of Theorem 1 also holds [29]. That is:

Theorem 2 ([29]). If f is continuous on I, then f is convex on I if E1( f , x) (or E∗n( f , x)) is
Schur-convex on In.

In 2010, Rovenţa [30] investigated the Schur-convexity of E2( f , x) and En−1( f , x) and
obtained that:

Theorem 3 ([30]). Let I ⊆ R+ be an interval. If f : I → R+ is differentiable in the interior of I
and log f is convex and continuous on I, then E2( f , x) and En−1( f , x) are Schur-convex functions
on I.

However, Rovenţa did not discuss the case of 3 ≤ k ≤ n− 2.
In 2011, Wang et al. [31] proved the following two results.

Theorem 4 ([31]). Let I ⊆ R+ be symmetric and convex with non-empty interior, and let
f : I → R+ be differentiable in the interior of I and continuous on I. If log f is convex, then
Ek( f , x) is a Schur-convex function on In for any k = 1, 2, . . . , n.

Theorem 5 ([31]). Let I ⊆ R+ be symmetric and convex with non-empty interior, and let
f : I → R+ be differentiable in the interior of I and continuous on I. If log f is convex and
increasing, then Ek( f , x) is a Schur-geometrically convex and Schur-harmonically convex function
on In for any k = 1, 2, . . . , n.

In 2013, Zhang and Shi [32] gave a simple proof of Theorems 4 and 5. In 2014,
Shi et al. [33] obtained the following two results.

Theorem 6 ([33]). Let I ⊆ R+ be symmetric and convex with non-empty interior, and let
f : I → R+ be differentiable in the interior of I and continuous on I. If log f is convex, then
E∗k ( f , x) is a Schur-convex function on In for any k = 1, 2, . . . , n.

Theorem 7 ([33]). Let I ⊆ R+ be symmetric and convex with non-empty interior, and let
f : I → R+ be differentiable in the interior of I and continuous on I. If log f is convex and
increasing, then E∗k ( f , x) is a Schur-geometrically convex and Schur-harmonically convex function
on In for any k = 1, 2, . . . , n.

Theorem 2 is the inverse problem of Theorem 1. Thus, the first aim of this paper is to
study the inverse problems from Theorems 3 to 7. In contrast with these results, our study
suggests that the functions that do not have to be monotonous and continuous.

The arithmetic mean of x, y ∈ R is defined by

A(x, y) =
x + y

2
.

The geometric mean, harmonic mean, identity mean, and logarithmic mean of x, y > 0
are respectively defined by
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G(x, y) =
√

xy, H(x, y) =
2xy

x + y
,

I(x, y) =


1
e

(
xx

yy

) 1
x−y

, x 6= y,

x, x = y,
L(x, y) =


x− y

log x− log y
, x 6= y,

x, x = y.

It is well known that the following inequalities on special means

H(x, y) ≤ G(x, y) ≤ L(x, y) ≤ I(x, y) ≤ A(x, y), x, y > 0 (1)

have many important applications. Another aim of this paper is to establish new inequali-
ties on special means by use of the Schur-convexity of Ek( f , x), E∗k ( f , x), and the theory of
majorization.

2. Definitions and Lemmas

First, we introduce the concepts of Schur-convex function, Schur-geometrically convex
function, and Schur-harmonically convex function.

For positive vector x = (x1, . . . , xn) ∈ Rn
+, we denote by

1
x

:=
(

1
x1

, . . . ,
1
xn

)
, log x := (log x1, . . . , log xn), ex := (ex1 , . . . , exn).

A function ϕ : Ω ⊆ Rn → R is said to be increasing on Ω if xi ≤ yi(1 ≤ i ≤ n) implies
ϕ(x) ≤ ϕ(y) for any x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Ω.

Definition 1. Let x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.

(i) ([34]) x is said to be majorized by y (in symbols x ≺ y) if

k

∑
i=1

x[i] ≤
k

∑
i=1

y[i] for 1 ≤ k ≤ n− 1 and
n

∑
i=1

xi =
n

∑
i=1

yi,

where x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending
order.

(ii) ([34]) A function ϕ : Ω ⊆ Rn → R is said to be Schur-convex (Schur-concave) on Ω if

x ≺ y⇒ ϕ(x) ≤ (≥)ϕ(y), ∀ x, y ∈ Ω.

(iii) ([16]) A function ϕ : Ω ⊆ Rn
+ → R+ is said to be Schur-geometrically convex (Schur-

geometrically concave) on Ω if

log x ≺ log y⇒ ϕ(x) ≤ (≥)ϕ(y), ∀ x, y ∈ Ω.

(iv) ([23]) A function ϕ : Ω ⊆ Rn
+ → R+ is said to be Schur-harmonically convex (Schur-

harmonically concave) on Ω if

1
x
≺ 1

y
⇒ ϕ(x) ≤ (≥)ϕ(y), ∀ x, y ∈ Ω.

Next, we introduce the concepts of convex function, geometrically convex function,
and harmonically convex function.

Definition 2 ([22,23]). Let I ⊆ R be an interval, and let f : I → R be a function.

(i) f is called a convex (concave) function on I if

f (λx + (1− λ)y) ≤ (≥)λ f (x) + (1− λ) f (y), ∀ x, y ∈ I, 0 ≤ λ ≤ 1.
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(ii) f : I ⊆ R+ → R+ is called a geometrically convex (geometrically concave) function on I if

f (xλy1−λ) ≤ (≥)[ f (x)]λ[ f (y)]1−λ, ∀ x, y ∈ I, 0 ≤ λ ≤ 1.

(iii) f : I ⊆ R+ → R+ is called a harmonically convex (harmonically concave) function on I if

f

((
λ

x
+

1− λ

y

)−1
)
≤ (≥)

(
λ

f (x)
+

1− λ

f (y)

)−1
, ∀ x, y ∈ I, 0 ≤ λ ≤ 1.

Lemma 1. Let f : [a, b] ⊆ R+ → R+ and ϕ : Ω ⊆ Rn
+ → R+ be functions.

(i) ([22]) f is geometrically convex (geometrically concave) on [a, b] if and only if log f (ex) is
convex (concave) on [log a, log b].

(ii) ([23,35]) f is harmonically convex (harmonically concave) on [a, b] if and only if 1
f ( 1

x )
is

concave (convex) on
[

1
b , 1

a

]
.

(iii) ([22]) ϕ is Schur-geometrically convex (Schur-geometrically concave) on Ω if and only if
ϕ(ex) is Schur-convex (Schur-concave) on {log x | x ∈ Ω}.

(iv) ([23]) ϕ is Schur-harmonically convex (Schur-harmonically concave) on Ω if and only if

ϕ
(

1
x

)
is Schur-convex (Schur-concave) on

{
1
x | x ∈ Ω

}
.

Lemma 2 ([16,36]). Let I ⊆ R be an interval, and let f : I → R be a continuous function.

(i) f is convex (concave) on I if and only if

f (A(x, y)) ≤ (≥)A( f (x), f (y)), ∀ x, y ∈ I.

(ii) f : I ⊆ R+ → R+ is geometrically convex (geometrically concave) on I if and only if

f (G(x, y)) ≤ (≥)G( f (x), f (y)), ∀ x, y ∈ I.

(iii) f : I ⊆ R+ → R+ is harmonically convex (harmonically concave) on I if and only if

f (H(x, y)) ≤ (≥)H( f (x), f (y)), ∀ x, y ∈ I.

Next, we prove the convexity of some functions involving I(x, a + x) and L(x, a + x).

Lemma 3. Let a > 0. Then

(i) I(x, a + x) and L(x, a + x) are concave on R+.
(ii) I(x, a + x), L(x, a + x) and e[1/L(x,a+x)] are geometrically convex on R+, e[1/I(x,a+x)] is

geometrically convex on [a,+∞).
(iii) I(x, a + x) and L(x, a + x) are harmonically convex on R+.

Proof. For simplicity, we denote f (x) = I(x, a + x), g(x) = L(x, a + x).

(i) By a simple calculation, we can obtain that

f ′′(x) = f (x)
[
(log f (x))′′ + (log f (x))′2

]
= f (x)

a2

[
−a2

x(a+x) +
(
log(1 + a

x )
)2
]
,

g′′(x) = −a2[(2x+a)(log(x+a)−log x)−2a]
x2(x+a)2[log(x+a)−log x]3

.

Let
f1(t) = −t− 1

t + (log t)2 + 2, t > 1;
φx(s) = (2x + s)(log(x + s)− log x)− 2s, s > 0, x > 0,
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then

f ′′(x) =
f (x) f1(1 + a

x )

a2 , g′′(x) =
−a2φx(a)

x2(x + a)2[log(x + a)− log x]3
,

and
f ′1(t) =

1
t (−t + 1

t + 2 log t) < 0,
φ′x(s) = − log x

x+s −
s

x+s > 0.

Note that f1(1) = 0, φx(0) = 0, so f1(t) < 0(t > 1) and φx(s) > 0(s > 0). It follows
that f ′′(x) < 0 and g′′(x) < 0 on R+. Hence, f (x) and g(x) are concave on R+.

(ii) Note that

(log f (ex))′′ = ex

−a

[
a

a+ex + log ex

a+ex

]
> 0, x ∈ R,

(log g(ex))′′ = g(ex)2ex [ae−x−log(1+ae−x)]
a(a+ex)2 > 0, x ∈ R,(

1
g(ex)

)′′
= ex

(a+ex)2 > 0, x ∈ R.

It means that log f (ex) , log g(ex) and 1
g(ex)

are convex on R. So f (x), g(x) and e[1/g(x)]

are geometrically convex on R+ by Lemma 1(i).
Next we prove that e[1/ f (x)] is geometrically convex on [a,+∞). Clearly we have(

1
f (ex)

)′′
= e2x

a2 f (ex)

[
a
ex

(
log ex

a+ex + 1− ex

a+ex

)
+
(

log ex

a+ex

)2
]

, x ≥ log a.

Let
p(t) = (1/t− 1)(log t + 1− t) + (log t)2,

1
2
≤ t < 1.

then
(

1
f (ex)

)′′
=

e2x p( ex
a+ex )

a2 f (ex)
and

p′(t) =
1
t

[
(t− 1) +

(
2− 1

t

)
log t

]
< 0.

Note that p(1) = 0, so p(t) > 0 ( 1
2 ≤ t < 1). It follows that

(
1

f (ex)

)′′
> 0 on

[log a,+∞) and e1/ f (x) is geometrically convex on [a,+∞) by Lemma 1(i).
(iii) Note that [

1
g( 1

x )

]′′
=

−a
(ax + 1)2 < 0, x > 0.

So 1
g( 1

x )
is concave and g(x) is harmonically convex on R+ by Lemma 1(ii).

Next, we prove that f (x) is harmonically convex on R+. Clearly we have[
1

f ( 1
x )

]′′
=

1
a2x4 f ( 1

x )

[
−2ax log(ax + 1) +

a2x2

ax + 1
+ (log(ax + 1))2

]
, x > 0.

Let
h(t) = −2(t− 1) log t + t +

1
t
− 2 + (log t)2, t > 1,

then
[

1
f ( 1

x )

]′′
= h(ax+1)

a2x4 f ( 1
x )

and

h′(t) = −
(

1− 1
t

)(
1− 1

t
+ 2 log t

)
< 0.
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Note that h(1) = 0, so h(t) < 0(t > 1) and
[

1
f ( 1

x )

]′′
< 0(x > 0). Hence 1

f ( 1
x )

is concave

and f (x) is harmonically convex on R+ by Lemma 1(ii).

In the following, we introduce some relevant conclusions on the Schur-convexity of
the composite function. For further details, please refer to [22,23,29].

Lemma 4 ([29]). Let I ⊆ R be an interval, and let ϕ : Rn → R, f : I → R and ψ(x) =
ϕ( f (x1), · · · , f (xn)) : Rn → R be functions.

(i) If f is convex and ϕ is increasing Schur-convex, then ψ is Schur-convex on In.
(ii) If f is concave and ϕ is increasing Schur-concave, then ψ is Schur-concave on In.

Lemma 5 ([22,23]). Let I ⊆ R+ be an interval, and let ϕ : Rn
+ → R+, f : I → R+ and

ψ(x) = ϕ( f (x1), · · · , f (xn)) : Rn
+ → R+ be functions.

(i) If f is geometrically convex and ϕ is increasing Schur-geometrically convex, then ψ is Schur-
geometrically convex on In.

(ii) If f is geometrically concave and ϕ is increasing Schur-geometrically concave, then ψ is
Schur-geometrically concave on In.

(iii) If ϕ is increasing and Schur-harmonically convex and f is harmonically convex, then ψ is
Schur-harmonically convex on In.

Symmetric functions Ek(x) and E∗k (x) have the following properties.

Lemma 6 ([1,21–23]). Ek(x) and E∗k (x) are increasing Schur-concave, Schur-geometrically convex
and Schur-harmonically convex on Rn

+.

Lemma 7 ([29]). Let I ⊆ R+ be an interval, and let ϕ : In → R be a continuous symmetric
function. If ϕ is differentiable on In, then ϕ is Schur-convex (Schur-concave) on In if and only if

(x1 − x2)

(
∂ϕ(x)

∂x1
− ∂ϕ(x)

∂x2

)
≥ 0(≤ 0).

Let E0(x3, · · · , xn) = 1, ∑0
i=1 xi = 0, it is easy to induce that

E1(x) =
n

∑
i=1

xi, E∗1 (x) =
n

∏
i=1

xi,

Ek(x) = x1Ek−1(x3, · · · , xn) + x2Ek−1(x3, · · · , xn) + x1x2Ek−2(x3, · · · , xn)

+ Ek(x3, · · · , xn), 2 ≤ k ≤ n,

∂E∗k (x)
∂x1

= ∑
3≤i1<···<ik−1≤n

E∗k (x)

x1 + ∑k−1
j=1 xij

+ ∑
3≤i1<···<ik−2≤n

E∗k (x)

x1 + x2 + ∑k−2
j=1 xij

, 2 ≤ k ≤ n,

∂E∗k (x)
∂x2

= ∑
3≤i1<···<ik−1≤n

E∗k (x)

x2 + ∑k−1
j=1 xij

+ ∑
3≤i1<···<ik−2≤n

E∗k (x)

x1 + x2 + ∑k−2
j=1 xij

, 2 ≤ k ≤ n.

Hence, by use of Lemma 7, Lemma 1(iii), (iv) and Lemma 6, we have

Lemma 8. Let k = 1, 2, · · · , n, then

(i) Ek(ex) and E∗k (e
x) are increasing and Schur-convex on Rn.

(ii) Ek(log x) and E∗k (log x) are increasing and Schur-geometrically concave on {ex|x ∈ Rn
+}.

(iii) Ek(
1
x ) and E∗k (

1
x ) are decreasing and Schur-harmonically concave on Rn

+.
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3. Main Results

In this section, we prove our main results. Firstly, we investigate the Schur-convexity
of Ek( f , x) and E∗k ( f , x) and their inverse problems. Note that Theorems 1 and 2 study the
cases of E1( f , x) and E∗n( f , x), so we only consider the other cases in the following.

Theorem 8. Let I ⊆ R be an interval, and let f : I → R+ be a function.

(i) If log f is convex, then Ek( f , x)(2 ≤ k ≤ n) and E∗k ( f , x)(1 ≤ k ≤ n− 1) are Schur-convex
on In. Conversely, if Ek( f , x)(2 ≤ k ≤ n) or E∗k ( f , x)(1 ≤ k ≤ n− 1) is Schur-convex on
In and f is continuous, then f is convex.

(ii) If f is concave, then Ek( f , x)(1 ≤ k ≤ n) and E∗k ( f , x)(1 ≤ k ≤ n) are Schur-concave on
In. Conversely, if E1( f , x) or E∗n( f , x) is Schur-concave on In and f is continuous, then f is
concave. If Ek( f , x)(2 ≤ k ≤ n) or E∗k ( f , x)(1 ≤ k ≤ n− 1) is Schur-concave on In and f
is continuous, then log f is concave.

Proof. We only prove that the results hold for Ek( f , x). A similar argument leads to the
proof of the results for E∗k ( f , x).

(i) If log f is convex, then Ek( f , x) = Ek(elog f , x) is Schur-convex on In by Lemmas 4(i)
and 8(i). Conversely, if 2 ≤ k ≤ n and Ek( f , x) is Schur-convex on In, note that Ek(x)
is Schur-concave on Rn

+, so for all (x1, · · · , xn) ∈ In, we have

Ek( f (A(x1, x2)), f (A(x1, x2)), f (x3), · · · , f (xn))

≤Ek( f (x1), f (x2), f (x3), · · · , f (xn))

≤Ek
(

A
(

f (x1), f (x2)
)
, A
(

f (x1), f (x2)
)
, f (x3), · · · , f (xn)

)
.

Since Ek(x) is increasing on Rn
+, then

f (A(x1, x2)) ≤ A
(

f (x1), f (x2)
)
.

Since f is continuous, f is convex by Lemma 2(i).
(ii) If f is concave, then Ek( f , x) is Schur-concave on In by Lemmas 4(ii) and 6. Conversely,

if E1( f , x) is Schur-concave on In and f is continuous, then −E1( f , x) = E1(− f , x) is
Schur-convex on In, so − f is convex on I by Theorem 2. Hence f is concave.
If 2 ≤ k ≤ n and Ek( f , x) is Schur-concave on In, note that Ek(ex) is Schur-convex by
Lemma 8(i), so for all (x1, · · · , xn) ∈ In and 2 ≤ k ≤ n, we have

Ek( f (A(x1, x2)), f (A(x1, x2)), f (x3), · · · , f (xn))

≥Ek( f (x1), f (x2), f (x3), · · · , f (xn))

=Ek

(
elog f (x1), elog f (x2), elog f (x3), · · · , elog f (xn)

)
≥Ek

(
eA(log f (x1),log f (x2)), eA(log f (x1),log f (x2)), elog f (x3), · · · , elog f (xn)

)
=Ek(G( f (x1), f (x2)), G( f (x1), f (x2)), f (x3), · · · , f (xn)).

Since Ek(x) is increasing on Rn
+, then

f (A(x1, x2)) ≥ G( f (x1), f (x2)).

Since f is continuous, log f is concave by Lemma 2(i).

Secondly, we prove the Schur-geometrically convexity of Ek( f , x) and E∗k ( f , x) and
their inverse problems.
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Theorem 9. Let 1 ≤ k ≤ n and I ⊆ R+ be an interval, and let f : I → R+ be a function.

(i) If f is geometrically convex, then Ek( f , x) and E∗k ( f , x) are Schur-geometrically convex on In.
Conversely, if En( f , x) or E∗1 ( f , x) is Schur-geometrically convex on In and f is continuous,
then f is geometrically convex. If Ek( f , x)(1 ≤ k ≤ n − 1) or E∗k ( f , x)(2 ≤ k ≤ n) is
Schur-geometrically convex on In and f is continuous, then e f is geometrically convex;

(ii) If f is geometrically concave, then En( f , x) and E∗1 ( f , x) are Schur-geometrically concave
on In. If e f is geometrically concave, then Ek( f , x)(1 ≤ k ≤ n − 1) and E∗k ( f , x)(2 ≤
k ≤ n) are Schur-geometrically concave on In. Conversely, if Ek( f , x) or E∗k ( f , x) is Schur-
geometrically concave on In and f is continuous, then f is geometrically concave.

Proof. We only prove that the results hold for Ek( f , x). A similar argument leads to the
proof of the results for E∗k ( f , x).

(i) If f is geometrically convex, then Ek( f , x) is Schur-geometrically convex on In by
Lemmas 5(i) and 6. Conversely, if En( f , x) is Schur-geometrically convex on In, then
for all (x1, · · · , xn) ∈ In, we have

En( f (G(x1, x2)), f (G(x1, x2)), f (x3), · · · , f (xn)) = f 2(G(x1, x2))
n

∏
i=3

f (xi) ≤
n

∏
i=1

f (xi).

So we have
f (G(x1, x2)) ≤ G( f (x1), f (x2)).

Since f is continuous, f is geometrically convex by Lemma 2(ii).
If Ek( f , x)(1 ≤ k ≤ n− 1) is Schur-geometrically convex on In, note that Ek(log x) is
Schur-geometrically concave by Lemma 8(ii), so for all (x1, · · · , xn) ∈ In, we have

Ek( f (G(x1, x2)), f (G(x1, x2)), f (x3), · · · , f (xn))

≤Ek( f (x1), f (x2), f (x3), · · · , f (xn))

=Ek

(
log e f (x1), log e f (x2), log e f (x3), · · · , log e f (xn)

)
≤Ek

(
log G(e f (x1), e f (x2)), log G(e f (x1), e f (x2)), log e f (x3), · · · , log e f (xn)

)
=Ek(A( f (x1), f (x2)), A( f (x1), f (x2)), f (x3), · · · , f (xn)).

Which implies that
f (G(x1, x2)) ≤ A( f (x1), f (x2)).

Since f is continuous, e f is geometrically convex by Lemma 2(ii).
(ii) If f is geometrically concave, then 1

f is geometrically convexity, it follows that the
function

1
En( f , x)

= En

(
1
f

, x
)

is Schur-geometrically convex on In by (i); hence, En( f , x) is Schur-geometrically
concave on In.
If e f is geometrically concave, then for any 1 ≤ k ≤ n− 1, Ek( f , x) = Ek(log e f , x) is
Schur-geometrically concave on In by Lemmas 5(ii) and 8(ii).
Conversely, if Ek( f , x) is Schur-geometrically concave on In, note that Ek(x) is Schur-
geometrically convex on In, so for all (x1, · · · , xn) ∈ In, we have

Ek( f (G(x1, x2)), f (G(x1, x2)), f (x3), · · · , f (xn))

≥Ek( f (x1), f (x2), f (x3), · · · , f (xn))

≥Ek(G( f (x1), f (x2)), G( f (x1), f (x2)), f (x3), · · · , f (xn)).
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Which implies that

f (G(x1, x2)) ≥ G( f (x1), f (x2)).

Since f is continuous, f is geometrically concave by Lemma 2(ii).

Finally, we prove the Schur-harmonically convexity of Ek( f , x) and E∗k ( f , x) and their
inverse problems.

Theorem 10. Let 1 ≤ k ≤ n and I ⊆ R+ be an interval, and let f : I → R+ be a function.

(i) If f is harmonically convex, then Ek( f , x) and E∗k ( f , x) are Schur-harmonically convex on In.
Conversely, if Ek( f , x) or E∗k ( f , x) is Schur-harmonically convex on In and f is continuous,
then 1

f is harmonically concave.

(ii) If 1
f is harmonically convex, then Ek( f , x) and E∗k ( f , x) are Schur-harmonically concave on In.

Conversely, if Ek( f , x) or E∗k ( f , x) is Schur-harmonically concave on In and f is continuous,
then f is harmonically concave.

Proof. We only prove that the results hold for Ek( f , x). A similar argument leads to the
proof of the results for E∗k ( f , x).

(i) If f is harmonically convex, then Ek( f , x) is Schur-harmonically convex on In by
Lemmas 5(iii) and 6. Conversely, if Ek( f , x) is Schur-harmonically convex on In, note
that Ek(

1
x ) is Schur-harmonically concave by Lemma 8(iii), so for all (x1, · · · , xn) ∈ In,

we have

Ek( f (H(x1, x2)), f (H(x1, x2)), f (x3), · · · , f (xn))

≤Ek( f (x1), f (x2), f (x3), · · · , f (xn))

=Ek

 1
1

f (x1)

,
1
1

f (x2)

,
1
1

f (x3)

, · · · ,
1
1

f (xn)


≤Ek

 1

H
(

1
f (x1)

, 1
f (x2)

) ,
1

H
(

1
f (x1)

, 1
f (x2)

) ,
1
1

f (x3)

, · · · ,
1
1

f (xn)

.

Which implies that
1

f (H(x1, x2))
≥ H

(
1

f (x1)
,

1
f (x2)

)
.

Since f is continuous, 1
f is harmonically concave by Lemma 2(iii).

(ii) If 1
f is harmonically convex, note that

[
Ek(

1
x )
]−1

is increasing Schur-harmonically
convex on Rn

+ by Lemma 8(iii), so the function

(Ek( f , x))−1 =

(
Ek

(
1
1
f

, x

))−1

is Schur-harmonically convex on In by Lemma 5(iii). It follows that Ek( f , x) is Schur-
harmonically concave on In. Conversely, if Ek( f , x) is Schur-harmonically concave
on In, note that Ek(x) is Schur-harmonically convex on In by Lemma 6, so for all
(x1, · · · , xn) ∈ In, we have

Ek( f (H(x1, x2)), f (H(x1, x2)), f (x3), · · · , f (xn))

≥Ek( f (x1), f (x2), f (x3), · · · , f (xn))

≥Ek(H( f (x1), f (x2)), H( f (x1), f (x2)), f (x3), · · · , f (xn)).
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Which implies that

f (H(x1, x2)) ≥ H( f (x1), f (x2)).

Since f is continuous, f is harmonically concave by Lemma 2(iii).

4. Applications to Means

Now, we use Theorems 8–10 to establish new inequalities on special means.
Let x = (x1, · · · , xn) ∈ Rn

+,, the arithmetic mean, geometric mean, harmonic mean of
x1, · · · , xn are respectively defined by

An(x) =
1
n

n

∑
i=1

xi, Gn(x) =

(
n

∏
i=1

xi

)1/n

, Hn(x) = n

(
n

∑
i=1

x−1
i

)−1

.

For simplicity, we denote

I(x, a + x) = (I(x1, a + x1), · · · , I(xn, a + xn)),

L(x, a + x) = (L(x1, a + x1), · · · , L(xn, a + xn)).

If we replace f (x) with I(x, a + x) and L(x, a + x), respectively, in Theorem 8(ii), then
by Lemma 3(i) and Theorem 8(ii) we can get:

Theorem 11. Let a > 0, x = (x1, · · · , xn) ∈ R+, n ≥ 2, 1 ≤ k ≤ n, then

∑
1≤i1<···<ik≤n

k

∏
j=1

I(xij , a + xij) ≤
(

n
k

)
I(An(x), a + An(x))k, (2)

∑
1≤i1<···<ik≤n

k

∏
j=1

L(xij , a + xij) ≤
(

n
k

)
L(An(x), a + An(x))k, (3)

∏
1≤i1<···<ik≤n

k

∑
j=1

I(xij , a + xij) ≤ k(
n
k) I(An(x), a + An(x))(

n
k), (4)

∏
1≤i1<···<ik≤n

k

∑
j=1

L(xij , a + xij) ≤ k(
n
k)L(An(x), a + An(x))(

n
k). (5)

In particular, if we let k = 1 in (2) and (3), respectively, then we have

An(I(x, a + x)) ≤ I(An(x), a + An(x)), (6)

An(L(x, a + x)) ≤ L(An(x), a + An(x)). (7)

If we replace f (x) with I(x, a+ x), L(x, a+ x), e[1/I(x,a+x)] and e[1/L(x,a+x)] respectively
in Theorem 9(i), then by Lemma 3(ii) and Theorem 9(i) we have:

Theorem 12. Let a > 0, x = (x1, · · · , xn), n ≥ 2, 1 ≤ k ≤ n, then
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∑
1≤i1<···<ik≤n

k

∏
j=1

I(xij , a + xij) ≥
(

n
k

)
I(Gn(x), a + Gn(x))k, x ∈ Rn

+, (8)

∑
1≤i1<···<ik≤n

k

∏
j=1

e
[1/I(xij

,a+xij
)] ≥

(
n
k

)
e[k/I(Gn(x),a+Gn(x))], x ∈ [a,+∞)n, (9)

∑
1≤i1<···<ik≤n

k

∏
j=1

L(xij , a + xij) ≥
(

n
k

)
L(Gn(x), a + Gn(x))k, x ∈ Rn

+, (10)

∑
1≤i1<···<ik≤n

k

∏
j=1

(
a + xij

xij

) 1
a

≥
(

n
k

)(
a + Gn(x)

Gn(x)

) k
a
, x ∈ Rn

+, (11)

∏
1≤i1<···<ik≤n

k

∑
j=1

I(xij , a + xij) ≥ k(
n
k) I(Gn(x), a + Gn(x))(

n
k), x ∈ Rn

+, (12)

∏
1≤i1<···<ik≤n

k

∑
j=1

e
[1/I(xij

,a+xij
)] ≥ k(

n
k)e[(

n
k)/I(Gn(x),a+Gn(x))], x ∈ [a,+∞)n, (13)

∏
1≤i1<···<ik≤n

k

∑
j=1

L(xij , a + xij) ≥ k(
n
k)L(Gn(x), a + Gn(x))(

n
k), x ∈ Rn

+, (14)

∏
1≤i1<···<ik≤n

k

∑
j=1

(
a + xij

xij

) 1
a

≥ k(
n
k)

(
a + Gn(x)

Gn(x)

)(n
k)/a

, x ∈ Rn
+. (15)

In particular, if we let k = n in (8), (9), (10) and (11), respectively, then we have

Gn(I(x, a + x)) ≥ I(Gn(x), a + Gn(x)), x ∈ Rn
+, (16)

Hn(I(x, a + x)) ≤ I(Gn(x), a + Gn(x)), x ∈ [a,+∞)n, (17)

Gn(L(x, a + x)) ≥ L(Gn(x), a + Gn(x)), x ∈ Rn
+, (18)

Hn(L(x, a + x)) ≤ L(Gn(x), a + Gn(x)), x ∈ Rn
+. (19)

If we replace 1
f (x) with I(x, a + x) and L(x, a + x), respectively, in Theorem 10(ii), then

by Lemma 3(iii) and Theorem 10(ii), we can get:

Theorem 13. Let a > 0, x = (x1, · · · , xn) ∈ Rn
+, n ≥ 2, 1 ≤ k ≤ n, then

∑
1≤i1<···<ik≤n

k

∏
j=1

1
I(xij , a + xij)

≤
(

n
k

)
1

I(Hn(x), a + Hn(x))k , (20)

∑
1≤i1<···<ik≤n

k

∏
j=1

1
L(xij , a + xij)

≤
(

n
k

)
1

L(Hn(x), a + Hn(x))k , (21)

∏
1≤i1<···<ik≤n

k

∑
j=1

1
I(xij , a + xij)

≤ k(
n
k)

1
I(Hn(x), a + Hn(x))k , (22)

∏
1≤i1<···<ik≤n

k

∑
j=1

1
L(xij , a + xij)

≤ k(
n
k)

1
L(Hn(x), a + Hn(x))k . (23)

In particular, if we let k = 1 in (20) and (21), respectively, then we have

Hn(I(x, a + x)) ≥ I(Hn(x), a + Hn(x)), (24)

Hn(L(x, a + x)) ≥ L(Hn(x), a + Hn(x)). (25)
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By the inequalities (6), (7), (16)–(19), (24) and (25), we can obtain the following new
inequalities.

Theorem 14. Let a > 0, x = (x1, · · · , xn) ∈ Rn
+, n ≥ 2, then

I(Hn(x), a + Hn(x)) ≤ Hn(I(x, a + x)) ≤ I(Gn(x), a + Gn(x))

≤ Gn(I(x, a + x)) ≤ An(I(x, a + x)) ≤ I(An(x), a + An(x)), x ∈ [a,+∞)n, (26)

L(Hn(x), a + Hn(x)) ≤ Hn(L(x, a + x)) ≤ L(Gn(x), a + Gn(x))

≤ Gn(L(x, a + x)) ≤ An(L(x, a + x)) ≤ L(An(x), a + An(x)), x ∈ Rn
+. (27)

5. Discussion

In this paper, the Schur-convexity, Schur-geometric convexity, and Schur-harmonic
convexity and the inverse problem for Ek( f , x) and E∗k ( f , x) are established in Theorems 8–10,
then some results in the papers [1,17,24–33] are generalized.

The inequalities involving special means (arithmetic mean, geometric mean, harmonic
mean, identity mean, and logarithmic mean) are very important. In this paper, by use
of Theorems 8–10 and the theory of majorization, new inequalities on special means are
established in Theorems 11–14.
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