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Abstract: This article developed a functional integration matrix via the Hermite wavelets and
proposed a novel technique called the Hermite wavelet collocation method (HWM). Here, we
studied two models: the coupled system of an ordinary differential equation (ODE) is modeled on
the digestive system by considering different parameters such as sleep factor, tension, food rate,
death rate, and medicine. Here, we discussed how these parameters influence the digestive system
and showed them through figures and tables. Another fractional model is used on the COVID-19
pandemic. This model is defined by a system of fractional-ODEs including five variables, called S
(susceptible), E (exposed), I (infected), Q (quarantined), and R (recovered). The proposed wavelet
technique investigates these two models. Here, we express the modeled equation in terms of the
Hermite wavelets along with the collocation scheme. Then, using the properties of wavelets, we
convert the modeled equation into a system of algebraic equations. We use the Newton–Raphson
method to solve these nonlinear algebraic equations. The obtained results are compared with
numerical solutions and the Runge–Kutta method (R–K method), which is expressed through
tables and graphs. The HWM computational time (consumes less time) is better than that of the
R–K method.

Keywords: differential equations; operational matrix of integration; collocation method; Her-
mite wavelets

1. Introduction

Recently, with the help of newly developed computational methods, many experts
extracted more deep features of real world problems such as symmetry, optical waves,
gravitational potentials and so on. Experts extracted the symmetrical properties of such
models by using mathematical norms. Thus, many experts developed some new operators
and models. So, the coupled ordinary differential equations (ODEs) of integer and fractional
order are used to describe many physical phenomena in symmetry, physics, fluid dynamics,
mathematical biology, and bio-modeling. Many experts have considered these models
over hundreds of years, and there are many well-developed solution procedures. Often,
some models described by ODEs are so complex that a purely analytical solution to such
equations is not tractable. For those sorts of complex models, numerical methods are
helpful. When the analytical solution is not possible, then switching over to the numerical
method is preferred. As a result, we proposed a novel approach called HWM to solve the
system of coupled ODEs. The primary purpose is to present and explain a new numerical
method for obtaining the approximate solution to the system of coupled equations of
integer and fractional orders that cannot be solved exactly.

Wavelet theory is one of the recent emerging approaches in applied mathematics.
It has a wide range of applications in the following fields as signal analyses, computer
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science, mathematical modeling, image processing, and applied sciences. Many mathe-
maticians’ contributions toward wavelets-based numerical methods and fractional models
are as follows: the Laguerre wavelets method for the Lane–Emden equation [1], Hermite
wavelets method [2,3], Laguerre wavelets collocation method [4,5], numerical solution of
some biological models [6–10], and numerical approach for fractional models [11–24], etc.
According to the current literature survey, HWM is used to solve ODE, PDE, fractional
ODE, and fractional PDEs. Still, mathematical models on the digestive system and frac-
tional models on the COVID-19 pandemic have not been studied by any mathematicians
using the wavelet technique. Using the information with the vaccination, experts may
observe more profound properties of the vaccination by using mathematical tools that are
guaranteed scientifically. This impels us to solve such equations via the Hermite wavelets
method (HWM). The interest of the present work is to solve the system of ODEs for both
integer and fractional order by using the HWM, and the obtained results are compared
with the results of the numerical method.

A variety of exact, approximate and purely numerical methods are available to solve
the system of ODEs. Most of these methods are computationally rigorous because they
are trial-and-error in character or need complex computations. Some problems are often
solved by the system of ordinary differential equations in reality, such as in modern physics,
engineering, etc. Anticipating the exact solution for such equations is rigorous. So, it is
necessary to use a numerical method to solve such a problem. This paper mainly used the
R–K method and HWM to solve the integer and fractional order ODE system. Consider
that the mathematical model on the digestive system is of the form [7]:

dT(x)
dx = −αF(x)− β T(0) = A

dF(x)
dx = δT(x) + γM(x) F(0) = B

dM(x)
dx = −δT(x) + βM(x)− d M(0) = C

 (1)

where α represents the quantity of food, and the minus sign indicates the smaller amount
of food. β shows the sleep factor, δ is used for the tension rate, γ denotes the recovery
term, and d shows the death rate. Moreover, T(0) = A, F(0) = B, M(0) = C are the
initial conditions for all compartments of the given model. We considered four different
cases to analyze the given model and solved it by the R–K method and HWM. Here,
T(x), F(x), M(x) stands for tension, food, and medicine, respectively. We study to observe
the numerical and symmetrical wave propagations of Equation (1) in graphs and tables.
Another important fractional system of ODEs for the COVID-19 pandemic model [11]
given as:

c
0Dδ

xS = ∧δ − µδS− βδS(E + I) S(0) = 153
c
0Dδ

xE = βδS(E + I)− πδE−
(
µδ + γδ

)
E E(0) = 55

c
0Dδ

x I = πδE− σδ I − µδ I I(0) = 79
c
0Dδ

xQ = γδE + σδ I −
(
θδ + µδ

)
Q Q(0) = 68

c
0Dδ

xR = θδQ− µδR R(0) = 20

 (2)

where 0 < δ < 1, and c
0Dδ

x denotes the fractional derivative in the Caputo sense. S, E, I, Q, R
represent the susceptible, exposed, infected, isolated, and recovered population, respec-
tively. Λ = µN is recruitment rate, β is the rate at which those susceptible become infected
and exposed, π is the rate at which the exposed population become infected, γ is the rate
at which exposed people become isolated, σ is the rate at which infected people are added
to isolated individuals, θ is the rate at which isolated persons become recovered, µ is the
natural death rate and disease-related death rate. We solved this problem for different
fractional-order and compared the HWM solution with the R–K method solution.

The R–K method is a well-known and universally accepted method. The main ad-
vantages of Runge–Kutta methods are that they are easy to implement, and they are very
stable. The Hermite wavelet method is a new method, and here, we showed that it can be
used to solve the biological models for both integer and fractional ordered coupled ODEs.
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The primary disadvantages of Runge–Kutta methods are that they require significantly
more computer time than multi-step methods of comparable accuracy, and they do not
easily yield good global estimates of the truncation error. However, this cannot happen
with the Hermite wavelet method. For the particular domain, we get the solution with less
computation time. As a result, the Hermite wavelet method is better than the R–K method.
Therefore, we used these two methods in this article.

This paper’s organization is as follows: Section 2 is devoted to the progress of the
Hermite wavelet operational matrix of integration, function approximation, and theorems
on convergence analysis. Section 3 reveals the method of solution. In Section 4, we present
the application of the HWM to the governing model. By using projected method, we
observe the symmetrical and wave features of the governing models. In Section 5, we
present some important results and discussion. Finally, this paper is completed by giving
critical new findings in conclusion in Section 6.

2. Hermite Wavelet Operation Matrix of Integration, the Definition of Fractional
Derivatives, and Some Results on Convergence Analysis

Definition 1. The Riemann–Liouville’s fractional integral of f ε Cµ of the order δ ≥ 0 is defined
as [15]

Jδ
s f (s) =

{
f (s) i f δ = 0

1
Γ(δ)

∫ s
0 (s− t)δ−1 f (t)dt i f δ > 0.

Here, Γ denotes the gamma function.

Definition 2. The Caputo fractional derivative of f (s) ε Cµ is defined as [15]:

∂δ f (s)
∂sδ

=
1

Γ(m− δ)

∫ s

0
(s− t)m−δ−1 f (m)(t) dt

for m− 1 < δ ≤ m, m is any positive integer, s > 0, f (s)εCµ
m, µ ≥ −1.

The Hermite wavelet is one of the continuous polynomial basis wavelets studied in [4]. Now,
we approximate the solution y(x) of the nonlinear differential equation under the Hermite wavelet
space as follows:

y(x) =
∞

∑
n=1

∞

∑
m=0

Cn,m ϕn,m(x), (3)

where ϕn,m(x) is given in [4]. We approximate y(x) by truncating the series as follows

y(x) ≈
2k−1

∑
n=1

M−1

∑
m=0

Cn,m ϕn,m(x) = AT ϕ(x), (4)

where A and ϕ(x) are 2k−1M× 1 matrix,

AT = [C1,0, . . . C1,M−1, C2,0 . . . C2,M−1, . . . C2k−1,0, . . . C2k−1,M−1],

ϕ(x) = [ϕ1,0, . . . ϕ1,M−1, ϕ2,0, . . . ϕ2,M−1, . . . ϕ2k−1,0, . . . ϕ2k−1,M−1]
T .

Let
{

φi,j
}

be the sequence of Hermite wavelets, n = 1, 2, . . . and m = 0, 1, . . . For ev-
ery fixed n, there is a Hermite space spanned by the elements of the sequence

{
φi,j
}

. That is,
L
({

φi,j
})

= H2[0, 1) is Banach space.

Theorem 1 ([17]). Let
{

φi,j(t)
}

be the sequence of Hermite wavelets in C([a, b]) in t on [a, b]
converges to the function φ(t) in C([a, b]) uniformly in t on [a, b]. Then, φ(t) is continuous in
C([a, b]) in t on [a, b].
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Theorem 2 ([19]). A continuous function y(x) in H2[0, 1) defined on [0, 1) be bounded; then, the
Hermite wavelets expansion of y(x) converges to it.

Theorem 3 ([4]). Suppose that y(x) = Cm[0, 1] and CTφ(x) is the approximate solutionusing
Hermite wavelets. Then, the error bound would be given by

‖E(x) ‖≤ ‖ 2
m!4m2m(k−1)

max
x∈[0,1]|y

m(x)| ‖ .

Theorem 4 ([16]). Let (S(0), E(0), I(0), Q(0)) be any initial data belonging to R4
+ and

(S(x), E(x), I(x), Q(x)) be the solution corresponding to the initial data. Then, the set R4
+

is a positively invariant set of the model. Furthermore, we have

lim sup
x → ∞

S(x) ≤ S∞ =
∧δ

µδ
,

lim sup
x → ∞

E(x) ≤ E∞ =
∧δ

πδ + µδ + γδ
,

lim sup
x → ∞

I(x) ≤ I∞ =
πδE∞

σδ + µδ
,

lim sup
x → ∞

Q(x) ≤ Q∞ =
γδE∞ + σδ I∞

µδ + αδ
,

lim sup
x → ∞

R(x) ≤ θδ

µδ
.

Theorem 5 ([19]). Suppose y ∈ Cp[0, 1) is an p times continuously differentiable function such

that y =
2k−1

∑
n=1

yn(x) and {φn,m} be a sequence of Hermite wavelets, where n = 1, . . . , 2k−1 and

m = 0, . . . , M− 1, k is any positive integer. Let Yn = L({ϕn.m}) be the linear space spanned
by {φn,m}. If CT

n Hn(x) is the best approximation to yn, then CT H(x) approximates y with the
following error bound:

||y− CT H(x)||2 ≤
k√

(2p + 1)2(k−1)(p+ 1
2 )

, K = maxyp(ξ), ∀ ξ ∈ [
n− 1
2k−1 ,

n
2k−1 ).

Operational Matrix of Integration

Hermite wavelet: Wavelets constitute a family of functions constructed from the
dilation and translation of a single function called the mother wavelet. When the dilation
parameter a and translation parameter b vary continuously, we have the following family
of continuous wavelets:

ϕa,b(x) = |a|−1/2 ϕ

(
x− b

a

)
, ∀a, b ∈ R, a 6= 0.

If we restrict the parameters a and b to discrete values as a = a−k
0 , b = nb0a−k

0 , a0 >

1, b0 > 0, we have the following family of discrete wavelets: ϕk,n(x) = |a|1/2 ϕ(ak
0x −

nb0), ∀a, b ∈ R, a 6= 0, where ϕk,n form a wavelet basis for L2(R). In particular, when
a0 = 2 and b0 = 1, then ϕk,n(x) forms an orthonormal basis. Hermite wavelets are
defined as,

ϕn,m(x) =

 2
k+1

2√
π

hm(2kx− 2n + 1), n−1
2k−1 ≤ x < n

2k−1 ,
0, otherwise.
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where m = 0, 1, . . . , M − 1 and n = 1, 2, . . . , 2k−1, k is assumed as any positive integer.
Here, hm(x) are the Hermite polynomials of degree m concerning the weight function
W(x) =

√
1− x2 on the real line R and satisfy the following recurrence formula,

h0(x) = 1, h1(x) = 2x, hm+2(x) = 2xhm+1(x)− 2(m + 1)hm(x),

where m = 0, 1, 2 , . . .
Consider six Hermite wavelet bases at k = 1 and M = 6 = N; then, we get

ϕ1,0(x) = 2√
π

ϕ1,1(x) = 1√
π
(8x− 4)

ϕ1,2(x) = 1√
π
(32x2 − 32x + 4)

ϕ1,3(x) = 1√
π
(128x3 − 192x2 + 48x + 8)

ϕ1,4(x) = 1√
π
(512x4 − 1024x3 + 384x2 + 128x− 40)

ϕ1,5(x) = 1√
π
(2048x5 − 5120x2 + 2560x3 + 1280x2 − 800x + 16)

where
ϕ(x) = [ϕ1,0(x), ϕ1,1(x), ϕ1,2(x)ϕ1,3(x)ϕ1,4(x)ϕ1,5(x)].

Now, integrate the above basis concerning x limit from 0 to x; then, express as a linear
combination of Hermite wavelet basis as

x∫
0

φ1,0(x) =
[ 1

2
1
4 0 0 0 0

]
φ6(x)

x∫
0

φ1,1(x) =
[ −1

4 0 1
8 0 0 0

]
φ6(x)

x∫
0

φ1,2(x) =
[ −1

3 0 0 1
12 0 0

]
φ6(x)

x∫
0

φ1,3(x) =
[ 5

4 0 0 0 1
16 0

]
φ6(x)

x∫
0

φ1,4(x) =
[ −2

5 0 0 0 0 1
12

]
φ6(x)

x∫
0

φ1,5(x) =
[ −23

3 0 0 0 0 0
]
φ6(x) + 1

24 φ1,6(x).

Therefore, ∫ x

0
φ(x)dx = P6×6φ6(x) + φ6(x)

where

P6×6 =



1
2

1
4 0 0 0 0

−1
4 0 1

8 0 0 0
−1
3 0 0 1

12 0 0
5
4 0 0 0 1

16 0
−2
5 0 0 0 0 1

20
−23

3 0 0 0 0 0


, ϕ6(x) =



0
0
0
0
0

1
24 ϕ1,6(x)

.

3. Hermite Wavelets Method

Here, we would like to express the solution of a system of ODE in terms of Hermite
wavelets.

3.1. Hermite Wavelets Method for Digestive Model

Assume that
T′ = ATφ(x). (5)
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Integrate Equation (5) concerning x, limit from 0 to x, we get

T = T(0) + AT [Pφ(x) + φ(x)]

T = 0.9999 + AT [Pφ(x) + φ(x)]. (6)

Again, assume
F′ = BTφ(x). (7)

Integrate Equation (7) concerning x, limit from 0 to x, we get

F = F(0) + BT [Pφ(x) + φ(x)]

F = 0.0001 + BT [Pφ(x) + φ(x)]. (8)

Again, choose
M′ = CTφ(x). (9)

Integrate Equation (9) concerning x, limit from 0 to x.

M = M(0) + CT [Pφ(x) + φ(x)]

M = CT [Pφ(x) + φ(x)] (10)

Now, substitute (5) to (10) in (1); then, we get

ATφ(x) = −α[0.001 + BT
[

Pφ(x) + φ(x)]
]
− β

BTφ(x) = δ[0.9999 + AT
[

Pφ(x) + φ(x)]
]
+ γCT [Pφ(x) + φ(x)]

CTφ(x) = −δ[0.9999 + AT
[

Pφ(x) + φ(x)]
]
+ β[CT [Pφ(x)+

φ(x)]
]
− d.

Collocate the above three equations by the following collocation points, xi =
2i−1
2N , i =

1, 2, 3, . . . , N, where N represents the size of the matrix. Then, we get a system containing
3N algebraic equations and solve these equations by the Newtons–Raphson method that
yields Hermite wavelet unknown coefficient values. Then, substitute these unknown
coefficient values in (6), (8), and (10); we get the corresponding Hermite wavelet-based
numerical solutions.

3.2. Hermite Wavelets Method for Fractional COVID-19 Pandemic Model

Assume that

S′ = ATφ(x), E′ = BTφ(x), I′ = CTφ(x), Q′ = DTφ(x), R′ =
FTφ(x).

(11)

Integrate the equations in (11) concerning x, limit from 0 to x, along with the initial
conditions in (2).

S = 153 + AT
[

Pϕ(x) + ϕ(x)
]

E = 55 + BT
[

Pϕ(x) + ϕ(x)
]

I = 79 + CT
[

Pϕ(x) + ϕ(x)
]

Q = 68 + DT
[

Pϕ(x) + ϕ(x)
]

R = 20 + FT
[

Pϕ(x) + ϕ(x)
]


(12)
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Now, differentiate (12) fractionally concerning x using the Caputo derivative definition;
then, we get

c
0Dδ

xS = c
0Dδ

x

(
153 + AT

[
Pϕ(x) + ϕ(x)

])
c
0Dδ

xE = c
0Dδ

x

(
55 + BT

[
Pϕ(x) + ϕ(x)

])
c
0Dδ

x I = c
0Dδ

x

(
79 + CT

[
Pϕ(x) + ϕ(x)

])
c
0Dδ

xQ = c
0Dδ

x

(
68 + DT

[
Pϕ(x) + ϕ(x)

])
c
0Dδ

xR = c
0Dδ

x

(
20 + FT

[
Pϕ(x) + ϕ(x)

])


. (13)

Substitute (13) and (12) in (2) and collocate the obtained equations by the following
collocation points, xi = 2i−1

2N , i = 1, 2, 3, . . . , N, where N represents the size of the
matrix. Then, we get a system containing 5N nonlinear algebraic equations and solve these
equations by the Newtons–Raphson method that yields the Hermite wavelet unknown
coefficients’ values. Then, substitute these unknown coefficient values in (12), and we get
the corresponding Hermite wavelet-based fractional numerical solutions.

4. Applications of the Proposed Method

This section discusses the given system by assuming different values for the sleep
factor, tension, food rate, death rate, and medicine term. We solve this system using
the Hermite wavelet method, and the results are compared with the numerical method.
Tables 1–3 show the different values of the T(x), F(x), and M(x) in the interval [0,2] in
which fixed initial values have been taken for all three cases. The numerical calculations
have been achieved by using the HWM.

Example 1. Here, we solved Equation (1) by the Hermite wavelet method. Figures 1–3 represent the
tension, food, and medicine on varying food intake. Table 1 justifies the numerical values by HWM
with the R–K method at the constant values as follows: α = 0.1, β = 0.2, δ = 0.3, γ = 0.4, d = 0.5,
with initial conditions T(0) = 0.9999, F(0) = 0.0001, M(0) = 0. In model (1), the negative sign
indicates a smaller amount. Figure 1 shows that too little food consumption affects the nervous
digestive system that leads to increased tension. Figure 2 shows that continuing the consumption
process of too little food leads to other complications to the body; this automatically increases medicine
consumption. Figure 3 shows the effect of α on food. Table 2 justifies the numerical values by HWM
with the R–K method at the constant values as follows, α = −1, β = 0.2, δ = 1, γ = 0.4, d = 0.1,
with same initial conditions. Tension is directly affected by sleep; when tension increases, it
causes a decrease in sleep. So, Figure 4 reflects that the sleep factor is inversely proportional to
the tension. Tension increases while the tension factor δ increases; this can be seen in Figure 5.
When tension increases automatically, to control the high tension, medicines are preferred. The
consumption of medicine is directly proportional to the tension that reflects Figure 6. Table 3
justifies the numerical values by HWM with the R–K method at the constant values as follows:
α = 2, β = 0.2, δ = 2, γ = 0.4, d = 0.01, with the same initial conditions. Figure 7 shows that
increasing the recovery factor leads to decreasing the consumption of medicine. Any disease that
causes more death for such disease consumption of medicine is also increased. The death rate and
medicine consumption due to the nervous digestive system increase simultaneously, as shown in
Figure 8.



Symmetry 2021, 13, 2428 8 of 17Symmetry 2021, 13, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 1. Influence of ߙ on tension when ߚ = 0.2, ߜ = 0.3, ߛ = 0.4, ݀ = 0.5. 

Table 1. Numerical comparison of HWM at ߙ = 0.1, ߚ = 0.2, ߜ = 0.3, ߛ = 0.4, ݀ = 0.5 with numeri-
cal results. 

x 
HWM Numerical  

Result 
HWM Numerical  

Result 
HWM Numerical  

Result 
T(x) T(x) F(x) F(x) M(x) M(x) 

0.0 0.9999 0.9999 0.0001 0.0001 0.0000 0 
0.1 0.9798 0.9799 0.0282 0.0282 −0.0805 −0.0804 
0.2 0.9593 0.9595 0.0524 0.0525 −0.1620 −0.1618 
0.3 0.9387 0.9390 0.0728 0.0729 −0.2445 −0.2442 
0.4 0.9179 0.9183 0.0892 0.0893 −0.3281 −0.3277 
0.5 0.8969 0.8974 0.1016 0.1018 −0.4127 −0.4122 
0.6 0.8759 0.8765 0.1100 0.1103 −0.4985 −0.4979 
0.7 0.8548 0.8555 0.1142 0.1147 −0.5852 −0.5845 
0.8 0.8336 0.8344 0.1144 0.1150 −0.6732 −0.6724 
0.9 0.8125 0.8134 0.1104 0.1112 −0.7622 −0.7613 
1.0 0.7914 0.7924 0.1022 0.1032 −0.8524 −0.8514 
1.1 0.7705 0.7716 0.0897 0.0909 −0.9438 −0.9427 
1.2 0.7496 0.7508 0.0729 0.0743 −1.0364 −1.0352 
1.3 0.7290 0.7303 0.0517 0.0534 −1.1302 −1.1289 
1.4 0.7086 0.7100 0.0262 0.0281 −1.2254 −1.2240 
1.5 0.6885 0.6900 −0.0038 −0.0015 −1.3218 −1.3203 
1.6 0.6687 0.6703 −0.0383 −0.0357 −1.4195 −1.4179 
1.7 0.6493 0.6510 −0.0773 −0.0744 −1.5187 −1.5170 
1.8 0.6303 0.6321 −0.1208 −0.1176 −1.6193 −1.6175 
1.9 0.6117 0.6136 −0.1690 −0.1654 −1.7213 −1.7194 
2.0 0.5937 0.5957 −0.2218 −0.2178 −1.8248 −1.8228 

 

Figure 1. Influence of α on tension when β = 0.2, δ = 0.3, γ = 0.4, d = 0.5.

Table 1. Numerical comparison of HWM at α = 0.1, β = 0.2, δ = 0.3, γ = 0.4, d = 0.5 with
numerical results.

x
HWM Numerical

Result HWM Numerical
Result HWM Numerical

Result

T(x) T(x) F(x) F(x) M(x) M(x)

0.0 0.9999 0.9999 0.0001 0.0001 0.0000 0

0.1 0.9798 0.9799 0.0282 0.0282 −0.0805 −0.0804

0.2 0.9593 0.9595 0.0524 0.0525 −0.1620 −0.1618

0.3 0.9387 0.9390 0.0728 0.0729 −0.2445 −0.2442

0.4 0.9179 0.9183 0.0892 0.0893 −0.3281 −0.3277

0.5 0.8969 0.8974 0.1016 0.1018 −0.4127 −0.4122

0.6 0.8759 0.8765 0.1100 0.1103 −0.4985 −0.4979

0.7 0.8548 0.8555 0.1142 0.1147 −0.5852 −0.5845

0.8 0.8336 0.8344 0.1144 0.1150 −0.6732 −0.6724

0.9 0.8125 0.8134 0.1104 0.1112 −0.7622 −0.7613

1.0 0.7914 0.7924 0.1022 0.1032 −0.8524 −0.8514

1.1 0.7705 0.7716 0.0897 0.0909 −0.9438 −0.9427

1.2 0.7496 0.7508 0.0729 0.0743 −1.0364 −1.0352

1.3 0.7290 0.7303 0.0517 0.0534 −1.1302 −1.1289

1.4 0.7086 0.7100 0.0262 0.0281 −1.2254 −1.2240

1.5 0.6885 0.6900 −0.0038 −0.0015 −1.3218 −1.3203

1.6 0.6687 0.6703 −0.0383 −0.0357 −1.4195 −1.4179

1.7 0.6493 0.6510 −0.0773 −0.0744 −1.5187 −1.5170

1.8 0.6303 0.6321 −0.1208 −0.1176 −1.6193 −1.6175

1.9 0.6117 0.6136 −0.1690 −0.1654 −1.7213 −1.7194

2.0 0.5937 0.5957 −0.2218 −0.2178 −1.8248 −1.8228
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Table 2. Numerical comparison of HWM at α = −1, β = 0.2, δ = 1, γ = 0.4, d = 0.1 with
numerical results.

x
HWM Numerical

Result HWM Numerical
Result HWM Numerical

Result

T(x) T(x) F(x) F(x) M(x) M(x)

0.0 0.9999 0.9999 0.0001 0.0001 0.0000 0

0.1 0.9849 0.9849 0.0985 0.0984 −0.0401 −0.0401

0.2 0.9795 0.9795 0.1942 0.1941 −0.0808 −0.0808

0.3 0.9836 0.9837 0.2882 0.2882 −0.1222 −0.1222

0.4 0.9971 0.9973 0.3814 0.3815 −0.1648 −0.1646

0.5 1.0199 1.0202 0.4747 0.4749 −0.2088 −0.2085

0.6 1.0521 1.0525 0.5690 0.5693 −0.2545 −0.2541

0.7 1.0938 1.0943 0.6651 0.6655 −0.3022 −0.3017

0.8 1.1452 1.1458 0.7639 0.7644 −0.3523 −0.3516

0.9 1.2067 1.2075 0.8662 0.8670 −0.4051 −0.4043

1.0 1.2786 1.2796 0.9731 0.9740 −0.4610 −0.4600

1.1 1.3615 1.3627 1.0854 1.0865 −0.5204 −0.5192

1.2 1.4559 1.4573 1.2041 1.2054 −0.5837 −0.5822

1.3 1.5625 1.5642 1.3302 1.3318 −0.6512 −0.6495

1.4 1.6822 1.6842 1.4648 1.4667 −0.7236 −0.7216

1.5 1.8158 1.8181 1.6091 1.6112 −0.8013 −0.7990

1.6 1.9644 1.9670 1.7641 1.7666 −0.8847 −0.8822

1.7 2.1291 2.1320 1.9313 1.9341 −0.9746 −0.9717

1.8 2.3112 2.3145 2.1119 2.1150 −1.0715 −1.0683

1.9 2.5122 2.5158 2.3074 2.3109 −1.1761 −1.1725

2.0 2.7335 2.7375 2.5192 2.5232 −1.2890 −1.2850
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Table 3. Numerical comparison of HWM at α = 2, β = 0.2, δ = 2, γ = 0.4, d = 0.01 with
numerical results.

x
HWM Numerical

Result HWM Numerical
Result HWM Numerical

Result

T(x) T(x) F(x) F(x) M(x) M(x)

0.0 0.9999 0.9999 0.0001 0.0001 0 0

0.1 0.9601 0.9602 0.1961 0.1960 −0.0308 −0.0307

0.2 0.8823 0.8825 0.3792 0.3790 −0.0605 −0.0603

0.3 0.7698 0.7701 0.5419 0.5416 −0.0878 −0.0875

0.4 0.6273 0.6277 0.6781 0.6777 −0.1118 −0.1114

0.5 0.4607 0.4612 0.7824 0.7819 −0.1316 −0.1311

0.6 0.2768 0.2774 0.8508 0.8502 −0.1465 −0.1459

0.7 0.0829 0.0836 0.8808 0.8801 −0.1560 −0.1553

0.8 −0.1129 −0.1121 0.8714 0.8706 −0.1597 −0.1589

0.9 −0.3030 −0.3021 0.8233 0.8224 −0.1576 −0.1567

1.0 −0.4798 −0.4788 0.7385 0.7375 −0.1499 −0.1489

1.1 −0.6364 −0.6353 0.6208 0.6197 −0.1370 −0.1359

1.2 −0.7670 −0.7658 0.4751 0.4739 −0.1195 −0.1183

1.3 -0.8674 −0.8661 0.3075 0.3062 −0.0982 −0.0969

1.4 −0.9351 −0.9337 0.1249 0.1235 −0.0741 −0.0727

1.5 −0.9700 −0.9685 −0.0652 −0.0667 −0.0484 −0.0469

1.6 −0.9751 −0.9735 −0.2549 −0.2565 −0.0222 −0.0206

1.7 −0.9565 −0.9548 −0.4369 −0.4386 0.0033 0.0050

1.8 −0.9244 −0.9226 −0.6043 −0.6061 0.0269 0.0287

1.9 −0.8934 −0.8915 −0.7516 −0.7535 0.0474 0.0493

2.0 −0.8831 −0.8811 −0.8752 −0.8772 0.0640 0.0660
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Figure 6. Influence of δ on medicine when α = 0.1, β = 0.2, γ = 0.4, d = 0.5.
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ultaneously, Medication also increases, which leads to the stomach's upset. Consumption 
of too little (too much) food also impacts the nervous-digestive system. The death rate is 
decreasing by increasing the consumption of Medicine. Also, from figure 1, too little food 
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Example 2. Consider a fractional ordered COVID-19 pandemic model given in the Equation (2).
Here, we solved this model by using HWM with following parameter values are as follows,
Λ = 0.145; µ = 0.000411; β = 0.00038; π = 0.00211; γ = 0.0021; σ =0.0169; θ = 0.0181, with
total population N = 375. Obtained results are compared with R–K method through graphs (9–13).
Figures 9–13 reflects the HWM solution at δ = 1, 0.9, 0.8, 0.7 for the Susceptible, Exposed,
Infected, Isolated, and Recovered population.

5. Results and Discussion

From Figures 1, 3, 5 and 7, it can be observed that as the tension rate increases simul-
taneously, Medication also increases, which leads to the stomach’s upset. Consumption
of too little (too much) food also impacts the nervous-digestive system. The death rate is
decreasing by increasing the consumption of Medicine. Also, from Figure 1, too little food
consumption causes the high secretion of digestive juice that disturbs the stomach. The
mathematical Equation (2) represents the COVID-19 pandemic model with isolated classes



Symmetry 2021, 13, 2428 13 of 17

in fractional order. A system of fractional-order differential equations describes this model
includes the following factors, susceptible, exposed, infected, isolated, and recovered. The
construction and analysis of the model (2) help us understand the mechanism of the trans-
mission and the characteristics of diseases. Therefore, we can propose effective strategies
to predict, prevent, and restrain diseases (COVID-19) and protect population health. In this
model, the exposed and infected population is linked to the susceptible population. Also,
we assume that the natural death rate includes the disease death rate. If there is no disease
symptom, the exposed class moves with a specific rate to the isolated class, but it moves
to the infected class when symptoms are developed. In Figures 9–13, we plot numerical
solutions of the model (2) obtained by the HWM and the R–K method when N = 375
for α = 1, 0.9, 0.8, 0.7. From these figures, the results obtained using the HWM algorithm
match the results of the R–K method well, which implies that the presented method can
predict the behavior of these variables accurately in the region under consideration. The
increasing number of days susceptible populations decrease, as shown in Figure 9, because
the susceptible population gets exposed and infected. Figure 13 shows that when a suscep-
tible population gets more infected, the death rate increases linearly. Figure 12 shows that
when a susceptible population gets more infected, the home quarantine of the population
also increases. The susceptible population decreases on increasing exposed population it
can be seen in Figure 11.
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Figure 10. Graphical representation of infected population at different values of δ by HWM and the
R–K method.
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Figure 12. Graphical representation of the isolated population at different values of δ by HWM and
the R–K method.
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6. Conclusions

This paper has successfully applied the HWM to the digestive model, which is as-
sumed for sleep, tension, food, and death rates. We have also observed the results numer-
ically in detail. Analysis of this model has been shown through figures. Moreover, we
have introduced the numerical values in the tables. From the tables, it may be concluded
that approximate numerical results are very close to the numerical solutions (R–K method)
of the governing model. It is also used to comment that these results are very close the
symmetrical wave simulations of the governing model of Equation (1). Thus, considered
problems are introduced to test the proposed method’s efficiency, accuracy, and validity
in symmetrical aspect. Also, Figures 1–8 reveals that how these parameters impact the
digestive system.

Secondly, we observed one another model described by a fractional-order differen-
tial equation system with different terms: susceptible, exposed, infected, isolated, and
recovered in the population. We have applied the HWM and Runge–Kutta method to
simulate the proposed model. Moreover, it can also be presented that this method may also
be applied for obtaining numerical solutions of the other differential equation arising in
health problems in extracting features of the governing models. The method used in this
paper helps to predict, prevent, and restrain diseases (COVID-19) and protect population
health. Figures 9–13 reveal how the susceptible, exposed, infected, isolated, and recovered
populations in symmetrical sense are interrelated.
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