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Abstract: The article presents the results of a study performed and substantiated based on the
principles of a new method of diagnostics of technical conditions of a hybrid powertrain regardless
of the structural diagram and design features of a hybrid vehicle. The presented new technology
of the diagnostics of hybrid powertrains allows an objective complex assessment of their technical
condition by diagnostic parameters in contrast to existing diagnostic methods. In the proposed
method, a mechanism for the general standardization of diagnostic parameters has been developed
as well as for determining the numerical values of the parameters of the powertrain. The control
subset was used to control the learning error. As a result of debugging the system, the scatter of
experimental and calculated points has decreased, which confirms the quality of debugging the
tested fuzzy model. As a result of training the artificial neural network, the standard deviation of the
error in the control sample was 0.012·Pk. A symmetry method of diagnostics of the technical state of
a hybrid propulsion system was developed based on the concept of a neural network together with a
neuro-fuzzy control with an adaptive criteria based on the method of training a neural network with
reinforcement. The components of the vector functional include the criteria for control accuracy, the
use of traction battery energy, and the degree of toxicity of exhaust gases. It is proposed to use the
principle of symmetry of the guaranteed result and the linear inversion of the vector criterion into
a supercriterion to determine the technical state of a hybrid powertrain on a set of Pareto-optimal
controls under unequal conditions of optimality.

Keywords: vehicle; hybrid powertrain; traction battery; neural network model; fuzzy model

1. Introduction

Features of power units of hybrid and electric vehicles allow for the conclusion that
that powertrains as a control object are characterized by a change in a structure, significant
nonlinearity of their main elements, and parametric uncertainty [1–4]. The efficiency of
using the power unit is determined by the characteristics of its automatic control system,
which solves the following tasks: identifying the current state of power unit systems and
units; predicting the traction speed mode of movement; selection of the optimal operating
mode of the power unit, depending on its technical condition and the mode of vehicle
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movement; an optimal distribution of power flows between the units of the power unit at
a given traction speed mode; the management of braking energy recovery, recharging and
energy consumption of the storage device; stabilization of the specified operating modes of
individual units of the power unit; providing a driver interface, simulating control of the
base car [1,2,5].

Along with the operational properties, it is important to prevent the consequences of
a car fire [5] and the risks associated with it [6,7]. A possible application of various fire
retardant technologies, such as the use of neutral gases and liquids, the introduction of
temperature control systems as well as the emergency shutdown of the traction battery, and
others [8]. Moreover, the problems of environmental safety of the use of cars with certain
qualities [9], the recycling of the battery elements [10,11] and the greening of technological
processes [12], are relevant and have paramount importance in hybrid vehicle operations.
Global trends in the development of vehicles force improvements to the infrastructure of
power supply to settlements, together with preserving the ecology [13] based on the use
alternative energy sources [14]. Many properties of a car depend on the type and properties
of the fuel [15]. Products of the fuel combustion have a negative impact on humans and the
environment [16]. A hybrid power unit (HPU) together with electronic control units and
other components form a complex system that requires special approaches to determining
the technical conditions and the repairs.

Until now, the process of diagnosing a hybrid powertrain remains unexplored. The
applied methods of analysis and synthesis of the control system do not pay enough
attention to the multicriterion of the arising optimization problems of diagnostics. These
circumstances do not allow for fully disclosing the potential of hybrid vehicles [1,2,5,17].

2. Analysis of the Literature Data and the Problem Statement

The HPU operation relates to deterioration of the effective performance of the traction
battery (TB), the internal combustion engine (ICE) and the electric motor [18]. This is
caused by the wear of parts, reduced capacity of the TB, a lack of necessary maintenance,
and other interrelated reasons.

According to work [19], which is focused on the distribution of failures and malfunc-
tions of the HPU, the largest numbers of them are associated with the internal combustion
engine. The difficulty of identifying the malfunction of this unit is due to the fact that it is
difficult to check the operation of the internal combustion engine as its start and control is
carried out by the electronic control unit (ECU) and only in the power consumption mode.

There is also a connection between the failure of the internal combustion engine and
the electronic components of the HPU systems. Failures of a high-voltage traction battery
during the operation caused by its normal wear and tear make up to 2.5% of the total
number of faults [19]. The main reason of the occurrence of the TB failures is the operation
of a car with a faulty internal combustion engine, which leads to an unacceptable level of
the high-voltage TB and the destruction of its elements [20,21].

The technical condition of the HPU is influenced by the climatic conditions of the
operation. When the air temperature decreases, a cold internal combustion engine demands
a longer time as well as the need itself for increasing the optimal operational temperature,
even in the case that the TB is fully charged. These factors reduce the efficiency of a hybrid
vehicle and the fuel consumption increases by 15–30% [22,23]. In addition, at low air
temperatures, the number of ICE control system failures increases up to 23% of the total
number of faults [24,25].

An analysis of the TB performance at low air temperatures shows that its capacity can
decrease by 15–25% at a discharge current of 0.5–1.0 A and the self-discharge decreases at
the environment temperature less than 10 ◦C from 3% to 1% per a day [26,27]. The operation
of the TB at low air temperatures causes a decrease in the TB capacity E ≈ 0.7·E [28,29].
This fact is explained by the slowing down of the ongoing chemical reactions of the TB due
to the cooling of its elements. In addition, when the internal combustion engine is heated
for a longer time, the TB is fully charged for a longer time.
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During the operation of the TB, an imbalance of the elements, in terms of capacity,
internal resistance, and other parameters, appears and reduces the efficiency of the battery
as a whole [30]. The car reacts to the reduction of the TB quality by increasing the fuel
consumption, an incorrect indication, and, generally, by decreasing the power.

The hybrid vehicle technical state can vary depending on the mileage and how the
distribution of the flow of failures of the HPU systems increases the tendency. Based on
statistical data, the largest number of HPU failures are associated with the internal combus-
tion engine and its systems; other failures are most often the result of malfunctions [31].
The methods of adaptation for the control strategy of the hybrid powertrain to the traction
speed mode of the vehicle movement are used based on the concept of neural network and
neural fuzzy control with an adaptive criterion and a model of the control object, using the
implementation of methods of training a neural network with reinforcement [32,33].

3. The Aim and Tasks of the Study

The aim of the work is to increase the operational efficiency of functional systems of a
hybrid vehicle by diagnosing the technical state based on the concept of a neural network
and a neuro-fuzzy control with the adaptive criticism based on the method of training a
neural network with reinforcement.

To achieve the aim, the following tasks were set:

• To scientifically substantiate a new symmetry method for diagnosing the technical
state of the HPU on the basis of the system analysis of the task of increasing the
environmental cleanliness and efficiency of the vehicle;

• To develop the theoretical foundations of the structural and a parametric identification
of a mathematical model of the HPU unit technical state.

4. Theoretical Foundations for Diagnosing the Hybrid Powertrain

The energy consumption (fuel, electricity) of a hybrid vehicle is determined by the
load-speed mode. These energy costs cause a deterioration of the technical condition of the
hybrid powertrain under given operating conditions. The efficiency of the powertrain of a
hybrid vehicle should be assessed by the criterion of the technical condition using a neural
network model that is invariant to different powertrains.

The technical condition of the powertrain of a hybrid vehicle depends on the load-
speed mode, and on the other hand, the energy consumption (fuel, electricity) is also
determined by the load-speed mode. At a constant speed of movement, the relationship
between a change in the technical state of the power unit and energy costs depends on the
torque of the driving wheels.

This dependence allows for the assessment of the technical condition of the power unit,
in terms of energy costs, during the operating hybrid vehicles under the specific operating
conditions. This regularity is used as the basis for assessing the technical conditions of the
power unit of a hybrid vehicle based on the total energy consumption [18,22]:

Pk = A ·
[

B ·Vc ·ω2 · ti + 9.1 · 10−4 ·U · I · (0.85 + 0.05 · Te)
]
·Vc, (1)

where A = 0.35·Qmin·Vmax—constant coefficient of the hybrid power plant, which reflects
the energy consumption for transport work; B = 12.8·10−6·ge·E·Xc—constant coefficient
of the hybrid power plant, which reflects the design features of the internal combustion
engine; ge—specific fuel consumption, g·kWh−1; ω—engine crankshaft rotation speed,
rpm; U—traction battery voltage, V; I—traction battery current, A; Te—environment
temperature, ◦C; Xc—number of ICE cylinders; E—fuel injector capacity, ml·min−1;
ti—injection time of the fuel injector, s; Qmin—minimum fuel consumption per 100 km of
mileage, l; Vmax, Vc—respectively, the highest speed and speed at the time of diagnosis,
km·h−1.

The formulation (1) is called the supercriterion, because it includes all factors, which
are used the method.
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The identification of the nonlinear dependence Pk = f (I, U, S, Vc) from the exper-
imental data by traditional methods turns out to be a difficult task and it is associated
with the significant difficulty of collecting the sufficient data as well as computational
difficulties [17].

At the same time, there are methods that make it possible to successfully identify
dependencies of the complex functions based on the experimental studies with the limited
data. Among such approaches, one can single out the use of fuzzy inference systems [30].
The advantages of the latter include the possibility of formalizing and using primary infor-
mation about the phenomena of the study. However, there are currently no substantiated
recommendations of applicability of a particular method. The study of the capabilities of
fuzzy systems, artificial neural networks, and hybrid neural networks was conducted to
select the most substantiated approach to approximating the required dependence.

Among the various systems of fuzzy inference, the Mamdani system was used, as
it is the most transparent from the point of view of the formulation of the rules of fuzzy
products. The fuzzification of the parameters, I, U, S, and Vc, is performed by specifying
their term sets I—{L, LM, M, MB, B}, U—{L, M, B}, S—{L, M, B}, Vc—{L, M, B}, where
the terms are assigned with the following values: L—“small”, LM—“less than average”,
M—“average”, MB—“more than average”, B—“large”. The output variable of the system
is K—{L, LM, M, MB, B}.

Terms can be represented by fuzzy sets that use the membership function:

µ(u) = exp

(
− (u− b)2

2c2

)
, (2)

where u—the normalized value of the corresponding variable; b—the maximum coordinate;
c—the concentration factor.

The choice of the Gaussian function relates with the dependence of the internal
combustion engine and the traction battery. The advantage of this membership function
is that only two parameters are needed for its task: b and c. The method of two stage
identification of the nonlinear Rothstein dependence [30] was used to synthesize a fuzzy
identification system for the dependence Pk = f (I, U, S, Vc). According to this method,
firstly, the base of fuzzy rules of the form “if something” (structural identification) is
formed, then, a parametric identification of the dependence is performed by finding such
weights of rules and parameters of membership functions of fuzzy terms that minimize
deviations of the results of fuzzy modelling from the experimental data.

The base of fuzzy rules is composed on the basis of weakly formalized empirical
knowledge about the operation of internal combustion engines at various degrees of
technical condition. Table 1 shows the resulting database containing 127 rules.

Since only the fuzzy conjunction (an “AND” operation) is used in all fuzzy rules as
a logical connection for a subcondition, the min-conjunction operation is chosen as the
aggregation method. When determining the result of the logical conjunction of fuzzy
statements, the expression is used:

T(A ∩ B) = min{T(A), T(B)}, (3)

where T(•)—the degree of truth of the corresponding expression.
The max-disjunction method is used to accumulate rule inferences. When determining

the result of a logical disjunction (“OR” operation) of fuzzy statements A and B, the
expression is used:

T(A ∪ B) = max{T(A), T(B)}. (4)

The formulation (5) is considered to determine the degree of truthfulness of the
negation of a fuzzy statement (“NOT”):

T(A) = 1− T(A). (5)
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The parametric identification of the model is performed based on the experimental
data obtained in the study of the hybrid power unit of the car.

Table 1. The fuzzy products rule base.
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where �̅�—the normalized parameter value; x—the measured parameter value; min {x}, 
max {x}—the minimum and maximum values of the corresponding set of parameter val-
ues. 

After preliminary processing of the experimental results, a matrix was formed from
the obtained data. Each of the 313 rows contains the results of a separate measurement of
the parameters I, U, ω, Te, and Pk corresponding to the moment of motion at the speed of
0.3 Vmax. The data set was divided into training and control samples by 2:1.

Normalized values I, U, ω, Te from the training sample were used as input variables
of the fuzzy model. The normalization was aimed at bringing the values of the input
variables into the interval [0, 1]; it was performed according to the expression:

xi =
xi −min{x}

max{x} −min{x} , i = 1, N, (6)

where x—the normalized parameter value; x—the measured parameter value; min {x}, max
{x}—the minimum and maximum values of the corresponding set of parameter values.

The denormalization operation was applied to the normalized value of the technical
state coefficient of the HPU obtained at the output of the fuzzy system:

Pk mod = Pk mod[max{Pk} −min{Pk}] + min{Pk}, (7)
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where Pk mod—the denormalized value of the coefficient of the technical condition of
the HPU.

The correspondence of the actual Pk and model Pk mod values of the technical condition
coefficient of the HPU on the training and control samples is shown in Figure 1.
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Figure 1. Testing the Mamdani fuzzy model for training.

To assess the quality of the synthesized fuzzy model, one can use the mathematical
expectation MPk and the standard deviation σPk of the discrepancy between the actual
and simulated values of the HPU technical state coefficient. For the convenience of com-
paring the results obtained from other models, their relative values MPk% and σPk% were
also calculated:

MPk % =
MPk

max{Pk} −min{Pk}
· 100%, (8)

σPk % =
σPk

max{Pk} −min{Pk}
· 100%, (9)

The values of these quantities are given in Table 2 and indicate the insufficient quality
of the created fuzzy model and the need for its modification.

Table 2. The value of the mathematical expectation and the standard deviation of the error for various methods of
approximation of the dependence.

Methods
Training Subset Control Subset

MPk MPk%, % σPk σPk%,% MPk MPk%, % σPk σPk%,%

Model
Mamdani

Before settings 0.937 1.43 0.209 13.2 0.89 2.42 0.714 32.75
After settings 0.76 0.27 0.65 7.26 0.482 0.74 0.63 8.78

Neural network 0.03 0.004 0.42 4.05 0.463 0.71 0.50 5.41

The setting of the system serves to find such parameters of the membership functions
and such weighting coefficients of the rules that minimize the deviations between the
experimental values of the coefficient of the HPU technical state {Pk} and the values {Pk mod}
obtained using the fuzzy model in the training sample [25]. A large number of rules and the
nonobviousness of the relationships between the parameters gives a reason to suppose that
using the standard optimization functions is better than the “manual” setting of the system.

In this case, the training of the fuzzy model was carried out using the fmincon function
of the Optimization Toolbox package, which is designed to solve optimization problems
using the nonlinear programming method, and it works based on the least-squares method.
With an increase in the number of iterations (in this case, 10 iterations were performed), the
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mean square of the modelling error for the normalized values of the technical condition
coefficient of the HPU is:

D =
1
n
·

n

∑
i=1

(
Pk mod − Pk

)2, (10)

where n—the number of points in the control sample.
As a result of setting the system, the spread of points (Pk, Pk mod) decreased, which is

reflected in Figure 2 and indicates the successful completion of the setting. The values of
MPk and σPk characterizing the discrepancy between the experimental data and the results
of fuzzy modelling of the training and control samples also have decreased significantly.
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5. Results of the Experimental Studies of a Power Hybrid Unit

During road tests on the car (Figure 3), the following findings were determined:

• The mode of driving on the electric traction with uniform movement and the charged
battery for determining the speed of the vehicle at which the internal combustion
engine is turned on, the power of the electric motor when the internal combustion
engine is turned on, the power of energy recirculation through the generator. These
parameters are necessary to find out the power limit of the internal combustion engine,
which is irrational with uniform movement;

• The electric traction mode on a steep ascent. It is necessary to determine the maximum
power of the electric motor at which the internal combustion engine is turned on
regardless of the speed of movement. This parameter is also required to determine
the limits of using the internal combustion engine;

• The mutual operation of the electric motor and the internal combustion engine with the
uniform movement. The determination of the synergistic effect of electric powertrains
as a percentage depending on the speed of movement and the energy reserve in the
battery. The power of the electric motor, the speed of rotation of the crankshaft of
the internal combustion engine, the fuel consumption, the speed of movement, the
regeneration of the generator’s energy are measured;

• The amount of power used for charging the battery and how it affects the specific
fuel consumption;

• The mutual operation of the electric motor and the internal combustion engine with
acceleration corresponding to the European urban cycle (up to 1 m·s−2). The determi-
nation of the percentage influence of the internal combustion engine and the electric
motor on the power indicators of the power unit;
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• The mutual operation of the electric motor and the internal combustion engine at
maximal acceleration.
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The internal combustion engine power and vehicle acceleration are measured.
Typical examples of processed measurements of energy flow distributions for various

driving modes are shown in Figures 4 and 5.
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P GEN—generator power, kW; P EM—electric motor power, kW; necessary power—power required
for movement or that is returned during recuperation, kW; speed, km·h−1; RPM/100—turnover
crankshaft of ICE/100.

The research was carried out on a Prius car and it showed that an average power of
15 kW is taken for urban driving speeds of up to 40 km·h−1 with an accumulator battery at
an acceleration of up to 1 m·s−2.

The dependence of the actual amount of fuel on the injection time of the injectors at a
certain speed of rotation of the crankshaft within 1000–3000 rpm was obtained to determine
the experimental dependences of the amount of fuel injected by each injector during a
certain period of time. The injection pressure of each injector was the same during the
entire study.

The aim of the experimental studies was to determine the amount of fuel symmetrically
injected by each injector during a certain period of time. Since the injection pressure of
each injector is the same, the dependences on the actual amount of fuel on the injection
time of the injectors at a certain crankshaft rotation speed (simulated) have been obtained
as the result of the research. The fuel injection volume varied within 6–18% in the study
of fuel injectors. In this case, the maximum operating time of the injectors was 40 s. The
increase of the crankshaft rotation speed is carried out using a modulator (pulse regulator)
and the value was observed on the tachometer of the instrument panel.

During the operation of the traction battery, not all battery modules operate at the same
temperature conditions. When the battery was charging, a significant voltage difference
was formed in the battery modules. This potential difference of the circuit of battery
modules connected in the series tends to self-destruct and, thus, it causes self-discharge of
the traction battery. It should be noted, that at the beginning of the charge carried out after
a deep discharge, there is a sharper increase in the internal resistance of the traction battery
than when it is fully charged.

At the initial stage of charging the traction battery, the charging current must be at
least 0.15 Cnom of the nominal battery capacity. At the beginning of battery charging, a
high difference in the charging voltage of the battery modules occurs. With further battery
charging, the voltage difference across the battery modules does not appear to decrease.
In this regard, there is an automatic disconnection from the battery charging when the
capacity is not more than 0.6–0.7 Cnom.

The continued high level of the difference of the charging current of the battery
modules is the reason for its high-intensity self-discharge. These reasons cause a failure
of the traction battery after operating at 50–60% of its resource. The main reason for the
failure of the traction battery is not the maximum depletion of the active mass material,
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but the abundant accumulation of hardly soluble discharge products. Battery modules
fail due to leakage of the housings at high internal pressure under the influence of a high
charge current.

Thus, the efficiency of using the energy approach of diagnosing the technical state of a
hybrid power unit has been experimentally confirmed. The diagnostic parameters of an
internal combustion engine and a traction battery are scientifically substantiated based on
a computational experiment and road tests of the hybrid vehicle.

6. Generalization of the Method of Diagnostics of the Hybrid Powertrain

The efficiency of diagnosing the technical condition of a hybrid vehicle significantly
depends on the selected control method of the HPU, according to its operating mode and
the control of the distribution of energy between the internal combustion engine and the
traction battery and depending on the technical condition of the vehicle components. This
determines the need to develop new methods for diagnosing the technical state of the HPU
on the basis of modern advances in the information technology. The use of the principle
of a guaranteed result and a linear inversion of a vector criterion into a supercriterion
for determining the technical state of the HPU on the set of the Pareto-optimal controls
with unequal optimality criteria is provided. The theoretical foundations of the structural
and parametric identification of the mathematical model of the technical state of the HPU
is developed. A neural network model for diagnosing the technical state of the HPU is
obtained, which determines the dependence on the criterion of the resource indicator on
the energy consumption of a car. Vehicle speed, TB voltage and current, fuel injection
time by an injector, and internal combustion engine crankshaft rotation speed are energy
indicators for diagnosing the technical state of a hydraulic control system.

7. Discussion of the Results of Diagnostics of the Hybrid Power Unit

A symmetry method for diagnosing the technical condition of a hybrid power unit
based on the concept of neural network control is proposed (Equation (8)). Studies have
formed the theoretical basis for diagnosing and scientifically substantiating the basic
diagnostic parameters of hybrid vehicles (Equation (1)).

The method for diagnosing the technical condition of a hybrid power unit differs in
the fact, that it takes into account the scientific substantiation of the diagnostic parameters.
The numerical value of the diagnostic parameters is confirmed by the computational
experiments using the developed mathematical models.

Road tests of the vehicle are required to use the developed symmetry method for
diagnosing the technical condition of a hybrid powertrain. It is necessary to use an inertial
stand with running drums for an accurate assessment of the technical condition of the
hybrid powertrain, which provides a vehicle speed at the stand of 0.3·Vmax.

It should be noted, that the need for the use an inertial rig with running drums is a
disadvantage of this study.

The methodological foundations of diagnostics of the technical condition of a hybrid
power unit can be used to diagnose the power unit of electric vehicles. Additional ex-
perimental studies are required to assess the technical condition of the powertrain of an
electric vehicle.

8. Conclusions

The symmetry method for diagnosing the technical state of a hybrid powertrain is
based on the use of an artificial neural network and a fuzzy inference system to identify
the coefficient of the technical state of an internal combustion engine and a traction battery.
The use of an artificial neural network provides rational characteristics of the technical state
coefficient of a hybrid powertrain based on a three layer direct distribution network. The
efficiency of diagnosing the technical condition of a hybrid powertrain has been increased
due to the use of intelligent information and a control system. This system is invariant
to different powertrains and allows to quickly identify malfunctions, as well as minimize
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energy or resource consumption under specified operating conditions. The proposed
method can be used as a built-in diagnostic system or as an additional function in the
motor tester.

9. Patents

1. Bazhinov O., Kravcov M., Nikitin C. High-security lithium-ion battery: pat 143,615
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Nomenclature

Pk Actual values of the technical condition coefficient of the HPU (supercriterion)
P GB Battery power
c Concentration factor
B Constant coefficient of the hybrid power plant, which reflects the design features

of the internal combustion engine
A Constant coefficient of the hybrid power plant, which reflects the energy

consumption for transport work
T(•) Degree of truth of the corresponding expression
ECU Electronic control unit
P EM Electric motor power
ω Engine crankshaft rotation speed
Te Environment temperature
E Fuel injector capacity
P GEN Generator power
HPU Hybrid powertrain
ICE Internal combustion engine
ti Injection time of the fuel injector
MPk Mathematical expectation
b Maximum coordinate
x Measured parameter value
µ(u) Membership function
D Mean square of the modelling error for the normalized values of the technical

condition coefficient of the HPU
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min {x}, max {x} Minimum and maximum values of the corresponding set of parameter
values, respectively

Qmin Minimum fuel consumption per 100 km of mileage
Pk mod Modal Pk values of the technical condition coefficient of the HPU

I, U, ω, Te,
Pk mod, x, A

Normalized parameter value of I, U, ω, Te, Pkmod, x, A

u Normalized value of the corresponding variable
Xc Number of ICE cylinders
n Number of points in the control sample
Cnom Nominal battery capacity
MPk%, σPk% Relative values of the mathematical expectation and standard deviation
M Scale “average”
B Scale “large”
LM Scale “less than average”
MB Scale “more than average”
L Scale “small”
M, L, B Scales of rules and parameters of membership functions of fuzzy terms

(according to the theory of fuzzy sets)
ge Specific fuel consumption
σPk Standard deviation
Vmax, Vc The highest speed of the car and speed of the car at the time of

diagnosis, respectively
TB Traction battery
I Traction battery current
U Traction battery voltage
RPM/100 Turnover crankshaft of ICE/100
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