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Abstract: Quotients of partial differential equations are discussed. The quotient equation for the
Euler system describing a one-dimensional gas flow on a space curve is found. An example of
using the quotient to solve the Euler system is given. Using virial expansion of the Planck potential,
we reduce the quotient equation to a series of systems of ordinary differential equations (ODEs).
Possible solutions of the ODE system are discussed.
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1. Introduction

In this paper, we continue the study of the Euler equation describing gas flows on
space curves in a constant gravity field. Symmetry algebras and differential invariant fields,
as well as their dependence on thermodynamic state equations and the form of a space
curve, were considered in [1]. Here, we find a quotient PDE for the Euler equation and
show its role in solving the original equation.

Recall that the system of PDEs describing such flows is the following:
ρ(ut + uua) = −pa − ρgh′,

ρt + (ρu)a = 0,

ρθ(st + usa)− kθaa = 0,

(1)

where u(t, a) is the flow velocity, p(t, a), ρ(t, a), s(t, a), and θ(t, a) are the pressure, density,
specific entropy, and temperature of the fluid, respectively, k is the constant thermal
conductivity, g is the gravitational acceleration, and h(a) is the z-component of a naturally
parametrized space curve.

System (1) is incomplete, i.e., it has two more unknown functions than equations. In
the present paper, we put aside the question of classification of possible thermodynamic
relations, since it was described in detail in [1]. We assume that these relations are given
either in the forms p = P(ρ, θ) and s = S(ρ, θ), or in terms of the Planck potential [2]. In
particular, we consider the ideal gas equation.

This paper is organized as follows. In Section 2, the notion of PDE quotients is
discussed. In Section 3, we recall the symmetry algebra and differential invariants for the
Euler system. In Section 4, we find the quotient for the Euler equation and discuss possible
symmetries and solutions.

All calculations for this paper were performed with the DifferentialGeometry package
in Maple. The corresponding Maple files can be found on the webpage http://d-omega.
org/appendices/.
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2. PDE Quotients
2.1. Algebraic Structures in PDE Geometry

Let π : E(π) → M be a smooth bundle over a manifold M and let πk : Jk(π) → M,
k = 0, 1, . . . , be the k-jet bundles of sections of the bundle π. To simplify the notations, we
use Jk instead of Jk(π).

Depending on dim π, the jet geometry [3] is defined by the following pseudogroups.

1. If dim π = 1, it is defined by the pseudogroup Cont(π) of the local contact transfor-
mations of the manifold J1.

2. For dim π ≥ 2, the jet geometry is defined by the pseudogroup Point(π) of the local
point transformations, i.e., local diffeomorphisms of the manifold J0.

It is also known that the prolongations of these pseudogroups to the jet bundles
exhaust all Lie transformations, i.e., local diffeomorphisms of jet spaces that preserve the
Cartan distributions (see, for example, [3]).

Moreover, bundles πk,k−1 : Jk → Jk−1 (k ≥ 2 when dim π ≥ 2, and k ≥ 3 when dim π = 1)
have affine structures, which are invariant with respect to the Lie transformations, and prolongations
of the pseudogroups Cont(π) or Point(π) are given by rational functions of ui

σ in the stan-
dard jet coordinates

(
x, ui

σ

)
.

The last statement means that, in the case of dim π ≥ 2, the fibers Jk,0
θ of the projections

πk,0 : Jk → J0 at a point θ ∈ J0 are algebraic manifolds, and the stationary subgroup
Pointθ(π) ⊂ Point(π) gives us birational isomorphisms of the manifold.

In the case of dim π = 1, the fibers Jk,1
θ of the projections πk,1 : Jk → J1 at a point

θ ∈ J1 are algebraic manifolds too, and the stationary subgroup Contθ(π) ⊂ Cont(π) gives
us birational isomorphisms of the manifold.

Following this picture, we say that a differential equation Ek ⊂ Jk is algebraic if fibers
Ek,θ of the projections πk,0 : Ek → J0 are algebraic manifolds when dim π ≥ 2, or πk,1 : Ek → J1

when dim π = 1.
All differential equations here are assumed to be formally integrable; then, the prolon-

gations E (l)k = Ek+l ⊂ Jk+l of an algebraic equation Ek ⊂ Jk are algebraic, too.
By a symmetry algebra of an algebraic differential equation, we mean the Lie algebra

Sym(Ek) of point vector fields if dim π ≥ 2 or contact vector fields if dim π = 1 that act
transitively on J0 in the case of dim π ≥ 2 or J1 in the case of dim π = 1. Moreover, the
stationary sub-algebra Symθ(Ek) where θ ∈ J0 or θ ∈ J1 produces actions of algebraic Lie
algebras on algebraic manifolds El,θ for all l ≥ k.

2.2. The Rosenlicht Theorem

Let B be an algebraic manifold, i.e., an irreducible variety without singularities over
a field of characteristic zero, let G be an algebraic group, and let G × B → B be an
algebraic action.

Denote byF (B) the field of rational functions on the manifold B, and, byF (B)G ⊂ F (B),
denote the field of rational G-invariants on B.

We say that an orbit Gb ⊂ B is regular (as well as a point b itself) if there are m =
codim Gb G-invariants x1, . . . , xm such that their differentials are linearly independent at
the points of the orbit.

Let B0 = B \ Sing be the set of all regular points and let Q(B) = B0/G be the set of all
regular orbits.

The Rosenlicht theorem [4] states that B0 is open and dense in B.
Moreover, if the above invariants x1, . . . , xm are considered as local coordinates on

the quotient Q(B) at the point Gb ∈ Q(B), then on the intersections of the coordinate
charts, the coordinates are connected by rational functions. In other words, Q(B) is an
algebraic manifold of the dimension m = codim Gb, and the rational map κ : B0 → Q(B)
of algebraic manifolds gives us the field isomorphism F (B)G = π∗(F (Q(B))).

To apply this theorem to algebraic differential equations, we should reformulate it for
the case of Lie algebras.
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Let B be an algebraic manifold and let g be a Lie sub-algebra of the Lie algebra of the
vector fields on B.

We say that g is an algebraic Lie algebra if there is an algebraic action of an algebraic
group G on B such that g coincides with the image of Lie algebra Lie(G) under this action.

By an algebraic closure g̃ of a Lie algebra g, we mean the intersection of all algebraic
Lie algebras that contain g.

Example 1. Let B = R; then, Lie algebra

g = sl2 = 〈∂x, x ∂x, x2∂x〉

is algebraic because it corresponds to the projective action of the algebraic group SL2(R).

Example 2. Let B = S1 × S1 be a torus and g = 〈∂φ + λ∂ψ〉, where φ and ψ are the angles,
λ ∈ R. Then, g is algebraic if and only if λ ∈ Q. Otherwise, g̃ = 〈∂φ, ∂ψ〉. A similar situation
occurs in the case of B = R2 and

g = 〈x ∂x + λy ∂y〉,

where g̃ = g if λ ∈ Q, and g̃ = 〈x∂x, y∂y〉 otherwise.

The Rosenlicht theorem is also true for algebraic Lie algebras or for their algebraic
closure in the case of general Lie algebras.

Let us be given a Lie algebra g of vector fields on an algebraic manifold B and let g̃ ⊃ g

be its algebraic closure. Then, the field F (B)g of rational g-invariants has a transcendence
degree equal to the codimension of regular g̃-orbits, and it is also equal to the dimension of
the quotient algebraic manifold Q(B).

2.3. Quotients of Algebraic Differential Equations

Let g be an algebraic symmetry Lie algebra of an algebraic formally integrable dif-
ferential equation Ek, and let El be the (l − k)-th prolongations of Ek. Then, all equations
El ⊂ Jl are algebraic, and we have the tower of algebraic bundles:

Ek ←− Ek+1 ←− · · · ←− El ←− El+1 ←− · · · .

Let E0
l ⊂ El be the set of strongly regular points and let Ql(E) be the set of all strongly

regular g-orbits, where, by a strongly regular point (and orbit), we mean such points of El
that are regular with respect to g-action and whose projections on El−1 are regular, too.

Then, as we have seen, Ql(E) are algebraic manifolds, and the projections κl : E0
l →

Ql(E) are rational maps such that the fields F (Ql(E)) (the field of rational functions on
Ql(E)), and F (E0

l )
g (the field of rational functions on E0

l ), which are g-invariants (rational
differential invariants), coincide: κ∗l (F (Ql(E))) = F (E0

l )
g.

The g-action preserves the Cartan distributions C(El) on the equations, and therefore,
projections κl define distributions C(Ql) on the quotients Ql(E).

Finally, we get the tower of algebraic bundles of the quotients

Qk(E)
πk+1,k←− Qk+1(E)←− · · · ←− Ql(E)

πl+1,l←− Ql+1(E)←− · · ·

such that the projection of the distribution C(Ql) belongs to C(Ql−1(E)).

2.4. Tresse Derivatives

Let ω ∈ Ω1(Jk) be a differential 1-form on a k-jet manifold. Then, the class

ωh = π∗k+1,k(ω) mod Ann Ck+1,

is called a horizontal part of ω.
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In the standard jet coordinates (x, uj
σ), the horizontal part has the following representation:

ω = ∑
i

aidxi + ∑
|σ|≤k
j≤m

aj
σduj

σ =⇒ ωh = ∑
i

aidxi + ∑
|σ|≤k

j≤m, i≤n

aj
σuj

σ+1i
dxi,

where n = dim M and m = dim π.
As a particular case of this construction, we get the total differential f ∈ C∞(Jk) =⇒

d̂ f = (d f )h, or, in the standard jet coordinates,

d̂ f = ∑
i≤n

d f
dxi

dxi,

where
d

dxi
=

∂

∂xi
+ ∑

j,σ
uj

σ+1i

∂

∂uj
σ

are the total derivations.
It is important to observe that the operation of taking a horizontal part, as well as the

total differential, is invariant with respect to the point and contact transformations.
We say that functions f1, . . . , fn ∈ C∞(Jk) are in general position on a domain D if

d̂ f1 ∧ · · · ∧ d̂ fn 6= 0

on this domain.
Let f be a smooth function on this domain; then, we get decomposition in D:

d̂ f = ∑
i≤n

Fi d̂ fi,

where Fi are smooth functions on the domain π−1
k+1,k(D) ⊂ Jk+1.

We call them Tresse derivatives [5] and denote them by

d f
d fi

.

As we have seen, the operation of taking a horizontal part, as well as the total differ-
ential, is invariant with respect to the point and contact transformations.

Therefore, we have the following.

Proposition 1. Let f1, . . . , fn be g-invariants of order ≤ k that are in general position. Then, for
any g-invariant f of order ≤ k, the Tresse derivatives d f

d fi
are g-invariants of order ≤ k + 1.

2.5. The Lie–Tresse Theorem

Theorem 1. [6] Let Ek ⊂ Jk be a formally integrable algebraic differential equation and let g be an al-
gebraic symmetry Lie algebra. Then, there are rational differential g-invariants a1, . . . , an, b1, . . . , bN

of order ≤ l such that the field of all rational differential g-invariants is generated by rational func-
tions of these invariants and their Tresse derivatives d|α|bj

daα .

We call invariants a1, . . . , an, b1, . . . , bN Lie–Tresse coordinates.
It is noteworthy that, in contrast to algebraic invariants, for which we have the alge-

braic operations only, in the case of differential invariants, we have additional operations,
i.e., Tresse derivatives, that allow us to get really new invariants.

Syzygies, in the case of differential invariants, provide us with new differential equa-
tions that we call quotient equations.
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From the geometrical point of view, the above theorem states that there is a level l and
a domain D ⊂ Q(E) where the invariants ai and bj can be considered as local coordinates,
and the preimage of D in the tower

Ql(E)
πl+1,l←− Ql+1(E)←− · · · ←− Qr(E)

πr+1,r←− Qr+1(E)←− · · · (2)

is just an infinitely prolonged differential equation given by the syzygy.
For this reason, we call the quotient tower (2) an algebraic diffiety.

2.6. Relations between Differential Equations and Their Quotients

1. Let u = f (x) be a solution of differential equation E and let ai( f ) and bj( f ) be values
of the invariants ai and bj on the section f . Then, locally, bj( f ) = Bj(a( f )), and
therefore, bj = Bj(a) is the solution of the quotient equation.

2. The above construction is local. In general, the correspondence between solutions
is valid on the level of generalized solutions, i.e., on the level of integral manifolds
of the Cartan distributions. In addition, the correspondence will lead us to integral
manifolds with singularities.

3. Now let bj = Bj(a) be a solution of the quotient equation. Then, considering equations
bj − Bj(a) = 0 as a differential constraint for the equation E, we get a finite-type
equation E ∩

{
bj − Bj(a) = 0

}
with a solution that is a g-orbit of a solution of E.

4. Symmetries of the quotient equation are Bäcklund-type transformations of the original
equation E.

Example 3. The Lie algebra of the projective transformations of the line M = R, g = sl2 =
〈∂x, x∂x, x2∂x〉 has the following generators in rational differential invariants for the sl2-action
on functions: 〈

a = u0, b =
u3

u3
1
−

3u2
2

2u4
1

,
db
da

=
u4

u4
1
− 6

u2u3

u5
1

+ 6
u3

2
u6

1
, . . .

〉
.

Let

F

(
u0,

u3

u3
1
−

3u2
2

2u4
1

,
u4

u4
1
− 6

u2u3

u5
1

+ 6
u3

2
u6

1

)
= 0

be a fourth-order sl2-invariant equation.
Then, the quotient equation has the first order:

F
(

a, b,
db
da

)
= 0.

Example 4. The Lie algebra g = 〈∂x, ∂y〉 of translations of the plane has the following Lie–Tresse
coordinates for the g-action on functions:

a1 = u1,0, a2 = u0,1, b = u0,0, c = u1,1.

Then,

b1,0 = δ−1(u1,0u0,2 − u0,1u1,1), b0,1 = δ−1(u0,1u2,0 − u1,0u1,1),

c1,0 = δ−1(u0,2u2,1 − u1,1u1,2), c0,1 = δ−1(u2,0u1,2 − u1,1u2,1),

where δ = u2,0u0,2 − u2
1,1 is a Hessian determinant, and the syzygy is

c2(b2
1,0b0,2 − 2b1,0b0,1b1,1 + b2

0,1b2,0) + c(b1,0b0,1 − a1b0,1b2,0 − a2b1,0b0,2+

b1,1(a1b1,0 + a2b0,1)− a1a2b1,1 − b1,0b0,1(a1c1,0 + a2c0,1) = 0.
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Thus, the quotient of an equation u1,1 = C(u1,0, u0,1) is the last equation for b(u1,0, u0,1),
where letter C stands for c.

3. Euler Equations on a Curve

In this section, we briefly recall the necessary results obtained in [1].
Consideration of flows of an inviscid medium on a space curve M = {x = f (a), y =

g(a), z = λa} in a field of constant gravitational force leads to the system
ρ(ut + uua) = −pa − ρgλ,

ρt + (ρu)a = 0,

ρθ(st + usa)− kθaa = 0,

(3)

where p and s are expressed in terms of Planck potential [2] Φ(ρ, θ):

p(ρ, θ) = −Rρ2θΦρ, s(ρ, θ) = R(Φ + θΦθ),

where R is the universal gas constant.
To describe this Lie algebra, we consider a Lie algebra g of point symmetries of the

PDE system (3).
Let ϑ : g→ h be the following Lie algebra’s homomorphism

ϑ : X 7→ X(ρ)∂ρ + X(s)∂s + X(p)∂p + X(θ)∂θ ,

where h is a Lie algebra generated by vector fields that act on the thermodynamic values p,
ρ, s, and θ.

It was demonstrated [1] that if h(a) = λa, the Lie algebra g of point symmetries of the
system (1) is generated by the vector fields

X1 = ∂t, X2 = ∂p, X3 = ∂s,

X4 = θ ∂θ , X5 = p ∂p + ρ ∂ρ − s ∂s,

X6 = ∂a, X7 = t ∂a + ∂u,

X8 = t ∂t + 2a ∂a + u ∂u − 2ρ ∂ρ − s ∂s,

X9 =

(
t2

2
+

a
λg

)
∂a +

(
t +

u
λg

)
∂u −

2ρ

λg
∂ρ.

The pure thermodynamic part ht of the symmetry algebra is generated by the vector fields

Y1 = ∂p, Y2 = ∂s, Y3 = θ ∂θ ,

Y4 = p ∂p, Y5 = ρ ∂ρ, Y6 = s ∂s.

Thus, the Euler system has a Lie algebra of point symmetries ϑ−1(ht).
It has been shown in [1] that, for h(a) = const, h(a) = λa, and h(a) = λa2, the basis

differential invariants are

J1 = ρ, J2 = θ, J3 = ua, J4 = ρa, J5 = θa, J6 = θt + uθa

and the basis invariant derivatives are

d
dt

+ u
d
da

,
d
da

.

4. Quotient Equation

Choosing J1 and J2 as Lie–Tresse coordinates (x, y) and

K(x, y) = J3, L(x, y) = J4, M(x, y) = J5, N(x, y) = J6
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as unknown functions, respectively, we get the quotient equation for (3):

Rxy(xK(Φx + yΦxy)− N(2Φy + yΦyy)) + LMx + MMy = 0,

xKMx − NMy + LNx + M(Ny − K) = 0,

xMKy − xKLx + xLKx + 2KL + NLy = 0,

RxyL(ΦxxxL2 + 2Φxxy ML + Φxyy M2)+

RL(xyLLx + xyMLy + 2xLM + 3yL2)Φxx+

RL(xyLMx + M(xyMy + 2xM + 3yL))Φxy+

LR(2yLLx + 2yMLy + xLMx + M(xMy + 3L))Φx+

xK2Lx − KNLy − (xKM + LN)Ky − 3LK2 = 0

(4)

Direct computations show that the system (4) has no symmetries if the function Φ is
arbitrary. Nevertheless, it is possible to find symmetries for some classes of Φ. Some of
these cases are listed below.

Proposition 2. If the system (4) admits a symmetry of the form

α1x∂x + (α2y + α3)∂y − α2K∂K +
1
2
(3α1 − 2α2 − α4)L∂L +

1
2
(α1 − α4)M∂M,

then the function Φ is of the form

Φ(x, y) = C5

∫
(α2y + α3)

− α4
α2

y2 dy +
C4x

α4
α1
−1

y
+

C3y + C2

y
+

C1

xy
,

where C1, . . . C5 are constants.

Proposition 3. If the system (4) admits a symmetry of the form

x
∂

∂x
+ α2y

∂

∂y
− α2K

∂

∂K
+

1
2
(3− 2α2 − α4)L

∂

∂L
+

1
2
(1− α4)M

∂

∂M
,

then the function Φ is the following

Φ(x, y) = C5 +
C4

y
+ C3y

α4
α2
−1

+
C2

xy
+

C1xα4−1

y
,

where C1, . . . C5 are constants.

Particular solutions of (4) for some special classes of the function Φ can be found.
For example, consider the Planck potential for the ideal gas model:

Φ(x, y) =
n
2

ln y− ln x, (5)

where n is the number of freedom degrees of a gas particle.
Then, for simplicity, let N = K = 0, then these are some of the solutions for L and M:

1. L = 0, M = f (x).

2. L = c1x
y , f (M)x

M
c1 = y.

3. L = c3x
(ln x−c2)

c1

(
−c5 ln y+c4

c1
y−c1

−1
)c1

, M = c3y(−c5 ln y+c4)
(ln x−c2)

c1 (− ln x+c2)c5

(
−c5 ln y+c4

c1
y−1/c1

)c1
.

Here, c1, . . . , c5 are constants and f (x) is an arbitrary function.
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Let us illustrate how we can solve the original Euler PDE system using its quotient.
To this end, we consider the system (3) for ideal gas together with the solution (for example,
N = K = L = 0, M = x), which is equivalent to a finite-type system:{

θaa = 0, ρt = 0, ρa = 0, Rρθa + ρ(gλ + ut) = 0,

θa = ρ, ua = 0, θt + uθa = 0.

Solving the latter, we get

ρ = ρ0, u = u0 − (λg− Rρ0)t, θ =
(Rρ0 + gλ)ρ0t2

2
+ ρ0(a− u0t) + θ0,

where ρ0, u0, θ0 are arbitrary constants.

Virial Expansion

Another approach we can take is to exploit the fact that it is often possible to consider
the Planck potential Φ in the form of virial expansion:

Φ(x, y) =
n
2

ln y− ln x−
∞

∑
i=1

xi

i
Ai(y).

Then, we can find solutions of the system (4) in the form of power series of x:

K(x, y) = xdK ∑
k=0

Kk(y)xk, L(x, y) = xdL ∑
k=0

Lk(y)xk,

M(x, y) = xdM ∑
k=0

Mk(y)xk, N(x, y) = xdN ∑
k=0

Nk(y)xk,

where dK, dL, dM, and dN are the integer constants that should be chosen such that (4) can
be expanded as a power series of x. It can be shown that dK = 1, dL = 2, dM = 1, and
dN = 1. Hence, the zeroth-order term of this expansion is a system of ordinary differential
equations: 

(K0M0 + N0L0)K′0 + (RyL0M0 + K0N0)L′0 + 2RL0M0M′0+

L0(RyL2
0 + 2RL0M0 + K2

0) = 0,

M0K′0 + N0L′0 + K0L0 = 0,

M0N′0 − N0M′0 + N0L0 = 0,

M0M′0 − RyK0 + M0L0 −
Rn
2

N0 = 0.

(6)
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The first-order term of the expansion is a system of linear ordinary differential equations:

(M0M1)
′ + M0L1 + 2M1L0 + RyA′1(2N0 − yK0)−

RyK0 A1 −
R
2
(nN1 + 2yK1) + Ry2N0 A′′1 = 0,

M0N′1 − N1M′0 + M1N′0 − N0M′1 + M1K0 + N0L1 + 2N1L0 = 0,

M0K′1 + M1K′0 + N0L′1 + N1L′0 + 2L0K1 = 0,

(N0L0 + K0M0)K′1 + (RyM0L0 + K0N0)L′1 + RL0M0M′1+

(RyL0L′0 + RL0M′0 + K0K′0 + 3RL2
0)M1+

(L0K0)
′N1 + (M0K′0 + N0L′0 + K0L0)K1+

(4RL0M0 + 4RyL2
0 + N0K′0 + RM0M′0 + RyL0M0)L1+

4RyL2
0(L0 A1 + A′1M0) + RyA′′1 L0M2

0+

RyA′1M0M′0L0 + 2RyL0L′0M0 A1 + 4RL2
0M0 A1+

2RA′1M2
0 L0 + RL0M0M′0 A1 = 0.

(7)

The solutions of (6) must be substituted into (7); thus, we obtain more simple differen-
tial equations for the functions K1, L1, M1, and N1. Repeating this process, we can obtain
any number of terms in the expansions of the functions K, L, M, and N.

5. Conclusions

In this paper, we gave a brief recollection of the notion of quotient equations. Using previous
results regarding invariants of the Euler system in a space, we found its quotient. We
found that the quotient has an infinitesimal symmetry for special cases of the thermody-
namical state of a medium. We proposed a method for solving the quotient by means of
virial expansion of the Planck potential and by reducing it to series of systems of ordinary
differential equations.
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