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Abstract: Using the discrete fractional calculus, a novel discrete fractional-order food chain model for
the case of strong pressure on preys map is proposed. Dynamical behaviors of the model involving
stability analysis of its equilibrium points, bifurcation diagrams and phase portraits are investigated.
It is demonstrated that the model can exhibit a variety of dynamical behaviors including stable
steady states, periodic and quasiperiodic dynamics. Then, a hybrid encryption scheme based on
chaotic behavior of the model along with elliptic curve key exchange scheme is proposed for colored
plain images. The hybrid scheme combines the characteristics of noise-like chaotic dynamics of
the map, including high sensitivity to values of parameters, with the advantages of reliable elliptic
curves-based encryption systems. Security analysis assures the efficiency of the proposed algorithm
and validates its robustness and efficiency against possible types of attacks.

Keywords: fractional-order map; food chain model; hybrid encryption scheme; elliptic curves

1. Introduction

Fractional order differentiation and integration can be considered as a generaliza-
tion of conventional integer order calculus to noninteger real or even complex valued
orders. The history of fractional calculus has started about 300 years ago. Fractional
calculus can be used to describe memory dependent behaviors and inherited properties
of nonlinear systems. As a mathematical tool, it provides an extra degree of freedom to
implement and interpret many real world systems with higher accuracy than the integer-
order equivalent [1–6]. For example, most physical and engineering systems show complex
behaviors such as nonlinear circuits, nanophotonics, viscous systems and laser systems.
Compared to the integer-order differential equation, the memory effects are considered
in the fractional-order differential equations and allow more accurate description of these
natural phenomena [7]. One important aspect of dynamic systems is their chaotic behavior.
A great deal of attention to this behavior has been paid in various areas of application
where many fruitful results have been achieved over the past decades. For example, the au-
thors of [8] updated Chua’s model to include elements of fractional order and demon-
strated chaos and other nonlinear behaviors. Several continuous time chaotic fractional
order models, such as the fractional-order Lorenz [9–11] and the Chen fractional-order
systems [12–14], have been examined and employed in several interesting fields such as
control of chaos [15–17], nonlinear circuits [18,19], chaos based encryption [20] and med-
ical applications [21]. The analytical and numerical study of dynamic propagation of
light beams in the fractional order Schrödinger equation with a harmonic potential have
been presented in [22]. The dynamics in stochastic models of Gaussian-amplitude field,
phase-diffusion and chaotic field in laser have been investigated in [23,24].
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Although continuous-time fractional order models have been applied successfully
many times to describe and understand some nonlinear phenomena which classical integer
order models fail to deal with, it is found that a discretization problem is usually attached
to the numerical solutions of continuous fractional models. In particular, the occurrence
of different types of errors and the high computational costs limit the perfect utilization
of these models. Therefore, the interest of mathematicians is directed to straightforward
exploitation of discrete fractional calculus and fractional difference equations which are
more appropriate and effective in mathematical modeling of systems with memory influ-
ences. Recently, the discrete fractional calculus field is rapidly developed where many
new related applications are explored. The fractional-order logistic map has been studied
by Wu and Baleanu [25] where unique bifurcation scenarios and chaotic dynamics were
noticed compared to the whole-order system. Nonetheless, the initial values of iterations
are not completely eliminated and thus the bifurcation diagram appeared non-refined and
the estimated values of Lyapunov exponents may be inaccurate. Based on the fractional
disparity, Wu and Baleanu also discussed the discrete fractional order versions of Sine map
and Standard map [26]. Khennaoui et al. [27] subsequently produced the fractional-order
Unified map, and Liu [28] and Shukla et al. [29] studied the fractional-order Henon map.
Ji et al. [30] recently introduced a new Grunwald–Letnikov-based fractional-order logistic
map which exhibits different properties from the above aforementioned maps.

Among the most attractive applications of chaotic dynamics, chaos-based cryptog-
raphy is intended to utilize preferable features of chaotic behaviors to ensuring secure
transmission of private data between legitimate sender and receiver. In particular, the key
characteristics of these encryption systems are extreme sophistication and dimensional-
ity of disorder implemented in these schemes, in addition to the efficient protection of
fundamental information about encryption system from being extracted by any unau-
thorized attacker. There are several techniques which have been suggested to enhance
security performance and chaotic dynamics of chaos-based encryption system, see for
example [31–35]. In addition, chaotic discrete fractional systems have been investigated
in [36–41] and further implemented in some efficient cryptosystem in [42–48].

Elliptic curves-based encryption systems are examples of reliable and efficient public
key techniques which proved their advantages over the other like techniques such as DH,
El-Gamal, RSA, etc. Thus, to build a superior cryptosystem, the aim of this paper was to
merge the advantages of elliptic curve technique with the complicated noise-like dynamics
of the current spontaneous chaotic system. More specifically, the complicated dynamics of
the fractional-order map is combined with powerful elliptic curve key exchange scheme.

The paper is set out as follows. In Section 2, some preliminaries and mathematical
principles are presented. In Section 3, the discrete fractional difference equations are
employed for description of chaotic food chain model having non-overlapping generations
and subject to intraspecific competition along with strong pressure on prey species. To the
best of authors’ knowledge, this the is first time to employ discrete fractional calculus in
mathematical modeling of food chains and investigate the influences of fractional order on
the dynamics of the model. In Section 4, numerical simulations of the discrete fractional-
order model are carried out. In Section 5, a proposed hybrid cryptosystem is introduced
with input data in the form of colored images. Security performance of the proposed
encryption scheme is investigated in Section 6 to validate its reliability and efficiency.
Finally, the overall discussion and conclusion are concluded in Section 7.

2. Preliminaries

In order to overcome the difficulties that arise from dealing with continuous time
fractional order system and efficiently capture the memory effects, discrete fractional
calculus was introduced [46–50]. The studies of dynamic behaviors and applications of
fractional delta difference models attracted increasing interest in the last decade, see [49–54]
and references therein.
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The sequence χ(n) is supposed to be given at isolated discrete times ℵa which is
described in terms of constant τ such that {τ, τ + 1, τ + 2,. . . ,} and χ:ℵτ → R. Moreover,
let the difference operator be referred to as ∆, where ∆χ(n) = χ(n + 1)− χ(n).

Definition 1. The fractional sum of order α where α > 0, is defined by [53]

∆−α
τ χ(t) =

1
Γ(α)

t−α

∑
m=τ

Γ(t−m)

Γ(t−m− α + 1)
χ(m), t ∈ ℵτ+α.

Definition 2. The order α delta difference of Caputo-sense is given as [54]:

C∆α
τχ(t) = ∆−(n−α)

τ ∆nχ(t) =
1

Γ(n− α)

t−(n−α)

∑
m=τ

Γ(t−m)

Γ(t−m− n + α + 1)
∆nχ(m),

t ∈ ℵτ+α, n = [α] + 1.

Definition 3. The order α fractional delta difference equation is defined as [55]:

C∆α
τχ(t) = f (t + α− 1, χ(t + α− 1)),

where its associated discrete time integral is expressed as

χ(t) = χ0(t) +
1

Γ(α)

t−α

∑
m=τ+n−α

Γ(t−m)

Γ(t−m− α + 1)
f (m + α− 1, χ(m + α− 1)), t ∈ ℵτ+n.

Here, the initial value can be written as

χ0(t) =
n−1

∑
k=0

Γ(t− τ + 1)
k!Γ(t− τ − k + 1)

∆kχ(t).

Theorem 1 ([55]). The delta fractional difference equation{
C∆α

τx(t) = f (t + α− 1, x(t + α− 1))

∆kx(t) = xk, n = n = [α] + 1, k = 0, 1, ..., n− 1

has the following equivalent discrete integral equation

x(t) = x0 +
1

Γ(α)

t−α

∑
s=τ+n−α

(t− σ(s))(α−1) f (s + α− 1, x(s + α− 1)), t ∈ ℵτ+n,

such that

x0(t) =
m−1

∑
k=0

(t− τ)k

k!
∆kx(τ).

Remark 1. If τ = 0, we rewrite discrete integral equation in the next numerical expression

x(n) = x0 +
1

Γ(α)

n

∑
s=1

Γ(n− s + α)

Γ(n− s + 1)
f (x(s− 1)).

Theorem 2. The conditions of asymptotic stability of zero equilibrium point to the next discrete
fractional-order system

C∆α
τX(t) = MX(t + α− 1),
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where X(t) = (x1(t), x2(t), ..., xn(t))T , 0 < α ≤ 1 , M ∈ Rn×n and ∀ t ∈ ℵτ+1−α are

λ ∈
{

z ∈ C : |z| < (2 cos
|arg z| − π

2− α
)α, |arg z| > απ

2

}
,

for every eigenvalues λ of the discrete fractional system.

3. Discrete-Time Fractional-Order Food Chain Model

Discrete-time dynamic systems are ideal to describe the population dynamics of non-
overlapping organisms. It is well known that one of the basic population models is the
Lotka–Volterra prey-predator model. Holling has introduced the study of more practical
predator models since the groundbreaking theoretical works by Lotka [56] and Volterra [57]
in the last century, proposing three types of functional responses for different species to
model predation dynamics [58].

The discrete time models are known to exhibit more complicated dynamics than their
counterpart continuous time models. For example, the chaotic behavior can be induced
by the simple one-dimensional logistic map while only exponential growth or decaying
of state variable can be observed in logistic differential equation. The main interest of
mathematicians and scientists was focusing on continuous time models in mathematical
biology and ecology for a long time. The capability of discrete time models to describe
some cases of species dynamics efficiently brought them to light quite recently. In 2020,
a novel discrete time novel food chain model was introduced [59] as the first discrete model
to consider three interacting organisms, having non-overlapping generations, which is sub-
jected to intraspecific competition and strong pressure on preys species. More specifically,
we consider a prey population x predated by a first predator species y. The third species
is the top predator z that predates on the first predator y and simultaneously interferes
with the population growth of prey. The model proposed for studying these ecological
interactions is represented by the following nonlinear discrete system [59]:

xn+1 = axn(1− xn − yn − zn),

yn+1 = byn(xn − zn),

zn+1 = cynzn.

(1)

For the function f (n), the delta difference operator is defined by ∆ f (n) = f (n + 1)−
f (n).

Based on previous assumptions, we get the following discrete fractional-order food
chain model for (1): 

C∆α
τxn = axn(1− xn − yn − zn)− xn,

C∆α
τyn = byn(xn − zn)− yn,

C∆α
τzn = cynzn − zn.

(2)

The fixed points of system (2) satisfy
0 = axn(1− xn − yn − zn)− xn,

0 = byn(xn − zn)− yn,

0 = cynzn − zn.
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By simple algebraic computations, we obtain four fixed points for the abo

E0 = (0, 0, 0),

E1 = (
a− 1

a
, 0, 0),

E2 = (
1
b

, 1− 1
a
− 1

b
, 0),

E3 = (
1
2
(1− 1

a
+

1
b
− 1

c
),

1
c

,
1
2
(1− 1

a
− 1

b
− 1

c
).

In the following subsection, the local stability of these fixed points are studied for
model (2).

3.1. Stability of Fixed Points

The local stability analysis of the fixed points is established by studying the Jacobian
matrix of system (1) at these fixed points. The system (2) can be linearized about any fixed
point (x∗, y∗, z∗) via computing its associated Jacobian matrix which takes the form

J =

 a(1− x∗ − y∗ − z∗)− ax∗ − 1 −ax∗ −ax∗

by∗ −1 + b(x∗ − z∗) −by∗

0 cz∗ −1 + cy∗

.

The characteristic equation of matrix J is computed and expressed in the form

λ3 + ν1λ2 + ν2λ + ν3 = 0,

where, ν1 = 2ax∗ + ay∗ + az∗ − a− bx∗ + bz∗ − cy∗ + 3, ν2 = abx∗z∗ − 2ab(x∗)2 + abx∗ +
aby∗z∗ + ab(z∗)2 − abz∗ − 2acx∗y∗ − acy∗z∗ − ac(y∗)2 + acy∗ + 4ax∗ + 2ay∗ + 2az∗ − 2a +
bcx∗y∗ − 2bx∗ + 2bz∗ − 2cy∗ + 3, ν3 = 2abcx∗y∗z∗ + 2abc(x∗)2y∗ − abcx∗y∗ + abx∗z∗ −
2ab(x∗)2 + abx∗ + aby∗z∗ + ab(z∗)2 − abz∗ − 2acx∗y∗ − acy∗z∗ − ac(y∗)2 + acy∗ + 2ax∗ +
ay∗ + az∗ − a + bcx∗y∗ − bx∗ + bz∗ − cy∗ + 1.

Thus, the stability analysis of each fixed point is carried out as follows:

3.1.1. Stability Analysis of E0

For this fixed point, it is found that the eigenvalues of J are given by

λ1,2 = −1, λ3 = a− 1.

This implies that

|λ1,2| = 1, Arg(λ1,2) = π,

|λ3| =

{
a− 1 if a ≥ 1
1− a if a < 1

,

|Arg(λ3)| =

{
0 if a ≥ 1
π if a < 1

.

Referring to the conditions of asymptotic stability of fixed points which are given in
previous section, the fixed point E0 is locally asymptotically stable if 0 < a < 1. Figure 1
shows the stability region of fixed point E0 in parameters’ plane (a, α).
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Figure 1. Region of stability fixed point E0 in (a, α) plane.

3.1.2. Stability Analysis of E1

For this fixed point, it is found that the eigenvalues of J are given by

λ1 = −1, λ2 = 1− a, λ3 = −1 + b− b
a

,

that implies that

|λ1| = 1, Arg(λ1) = π,

|λ2| =

{
a− 1 if a > 1
1− a if a ≤ 1

,

|Arg(λ2)| =

{
π if a > 1
0 if a ≤ 1

,

|λ3| =

{
−1 + b− b

a if b ≥ 1 + b
a

1− b + b
a if b < 1 + b

a
,

|Arg(λ3)| =

{
0 if b ≥ 1 + b

a
π if b < 1 + b

a
.

Referring to the conditions of asymptotic stability of model’s steady states which are
given in the previous section, the fixed point E1 satisfies local asymptotic stability in the
red colored regions illustrated in Figure 2 which depends on the values of a, b and α.

(a) (b)

Figure 2. Region of stability of fixed point E1 in (a, α) plane for (a) α = 0.8 and (b) α = 0.99.
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3.1.3. Stability Analysis of E2

For this fixed point, it is found that the eigenvalues of J are given by

λ1 =
a2
√

a2 − 4ab2 + 4ab + 4b2 − a3

2a2b
, λ2 =

−a3 − a2
√

a2 − 4ab2 + 4ab + 4b2

2a2b
,

λ3 =
abc− ab− ac− bc

ab
.

In order to find local asymptotic stability region in space of parameters of model (2),
numerical evaluations of values of parameters which satisfy stability conditions can be
used. In particular, Figure 3 shows examples of stability regions in (a, b) and (a, c) planes
of parameters for distinct values of fractional order α.

(a) (b)

(c) (d)

Figure 3. Stability region of fixed point E2 in (a, b) plane for (a) α = 0.8, (b) α = 0.9 and also in (a, c) plane for (c) α = 0.8,
(d) α = 0.9.

3.1.4. Stability Analysis of E3

First, this point takes values within the feasible space if the following condition
is satisfied

1
a
+

1
b
+

1
c
< 1,

which means that this condition should be examined along with the aforementioned
stability conditions. For the fixed point E3, it is found that the eigenvalues of J have very
complicated expressions which renders the numerical investigations of asymptotic stability
region in space of parameters of model (2). In Figure 4, regions of occurrence of fixed point
E3 in addition to colored stability regions in (a, b) and (a, c) planes of parameters at distinct
values of α are depicted.
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(a) (b)

Figure 4. Stability region of fixed point E3 in (a, b) plane for α = 0.9 and (a) c = 3.9 and also in (a, c)
plane for α = 0.9 and (b) b = 3.

4. Numerical Simulations

In this section, results of numerical simulations are shown for integer order model (1)
and fractional order model (2). The phase portraits and bifurcation diagrams are employed
to determine variation in dynamical behaviors of the two models in terms of variations
in parameters in the models. In the following simulations, system (2) is used in the
following form:

x(n) = x(0) +
1

Γ(α)

n

∑
s=1

Γ(n− s + α)

Γ(n− s + 1)
axs−1(1−

1
a
− xs−1 − ys−1 − zs−1),

y(n) = y(0) +
1

Γ(α)

n

∑
s=1

Γ(n− s + α)

Γ(n− s + 1)
byn−1(xs−1 − zs−1 −

1
b
),

z(n) = z(0) +
1

Γ(α)

n

∑
s=1

Γ(n− s + α)

Γ(n− s + 1)
zn−1(cys−1 − 1).

Firstly, the aforementioned conditions of stability of fixed points of model (2) are
verified. In particular, the values of parameters which yield a stable fixed point E0 is from
Figure 1 and the associated time series outputs of model (2) are presented in Figure 5 and
confirm theoretical results.

(a) (b)

(c)

Figure 5. (a–c) Time series of the state variables x, y and z of the stable fixed point E0 at a = 0.5,
b = 1, c = 1 and α = 0.9.
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Similarly, the values of parameters which correspond to stable fixed points E1, E2 and
E3 are presented from Figures 2–4, respectively. Furthermore, the output time series which
are illustrated in Figures 6–8 are, respectively, verify stability conditions of fixed points E1,
E2 and E3. In Figure 6, time series of state variables of (2) show stability of fixed point E1 at
a = 2, b = 1, c = 1 and α = 0.9.

(a) (b)

(c)

Figure 6. (a–c) Time series of the state variables x, y and z of the stable fixed point E1 at a = 2,
b = 1, c = 1 and α = 0.9.

(a) (b)

(c)

Figure 7. (a–c) Time series of the state variables x, y and z of the stable fixed point E2 at a = 3,
b = 2.5, c = 0.9 and α = 0.8.
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(a) (b)

(c)

Figure 8. (a–c) Time series of the state variables x, y and z of the stable fixed point E3 at a = 4,
b = 3, c = 3.5 and α = 0.9.

Secondly, the bifurcation diagrams are employed to overview the influences of param-
eter’s variations on dynamical behaviors of models (1) and (2). The case of integer order
model (1) is presented in Figure 9 where the effects of variations in parameters a and b are
shown. The influences of fractional order α along with other parameters are depicted in
Figure 10.

(a) (b)

Figure 9. Bifurcation diagrams of parameters a and b vs. state variable x of (2) at (a) b = 4.6, c = 3
and α = 0.95, (b) a = 2.1, c = 9.14 and α = 0.95, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Bifurcation diagrams of (a) parameter α when a = 2, b = 3.35, c = 9.15, (b) parameter b when a = 2, c = 9.15,
α = 0.95, (c) parameter b when a = 2, c = 9.15, α = 0.85, (d) parameter α when a = 2.1, b = 4.6, c = 3, (e) parameter a when
b = 4.6, c = 3, α = 0.95and (f) parameter b when a = 2.1, c = 3, α = 0.95 vs. state variable x of (2).

Finally, some selected examples of phase portraits of the two models (1) and (2) are
shown in Figure 11.

It is obvious that increasing predation rate of predators on the prey, the mode can
exhibit chaotic dynamics. In particular, the model undergoes a stable Neimarck–Sacker
bifurcation followed by period-doubling bifurcations till chaos behavior starts arises.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 11. Examples of the two and three dimensional phase portraits of the models (1) and (2) obtained at (a–c) a = 2;
b = 4.6; c = 3; α = 1, (d–f) a = 2; b = 3.1; c = 9.15; α = 1, (g–i) a = 2; b = 3.18; c = 9.15; α = 0.99, (j–l) a = 2; b = 3.25;
c = 9.15; α = 0.99 and finally (m–o) a = 2; b = 3.35; c = 9.15; α = 0.99.

5. Hybrid Image Encryption Scheme

In this section, we propose an encryption scheme that combines elliptic curve key
exchange technique with chaotic output of a three-dimensional mapping. Numerical
simulations on different color images are used to validate the efficiency of the scheme
against differential, statistical in addition to brute-force attacks.

Input: Assume that a colored plain image with size of m× n pixels is given. Then,
three values of color components are associated to each pixel in the image. These color com-
ponents are red, green and blue such that for each pixel with position (i, j), let R(i, j), G(i, j)
and B(i, j) refer to the values of red, green and blue color components, respectively. Typi-
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cally, they take the range [0 : 255]. In addition, assume that the reading of internal clock of
encrypting machine is given by T∗ at the moment when encryption session starts.

Public Keys: Pick one family of elliptic curves standardized by the NIST, its associated
group generator and parameters are considered as public keys of the suggested scheme.
In the next numerical experiments, we adopt the P-192 curve groups of the following form

y2 = x3 − 3x + β,

where
G = {602 046 282 375 688 656 758 213 480 587 526 111 916 698 976 636 884 684 818, 174

050 332 293 622 031 404 857 552 280 219 410 364 023 488 927 386 650 641},
β = 2 455 155 546 008 943 817 740 293 915 197 451 784 769 108 058 161 191 238 065,
q = 6 277 101 735 386 680 763 835 789 423 207 666 416 083 908 700 390 324 961 279,

refer to the generator of the group, the parameter of the curve and the modulus of finite
field, respectively.

Secret Keys: Secret keys are known only to both or one of authentic sides of secure
communications link. They are listed in following points:

(1) The initial values of parameters in model (2) which are denoted by a0, b0, c0, and α0.
(2) Private key of transmitter side, i.e., Pt.
(3) Private key held by the receiver, i.e., Pr.
(4) Three arbitrary chosen real number µi, i = 1, 2, 3.
(5) The value of T∗.
Encryption/Decryption Process:
(1) Evaluate the following three perturbing values which depend on plain image

δR =
µ1

(m× n)2

m

∑
i=1

n

∑
j=1

R(i, j) + T∗,

δG =
µ2

(m× n)2

m

∑
i=1

n

∑
j=1

G(i, j) + T∗,

δB =
µ3

(m× n)2

m

∑
i=1

n

∑
j=1

B(i, j) + T∗.

(2) Update the values of secret parameters according to one of the following rules

a = a0 + δR, b = b0 + δG, c = c0 + δB,

a = a0 + δR, b = b0 + δB, c = c0 + δG,

a = a0 + δG, b = b0 + δR, c = c0 + δB,

a = a0 + δG, b = b0 + δB, c = c0 + δR,

a = a0 + δB, b = b0 + δG, c = c0 + δR,

a = a0 + δB, b = b0 + δR, c = c0 + δG.

(3) Apply the updated values of parameters to simulate the model (2) discarding any
transient nonchaotic dynamics. The resulting chaotic time series of lengths m× n + 2×
max{m, n} are to be used in the next steps.

(4) Construct the following encrypting sequences
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Sr
R = mod(IntegerPart[xi × 1010], m),

Sr
G = mod(IntegerPart[yi × 1010], m),

Sr
B = mod(IntegerPart[zi × 1010], m), i = 1, 2, ..., m.

Sc
R = mod(IntegerPart[xi × 1010], n),

Sc
G = mod(IntegerPart[yi × 1010], n),

Sc
B = mod(IntegerPart[zi × 1010], n), i = m + 1, m + 2, ..., m + n.

S1 = mod(IntegerPart[xi × 1010], 256),

S2 = mod(IntegerPart[yi × 1010], 256),

S3 = mod(IntegerPart[zi × 1010], 256),

i = 1 + 2×max{m, n}, 2 + 2×max{m, n}, ..., m× n + 2×max{m, n}.

(5) The values of Sr
R, Sr

G, Sr
B, Sc

R, Sc
G and Sc

B are arranged in an ascending order to
formulate six confusion vectors. Hence, the rows of original matrix of pixels are permuted
such that the red components are scrambled according to components of Sr

R whereas green
and blue values in each row are confused by Sr

G and Sr
B orders, respectively. By the same

way, the columns in the original image are scrambled by utilizing Sc
R, Sc

G and Sc
B.

(6) The plain image is reshaped into three vectors each of which has m× n values.
These vectors involve the separate values of pixels’ color intensity. They are referred as I1,
I2 and I3.

(7) The bitwise XOR operations are carried out between vectors S1, S2, S3 and I1, I2, I3
such that the three encrypted components of cipher images are computed as

IR
enc = I1 ⊕ S1, IG

enc = I2 ⊕ S2, IB
enc = I3 ⊕ S3.

(8) The elliptic curve key exchange technique in the sense of Diffie–Hellman is adopted
such that the sender side publishes PtG whereas the receiver side publishes PrG. Thus,
the sender and receiver will agree on a common symmetric key PtPrG = PrPtG.

(9) Three perturbation values δt, t = R, G, B are encoded using the shared secret key.
More specifically, El-Gamal scheme can be applied [60] at this step.

(10) The shared secret keys and similar numerical precision settings at both sides, imply
that identical versions of chaotic sequence S1, S2 and S3 are generated at the receiver part.

(11) The transmitted ciphered image is deciphered through the aforementioned bitwise
XOR operations.

(12) Finally, the deciphered vectors are reshaped to restore the original plain image.

6. Security Analysis of the Proposed Scheme
6.1. Numerical Simulations

Numerical simulations are performed at a = 2, b = 3.35, c = 9.15, µk = 0.1250075381+
10−3k and α = 0.985. Figure 12a shows the plain King Tut image, ciphered King Tut image
and deciphered King Tut image. The histograms for separate colors components in the
pixels of these images are given in Figure 12b. In addition, Figures 13–15 show the results
correspond to images of Baboon, pepper and Egyptian pyramids, respectively. It is clear
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that the distribution of pixels’ values in encrypted images is almost flat and uniform for
each color which renders the encrypted images invulnerable to different statistical attacks.

(a)

(b)

Figure 12. The plain, ciphered and deciphered King Tut images are shown in (a). The corresponding
histograms of each color value are illustrated in (b) in the way that the first, second and third rows
are representing, respectively, red, green and blue colors.

(a) (b)

Figure 13. (a) The original, encrypted and decrypted image of a baboon face. (b) Histograms for those images given in (a).

The uniformity of pixels distribution in ciphered images is quantified using the
variance of histogram concept. More specifically, the small values of variances indicate
high level uniformity. It can be defined for red, green and blue colors as follows:
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vR =
1

2562

256

∑
i=1

256

∑
j=1

(hR
i − hR

j )
2,

vG =
1

2562

256

∑
i=1

256

∑
j=1

(hG
i − hG

j )
2,

vB =
1

2562

256

∑
i=1

256

∑
j=1

(hB
i − hB

j )
2,

where hR
i , hG

i and hB
i are the number of pixels with the value of i for red, green and blue

values of pixels, respectively. The results obtained for each image are summarized in
Table 1. The results show the considerable reduction in variances of histograms for cipher
images and thus confirm the uniformity of histogram values.

Table 1. The variances of plain and cipher images histograms.

Image vR vG vB

Original King Tut 6.45× 104 1.11× 105 1.63× 104

Encrypted King Tut 289 293 278

Original baboon 2.93× 104 105 2.68× 104

Encrypted baboon 252 248 228

Original pepper 4.77× 104 4× 104 2.33× 104

Encrypted pepper 267 309 215

Original pyramids 3.06× 104 1.57× 105 2.61× 105

Encrypted pyramids 298 209 269

(a) (b)

Figure 14. (a) The original, encrypted and decrypted image of a pepper. (b) Histograms for those images given in (a).

6.2. Keyspace Analysis

The proposed hybrid encryption technique has three initial conditions, four parame-
ters of the model, i.e., a, b, c and α, three image-depending parameters µis. Suppose that
the IEEE 754 floating-point format is used. Therefore, the secret keys of the proposed
scheme will have space size equals 2530. This does not include the parameters of elliptic
curve. Note that 2100 space size is the minimum necessary size in order to break brute-force
attacks [58,59]. Therefore, our encryption system has a big enough keyspace to make brute
force attacks useless.
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(a) (b)

Figure 15. (a) The original, encrypted and decrypted image of the Egyptian pyramids. (b) Histograms for those images
given in (a).

6.3. Analysis of Key Sensitivity

Another essential requirement for any reliable encryption scheme is to have high
sensitivity to tiny perturbations in the values of secret keys. To investigate this point,
the value of each secret key is perturbed by 10−14 at time and then the generated chaotic
time series are used to decrypt the encrypted images. Then, the sensitivity to mismatch in
parameters is investigated. Figure 16 shows an example when the value of b is perturbed
by 10−14. The deciphered images are shown in the figure. It is clear that when very
small differences in b occur, we successfully decrypt any encrypted image. Numerical
simulations illustrate that similar conclusions are inferred about the remaining secret keys
in the system.

Finally, in order to measure the sensitivity to mismatches in parameters, Table 2 shows
the original values of secret keys employed in encryption process, the mismatch of secret
keys during decryption process, and the average difference percentage between the correct
and incorrect decrypted images.

Table 2. Quantification of the sensitivity to mismatch in secret keys.

Image Key Value Mismatch (%) Average Difference (%)

King Tut a = 2 10−10 99.56

King Tut b = 3.35 10−10 99.61

King Tut c = 9.15 10−10 99.54

Baboon a = 2 10−10 99.58

Baboon b = 3.35 10−10 99.55

Baboon c = 9.15 10−10 99.61

Pepper a = 2 10−10 99.63

Pepper b = 3.35 10−10 99.53

Pepper c = 9.15 10−10 99.59

Pyramids a = 2 10−10 99.62

Pyramids b = 3.35 10−10 99.64

Pyramids c = 9.15 10−10 99.66
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(a) (b)

(c) (d)

Figure 16. Decrypted (a) King Tut image, (b) baboon image, (c) pepper image and (d) pyramids image for a mismatch in
the value of b.

6.4. Analysis of Information Entropy

In order to investigate the degree of randomness and uncertainty of encrypted images,
the information entropy is utilized. The large values of information entropy indicates high
randomness of encrypted information. The information entropy has units in bits and it
defined for an input information as follows [60]

H(s) = −
2N−1

∑
i=0

p(si) log(si),

where si denotes specific form i of input data, N is the number of possible different forms
of input data and p(si) refers to the probability of data symbol si. Generally, the optimal
value of H(s) of encrypted images is to be near to the value of 8. Table 3 illustrates the
values of H(s) in the produced encrypted images. The computed values are almost equal
to eight which shows the efficiency of the suggested technique.

Table 3. Information entropy in cipher images.

Image Information Entropy (R) (G) (B)

King Tut 7.9975 7.9973 7.9977
Baboon 7.9968 7.9966 7.9978
Pepper 7.9967 7.9976 7.9967

Egyptian pyramids 7.9972 7.9974 7.9975

6.5. Differential Attacks Analysis

For image encryption scheme to be efficient, it should be also very sensitive to teeny
variations in plain images along with secret keys of encryption process. This shows that
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the very small perturbations that added to input data should make significant alternations
in the resulting cipher data and hence the chaos based encryption scheme become more
immune to different differential attacks [61–63].

For quantifying sensitivity to teeny changes in plain images, two measures can be
successfully employed. The first of them is the Number of Pixels Change Rate (NPCR)
that measures the percentage of unlike pixels between two encrypted images for one pixel
difference in their associated plain images. The second measure is the Unified Average
Changing Intensity (UACI), which represents the mean of intensity differences between
two encrypted images for a single pixel value difference in the two input plain images.

Assume that C1 and C2 are two cipher images whose plain images are identical except
for one pixel only. Let C1(i, j) and C2(i, j) refer to the specific color components of the pixel
at position (i, j) in each of the two images. Thus, the NPCR is defined by [64,65]

NPCR =
1

m× n

m

∑
i=1

n

∑
j=1

∆(i, j)× 100 %,

∆(i, j) =

{
1 C1(i, j) 6= C2(i, j)
0 C1(i, j) = C2(i, j)

.

The second measure is given by

UACI =
1

m× n

m

∑
i=1

n

∑
j=1

C1(i, j)− C2(i, j)
255

× 100 %.

Table 4 presents the values of NPCR and UACI for difference in one color component
in random single pixel of the two original images.

Table 4. Number of Pixels Change Rate (NPCR) and Unified Average Changing Intensity (UACI) for
the four encrypted images.

Image NPCR (R,G,B) % UACI (R,G,B) %

King Tut 99.6268, 99.6402, 99.6361 33.531, 33.531, 33.533
Baboon 99.6332, 99.6329, 99.6241 33.537, 33.536, 33.536
Pepper 99.6112, 99.6351, 99.6293 33.528, 33.506, 33.511

Egyptian pyramids 99.6339, 99.6383, 99.6154 33.471, 33.483, 33.485

6.6. Resistance against Other Attacks

The Kerckhoff’s principle [66] states that through evaluation of security strength of a
given encryption system, it should be assumed that the attacker has knowledge about the
design and detailed structure of encryption system. The exception is the unknown values
of secret keys. Taking this principle into account, there are four possible types of attacks,
known as, known plaintext, ciphertext only, chosen plaintext (CP) and chosen ciphertext
(CC) attacks, which can be utilized against the proposed system. Most importantly, the op-
ponent in chosen ciphertext attack (CCA) can get access to the decryption system while
in chosen plaintext attack (CPA), he secretly can establish access to the encryption system
itself. Now, if the suggested cryptography system is immune to the aforementioned CCA
and CCP, then the resistance against the other two types are confirmed [67,68].

The presented encryption scheme involves setting up the values of time-dependent
and plain image-dependent parameters, scrambling of pixels, bit XOR of pixel values
perturbing chaotic signal and elliptic curve key exchange as follows. Firstly, some key
features are read out from the plain image to modify the original values of secret keys of
the system. This indicates that different plain images will induce different cipher images
even for the cases where input images having very small differences. Moreover, feeding
the encryption machine with the same plain image, but at distinct times, will produce
separated encrypted images because secret keys are time dependent on the moments that
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images are supplied to the system. In addition, assume that the attackers try to defeat
the elliptic curve key exchange step to unveil the values of secret keys via applying the
well known Pollard’s Rho attack or Baby Step, Giant Step attack [69–72]. The attacker will
find that it is practically infeasible to achieve his goal. The interpretation is that although
this attacks can obviously reduce the computations complexity of discrete logarithmic
problem, it still requires approximately

√
PEC = 7.9× 1028 of operations so as to break

the encryption system. More specifically, it approximately requires more than 1013 years
to complete the attacking process utilizing 16 GB RAM and Intel Core i7-8550U CPU.
Subsequently, the present hybrid technique is reliable against the known-plaintext and
chosen-plaintext attacks [67,68] in addition to EC attacks.

7. Discussion and Conclusions

Analytical and numerical frameworks are presented to analyze a proposed discrete
fractional-order food chain model. The present model exhibits rich dynamics and a variety
of nonlinear phenomena is exhibited by its state variables.

It is the first model to consider discrete fractional order three-dimensional food chain
model while the other models in literature are exclusively continuous time or integer-order
discrete time models. The fractional order which represents the memory influences is
found to have a significant impact on the stability of nontrivial fixed points of food chain
model and it should not be ignored. More specifically, when the value of fractional order
decreases from one, the stability of fixed point may be changed. For example, the fixed
point E1 is stable at a = 2.9 and b = 1 when fractional order is very close to one and it loses
its stability and becomes unstable when α = 0.8. A second example is the fixed point E2
which is stable at a = 3.05 and b = 2.4, i.e., when the predator species has increased value
of its benefit from predation on preys while simultaneously the fractional order value is
very close to one. The fixed point E2 losses its stability when α is decreased to 0.8. A third
example is the coexistence fixed point E3 which is stable at α > 0.88, a = 3.05, b = 3
and c = 4.35 while it losses its stability when α is decreased. Figures 1–4 depict stability
regions of fixed points in the space of parameters in more details. From biological point
of view, the above discussion indicates that it possible to find two separate food chain
systems which have identical values of parameters, i.e., same species for prey, predators
and top-predators in the two systems, whilst the two systems undergo different stable
equilibrium points. This can be therefore interpreted by referring to memory impacts or
the different values of fractional order differences possessed by the two systems.

Employing multi-dimensional chaotic discrete fractional difference equations in en-
cryption application is a very recent approach in cryptography systems. This approach
overcomes numerical errors of continuous fractional order equations, has the advantages
of extending the key space size by fractional order secret key and it is more appropriate
for being implemented on digital platforms than the continuous time fractional systems.
In addition, combining elliptic curve scheme for key exchange with the chaos source of
three-dimensional fractional mapping in a novel hybrid encryption system, for first time,
inherits the reliability and efficiency of both systems. From security point of view, the secret
keys of the hybrid encryption system are made simultaneously time-varying and plain
data-dependent that render the system capable to defeat the powerful CCA and CPA at-
tacks along with other attacks, as discussed above. The realization on digital appliances can
be conducted via using Arduino boards, such as ARDUINO NANO 33 BLE or ARDUINO
MEGA 2560 REV3, Digital Signal Processors (DSPs), such as TMS320C6452 or ADSP-
2136x, field-programmable gate array (FPGAs) or microcontrollers, such as nRF52840 or
ATmega640. Future work may include adopting mixed functional response for the model
to better reflect biological factors. In addition, the more advanced supersingular isogeny
elliptic curves can be employed to further improve security strength of the proposed hybrid
encryption scheme against risks of post quantum computers era.
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