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Abstract: We consider a PT -symmetric system that involves three optical resonant elements coupled
together. We investigate the quantum correlations between subsystems by calculating bipartite
and tripartite entanglement. We show that when PT -symmetry is maintained, the correlations
between subsystems strongly depend on the parameters describing the interaction between them
and characterizing the gain and loss of energy in the system’s active and passive elements. We
estimate the range of interaction parameter values for which the strongest bipartite and tripartite
entanglement can be produced. Additionally, we show that the discussed system can be a source of
stable entangled states.
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1. Introduction

For a long time, one of the most crucial rules of quantum mechanics was the assump-
tion that the Hamiltonian related to the given quantum system must be Hermitian. The
reason for such limitation was simple: all eigenvalues of the Hamiltonian must be real.
Because of that, many of the physical systems described by the non-Hermitian Hamiltonian
were ignored. However, in 1998 Bender and Boettcher showed that there exists a spectrum
of non-Hermitian Hamiltonians, which still possesses real and positive eigenvalues [1].
Such systems have been reviewed with hundreds of papers published, dozens of confer-
ences held, and many dissertations conducted, opening new development directions for
quantum mechanics. The key idea here is to provide conditions for maintaining so-called
PT -symmetry instead of Hermiticity. Once the PT -symmetry is not broken, the Hamil-
tonian still exhibits properties that are satisfactory to describe a quantum system in the
same way as it would have been done by a Hermitian Hamiltonian. The emergence of
PT -symmetrical Hamiltonians is not in conflict with quantum mechanics that developed
over many decades. Instead, it is rather an alternative to Hermitian operators that allows
us to study new quantum theories that may describe measurable physical phenomena. The
appearance of the PT -symmetry was initially seen as a mathematically interesting finding,
and the first analyzed PT -symmetric Hamiltonian was Ĥ = p̂2 + ix̂3 [1–3].

When considering the PT -symmetric system, one can witness a phase-transition
point at which the system loses its PT -symmetric properties. In other words, a given
system may be in the PT -symmetric phase, where all eigenvalues of the Hamiltonian
are real, or in PT -symmetry broken phase, where we have complex eigenvalue spectra.
The transition point from one phase to the other is called an exceptional point [4] and
it is usually connected with one of the system parameters. It should be noted that the
PT -symmetry breaking point does not have to be manifested physically, but the overall
change of that parameter itself may significantly change the physical state [5].
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Over the last years, different kinds of PT -symmetric systems have been considered.
In the field of materials research, it was found that at the vicinity of the symmetrical break-
out point, some materials with PT -symmetry structure behave as unidirectional invisible
media [3]. Some other materials show unidirectional reflectionless near spontaneous parity-
time symmetry phase transition point [6]. In the field of optical waveguides, it has been
found that in specially designed pseudo-Hermitian potentials, the phase transition point
can create a loss-induced optical transparency [7]. In the laser study, the unique property of
the PT -symmetric system also leads to the loss-induced suppression and revival of lasing
at the phase transition points [8], making the effectiveness of the single-mode operation
in microring laser resonators [9]. Moreover, one can use PT -symmetric systems to study
dissipative quantum systems [10] as well as to learn about signal generation and processing
based on the properties ofPT -symmetric systems in microwave photonics [11]. In the same
PT -symmetrical systems, the asymmetric transmission of photons in an optical dimer
has been studied in addition to the nonlinear properties that influence the propagation of
optical pulses [12–15]. Additionally, PT -symmetric systems can be also used to unveil the
nonlocal particle current localized at the edges due to the interplay between PT -symmetry
and topology [16] at both direct and bidirectional phase transitions [17] in the field of su-
perconductivity. Further, in the field of quantum information, PT -symmetry could create
new methods to control light such as transport control of a confined single-photon [18–20]
is intended to use light beams to transmit information in quantum computers to replace
conventional electrical wires in conventional computers. It will be a large step forward
for the realization of the quantum internet in the future. To accomplish that, the study of
quantum correlation between subsystems in a PT -symmetric system is very significant and
plays a fundamental role, especially the balance of gain and loss for PT -symmetry in the
quantum system and the unique properties when PT -symmetry breaking occurs [21–23].

In our paper, we consider the PT -symmetric system consisting of the three interacting
cavities and study the possibility of entanglement appearance. The ability to create a
highly entangled quantum state plays a significant role in quantum information theory.
States that carry such a valuable resource have a vast amount of applications. Quantum
teleportation, quantum cryptography, and quantum computation are primarily based on
quantum entanglement. In general, quantum correlations are an indispensable part of
quantum information theory. For this reason, it is necessary to explore and understand the
entanglement in quantum systems. Although in recent years there were a lot of quality
results concerning entanglement in bipartite systems, the quantum correlations in more
complex systems consisting of two or higher number of subsystems require further analysis
and answers. This fact is a good motivation to search systems that can be the source of
entangled states.

This paper is organized as follows. In Section 2, we describe thePT -symmetric system
of three coupled optical resonant elements. The first and last subsystems are passive and
active, respectively, which corresponds to the loss and gain of energy. In Section 3, we
investigate the entanglement in the PT -symmetric phase. We examine the quantum
correlations between two of the three resonant elements and also consider the correlations
between the three subsystems by determining the bipartite and tripartite entanglement.
Finally, our conclusions are drawn in Section 4. One should note that our work strongly
refers to another paper concerning PT -symmetrical system, namely [24], and should be
considered more as a follow-up. Although here we are considering only three cavities, we
approach the bipartite negativity more thoroughly. Additionally, we present the results for
tripartite negativity and steady-state solutions.

2. The Model

Our model consists of three cavities that belong to a chain. The first cavity (labeled
by 1) is passive, and the last one (labeled by 3) is active, which means they correspond
to the loss and gain of energy, respectively. These cavities are not coupled directly, but
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they are simultaneously coupled to the middle one (labeled by 2) that is not with loss or
gain—see Figure 1. This system can be described by the Hamiltonian:

Ĥ = (ω− iγ)â†
1 â1 + ωâ†

2 â2 + (ω + iγ)â†
3 â3 + β

(
â†

1 â2 + â†
2 â1 + â†

2 â3 + â†
3 â2

)
=

(
â†

1 â†
2 â†

3
)

Ĥ0

â1
â2
â3

 =
(
â†

1 â†
2 â†

3
)ω− iγ β 0

β ω β
0 β ω + iγ

â1
â2
â3

, (1)

where â†
n and ân (n = 1,2,3) are the creation and annihilation operators for the i-th cavity.

The parameter ω is the resonant frequency characterizing cavities, while the parameter
β describes the linear interaction between the two subsystems. In our model, we set the
cavities to have the same resonant frequency, and we assume the same strength of the
interactions between them. Moreover, the rates of loss and gain of energy in cavities 1 and 3
are assumed to be the same and equal to γ.

β β

ωωω
Loss

es Gain

Passive

cavity 1

Neutral

cavity 2

Active

cavity 3

γ γ

Figure 1. Scheme of the model.

One can easily show that the Hamiltonian Ĥ0 is not Hermitian but fulfills both P
symmetry (partial reflection 1←→ 3) and T symmetry (time inverse i←→ - i) [25]. Because
the Hamiltonian Ĥ0 is PT -symmetric, the phase transition of the system occurs. At this
point, the system goes from an unbroken PT -symmetry phase to a broken PT -symmetry
phase. This point is called an exceptional point and for our system is placed at γ =

√
2β

(for more details, see [25]). If the parameters β and γ obey the relation γ <
√

2β, then
all eigenvalues of Hamiltonian are real, and the system is in the unbroken PT -symmetry
phase. In the other case, when γ >

√
2β, complex eigenvalues appear, and the system is in

the broken PT -symmetry phase.
As our system exchanges energy with the environment, to analyze its evolution, we

need to use the master equation. The time evolution of density matrix ρ̂ is determined by

d
dt

ρ̂ = −i
[
ĤI , ρ̂

]
+ Lρ̂, (2)

where ĤI is the Hermitian part of Hamiltonian Ĥ

ĤI = ω
(

â†
1 â1 + â†

2 â2 + â†
3 â3

)
+ β

(
â†

1 â2 + â†
2 â1 + â†

2 â3 + â†
3 â2

)
, (3)

and L is the Liouvillian superoperator:

Lρ̂ = γ
(

2â1ρ̂â†
1 − â†

1 â1ρ̂− ρ̂â†
1 â1

)
+ γ

(
2â†

3 ρ̂â3 − â3 â†
3 ρ̂− ρ̂â3 â†

3

)
. (4)

In our analysis, we assume that only one of the three cavities is initially in the one-
photon state |1〉, while the other two are in vacuum state |0〉. In other words, we consider
three initial scenarios:

• ρ̂(t = 0) = |100〉〈100|;
• ρ̂(t = 0) = |010〉〈010|;
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• ρ̂(t = 0) = |001〉〈001|,
where |ijk〉 = |i〉1 ⊗ |j〉2 ⊗ |k〉3 are three-mode states. The first state represents a scenario
where only the passive cavity is initially in a one-photon state and the density matrix ρ̂(t =
0) = |100〉〈100|. The next state corresponds to a scenario when the middle cavity (neutral)
is in a one-photon state which is represented by the density matrix ρ̂(t = 0) = |010〉〈010|.
In the last case, we consider the situation when the system starts its evolution from the
state ρ̂(t = 0) = |001〉〈001| and only the active cavity is in the one-photon state.

3. The Entanglement

Let us now investigate the entanglement generation in a PT -symmetric three-mode
system. We will analyze the bipartite entanglement between cavities 1− 2, 2− 3, and 1− 3.
Additionally, we will study the tripartite entanglement between all three cavities. It should
be cleared out that through all numerical analysis we assumed that the dimensionality of
our tripartite system was equal to 10⊗ 10⊗ 10. Such a dimension was large enough to
analyze the dynamics of the system, and further increasing the system’s dimension did not
change the obtained values of negativities. On the other hand, it was so low that numerical
calculations could be performed quickly.

To quantify the two-mode entanglement, we will use an entanglement measure called
negativity, which is based on the partial transposition criterion [26,27]. The bipartite
negativity of two-mode state ρij is defined as

Nij = N(ρij) = −2 ∑
n

λn(ρ
Ti
ij ) (5)

where ρ
Ti
ij describes the partial transposition (with respect to i mode) of the reduced

density matrix ρij = Trk(ρijk) and λn are the negative eigenvalues calculated for ρ
Ti
ij . The

negativity of the separable state takes 0 and reaches its maximal value for the maximally
entangled state.

The results of our analysis are illustrated in Figure 2, where we present the time
evolution of negativity for three initial states and two values of γ/β, namely γ/β ∈
{0.01, 0.8}.

In the beginning, we analyze the situation when our system is initially in the state
ρ̂(t = 0) = |100〉〈100|, where only the passive cavity is excited. In the Figure 2a, we can
observe the time evolution of negativities N12, N13, and N23 for γ/β = 0.01. The change of
negativities is periodical. The oscillation periods of the negativities N12 and N23 are equal
and shifted in time. Thus, we conclude that the generation of entanglements characterized
by N12 and N23 is strongly correlated with each other. The maximum value of the negativity
for subsystems 1 and 2 is greater than 0.84, while for a pair of subsystems 2− 3 is only
slightly smaller. On the other hand, the entanglement between subsystems 1− 3 is signif-
icantly weaker and reaches its maximum value when the negativities N12 and N23 have
the same value. This situation completely changes when we set γ/β = 0.8 (see Figure 2b).
Now the maximum values of negativities are smaller than in the previous case for all sub-
system pairs. What is interesting is, the entanglement between cavities 1 and 3 is no longer
produced. This situation is caused by a stronger interaction with the environment. At the
beginning of the system’s evolution, we can detect entanglement only between subsys-
tems 1 and 2. Then, as the system evolves, the entanglement between subsystems 2 and 3
appears. After a certain point, the evolution of negativities stabilizes around some value.
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Figure 2. The time evolution of bipartite negativities Nij: (a) ρ̂(t = 0) = |100〉〈100|, γ = 0.01β; (b) ρ̂(t = 0) = |100〉〈100|,
γ = 0.8β; (c) ρ̂(t = 0) = |010〉〈010|, γ = 0.01β; (d) ρ̂(t = 0) = |010〉〈010|, γ = 0.8β; (e) ρ̂(t = 0) = |001〉〈001|, γ = 0.01β;
(f) ρ̂(t = 0) = |001〉〈001|, γ = 0.8β.

In the next analyzed case with the initial state ρ̂(t = 0) = |010〉〈010|, only the second
subsystem (neutral cavity) is excited. As previously, we consider two sub-cases for two var-
ious values of γ/β (see Figure 2c,d). When γ = 0.01β, the bipartite entanglements between
the subsystems also change periodically, and the amplitude of oscillations decreases in time.
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The oscillation period of the negativities N12 and N23 takes the same value. However, the
evolutions of negativities N12 and N23 are approximately the same, so they are not shifted
in time. Moreover, the maximum values of N12 and N23 are smaller (mostly below 0.5) than
in the situation when only the passive cavity is initially excited. Interestingly, the maximum
value of negativity N13 is slightly higher than 0.95 and periodically dominates the values
N12 and N23. This situation is opposite to the first initial scenario. Specifically, when N13
reaches its maximal value, the negativities N12 and N23 are equal to zero simultaneously.
When we increase the value of the gain/loss parameter in the unbroken PT -symmetry
phase (see Figure 2d), the entanglement between subsystems 1 and 3 is no longer produced
like in the first case. Thus one can conclude that for a specific rate γ/β = 0.8, the interaction
with the environment plays the most significant role. We see that negativities N12 and
N23 initially oscillate. These oscillations disappear after a time, and N12 together with N23
converge to fixed, equal values. These values are the same as in the first scenario, with
γ/β = 0.8.

In the third scenario, the system’s evolution starts from the state ρ̂(t = 0) = |001〉〈001|.
It means that only the third cavity (active cavity) is initially excited. As previously, we
concentrate on two cases, γ = 0.01β and γ = 0.8β. The results of our calculations are illus-
trated in Figure 2e,f. We see that when γ = 0.01β, the evolutions of the negativities seems
to be similar to the case where only the passive cavity is initially excited (see Figure 2a). It
means the negativities N12 and N23 oscillate and can be characterized by the same period
of changes. Here, the negativity N13 also reaches its maximum value when N12 = N23.
The maximum value of N13 is dominated by the maximum values of N12 and N23. The
entanglement between subsystems 1 and 3 is weaker than the entanglement between other
subsystem pairs. When we compare the results presented in Figure 2a,e, we see that there
is an inversion between the evolutions of N12 and N23, while N13 evolves in the same way.
When initially the active cavity is excited, N23 reaches its maximum value earlier than N12.
It is contrary to the situation of the initial state of the system is ρ̂(t = 0) = |100〉〈100|.
For higher values of γ/β (see Figure 2f), we can also notice inversion in the generation
of entanglements compared to the situation shown in Figure 2b. At the beginning of the
system’s evolution, we see the entanglement between subsystems 2 and 3 appears first.
After that, a very weak entanglement between cavities 1 and 3 is generated. At last, the
entanglement between subsystems 1 and 2 appears. This entanglement is slightly weaker
than between subsystems 2 and 3. What is interesting, contrary to the situation depicted
in Figure 2b, we can observe the entanglement between subsystems 1 and 3. As in the first
and second scenario, the evolution of negativities stabilizes around the same value.

From the above discussion, we can conclude that the maximal degree of bipartite
entanglement strongly depends on the value of the parameter γ. This dependence is better
visible in Figure 3, where we show the relation between the maximal values of negativity
and ratio γ/β. Figure 3a–c correspond to three various initial states. Now let us investigate
maximal values of entanglement in the context of ratio γ/β.

We started by considering the situation when the first cavity (passive cavity) is excited,
which corresponds to the initial state ρ̂(t = 0) = |100〉〈100|. As Figure 3a shows, only the
entanglement between modes 1−2 and 2−3 can be produced for all considered values of
the ratio γ/β. Whereas the entanglement between subsystems 1 and 3 is only generated
for small values of the γ/β parameter. What is relevant is, the amount of entanglement
appearing in the system strongly depends on the value of the gain/loss parameter. In the
beginning, the maximal values of N12 and N23 both initially decrease, and then they start
to increase. This change of monotonicity can be observed for N12 at γ/β ≈ 0.82 and N23
from γ/β ≈ 0.31. It should be noted that for all values of γ/β, the entanglement between
cavities 1 and 2 is stronger than other bipartite entanglements. For the γ/β values that are
close to the exceptional point, the maximal negativities are N12 ≈ 0.35 and N23 ≈ 0.18. The
weakest entanglement is produced between the first and third cavities. In such a case, the
negativity N13 decreases from a small value N13 ≈= 0.2 and disappears from γ/β = 0.18.
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Figure 3. Maximal values of the bipartite negativities Nij versus γ/β for ω = 5β and for various initial states ρ̂(t = 0):
(a) |100〉〈100|, (b) |010〉〈010|, (c) |001〉〈001|.

In the case of the initial state ρ̂(t = 0) = |010〉〈010| (see Figure 3b), the bipartite
entanglements between subsystems pairs 1−2 and 2−3 are weaker than this between
subsystems 1 and 3 for some initial range of parameter γ/β. It is contrary to the previous
case. While the value of ratio γ/β increases, the maximal value of N13 decreases from
approx 0.96 and starts to reach a value close to zero for γ/β ≈ 0.65. The maximal values of
N12 and N23 are approximately equal to 0.5 for γ/β = 0. When we increase the ratio γ/β,
the entanglements between subsystem pairs 1−2 and 2−3 decrease, but these drops are
slower than those observed in the case of ρ̂(t = 0) = |100〉〈100|. Additionally, the maximal
values of N12 are always higher than those obtained for N23.

In the last case, the system’s evolution starts from the state ρ̂(t = 0) = |001〉〈001|, and
the excitation initially appears in the active cavity. In the Figure 3c, we see that analogously
to the first case, the weakest entanglement appears between subsystem pairs 1−3. However,
this time it decreases slower with changing parameter γ/β and reaches almost zero at
the exceptional point. This drop is slower than in the two previous cases. Moreover, the
entanglement between subsystems 2 and 3 for γ ≤ 1.27β dominates almost for all range of
considered values of γ/β. This trend continues until the ratio γ/β reaches the exceptional
point where again N12 is greater than N23.

In Figure 2, we see too that for time t → ∞, all negativities describing the bipartite
entanglement converge to a constant value. Therefore, in Figure 4, we present the negativi-
ties calculated for the system’s steady-state solution for various ratios γ/β. In the case of a
steady-state solution, for very small values of γ/β, there are no bipartite entanglements
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generated. As the ratio γ/β increases, the entanglements start slowly to appear. The
entanglement 2−3 appears first, followed by the appearance of entanglement between 1−2.
When the ratio γ/β reaches 0.8 and further increases towards the phase transition point,
the entanglement between cavities 1 and 2 grows rapidly. At the same time, the negativity
N23 also increases but much slower than N12. What is interesting, when the value of γ/β is
close to the phase transition point, stable entanglements are generated in our system. We
do not observe entanglement between 1− 3 for steady-state solutions.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

 / 

0

0.2

0.4

0.6

0.8

1

N
ij

N
12

N
23
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Figure 4. Steady-state solutions for bipartite negativities Nij versus the value of the ratio
γ/β for ω = 5β.

In further considerations, we discuss the generation of three-mode entanglement. For
the analysis of the entanglement’s degree related to three cavities, we use the tripartite
negativity. The tripartite negativity can be defined as [28]

N123(ρ) =
3
√

N1−23N2−13N3−12, (6)

and the bipartite negativities can be written in the following form

Ni−jk = −2 ∑
n

σn(ρ
Ti ), (7)

where σn(ρTi ) are the negative eigenvalues of ρTi , which is the partial transpose of ρ with
respect to subsystem i, 〈ai, bjk|ρTi |ci, djk〉 = 〈ci, bjk|ρ|ai, djk〉, i = 1, 2, 3, and jk = 23, 13, 12.
The negativities Ni−jk describe the bipartite entanglements between subsystem i and the
other two subsystems j and k which are considered as a whole.

In Figure 5, we present the time evolution of negativities related to three-mode en-
tanglement for various initial states and different values of γ/β. Firstly, we consider the
case when, at the beginning of the time evolution of the system, only the passive cavity
is excited, while the other subsystems are in a vacuum state. We can see (in Figure 5a)
that when γ/β = 0.01, the time evolution of tripartite and all bipartite entanglements is
oscillating with a small portion of damping. The oscillation periods of the negativities
N1−23 and N3−12 are the same. Whereas the oscillation periods of N123 and N2−13 are
twice as short as those of the other two negativities. There are situations when all bipartite
entanglements (Ni−jk) disappear simultaneously. Consequently, the tripartite entanglement
of the system also disappears at the same time. The bipartite negativity N1−23 reaches the
maximal value first. Then, almost simultaneously with N1−23, N2−13 achieves its maximal
value. Subsequently, N123 increases to the maximum, and finally, N3−12 takes its maximal
value as well. The negativity N2−13 increases in the same way as N1−23 and decreases in
the same way with N3−12. This relation is reversed after each period of its oscillation. The
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negativity N2−13 increases and decreases in the same way as N3−12 and N1−23, respectively.
When γ = 0.8β, we can see that the bipartite entanglements between subsystems 1−23
and 2−13 appear firstly and simultaneously. Meanwhile, the other negativities are equal to
zero (see Figure 5b). As the evolution continues, we can observe very weak entanglement
between cavities 3−12, and thus, the tripartite negativity N123 also takes nonzero values.
Subsequently, we observe a rapid increase of all negativities. They reach their maximum
values and then decrease gradually to constant values. We also see that among all bipar-
tite entanglements, the entanglement between partitions 2−13 is the strongest, while the
maximal strengths of entanglements 1−23 and 3−12 are lower and equal to each other.
Moreover, when the tripartite entanglement is the strongest, the entanglement 2−13 is
also the strongest, contrary to entanglements 1−23 and 3−12. Additionally, although the
entanglement 3−12 appears last, it reaches its maximal value first. For a long-time limit
when the values of all negativities stabilize, the entanglements 3−12 and 2−13 are the
weakest and most powerful, respectively.

In the next case, the evolution of the system starts from the state ρ̂(t = 0) = |010〉〈010|,
where only the second subsystem (neutral cavity) is initially excited. In the Figure 5c,
we present the time evolution of negativities Ni−jk and N123 for γ/β = 0.01. We see
that all negativities change periodically, and their amplitudes decrease over time. The
oscillation periods of the negativities N1−23 and N3−12 are the same. Moreover, they are
twice longer than the oscillation periods of negativities N123 and N2−13. It should be
noted, that N1−23 and N3−12 do not only have the same period of changes but also evolve
approximately in the same way. The maximal value of N2−13 is always higher than other
negativities. We are not surprised that the tripartite entanglement is the strongest when all
bipartite entanglements Ni−jk are almost the same. Like in the previous case, the tripartite
entanglement periodically disappears. This disappearance is connected with a lack of
entanglement between subsystems. We note that N2−13 drops to zero when negativities
N1−23 and N3−12 take values close to their local maxima. When γ/β = 0.8 (Figure 5d),
in the beginning, tripartite and all bipartite entanglements appear simultaneously and
increase rapidly, contrary to the previous case (see Figure 5b). We see that all negativities
initially oscillate. After two periods of oscillations, they gradually decrease to reach
constant values. We see that the strongest entanglement appears between subsystems 2−13,
whereas the entanglement related to partition 3−12 is the smallest.

In the last case, at the beginning of the system’s evolution, the active cavity is excited
while the other subsystems are in a vacuum state. The result (in Figure 5e) shows that when
γ/β = 0.01, the time evolution of tripartite and all bipartite entanglements also change
periodically, and their amplitudes decrease in time. The negativities N1−23 and N3−12
oscillate with the same period. This period is twice as long as the oscillation period of
N123 and N2−13. At some moments, the tripartite and all bipartite entanglements (Ni− jk)
disappear simultaneously. The bipartite negativity N3−12 reaches its maximal value first.
Almost simultaneously with N3−12, the negativity N2−13 takes its maximal value. Next, the
N123 increases to the maximum, and at last, N1−23 takes its maximal value. The negativity
N2−13 increases in the same way as N3−12 and decreases in the same way with N1−23. This
relation is reversed after each period of its oscillation. The negativity N2−13 increases and
decreases in the same way as N1−23 and N3−12, respectively. The negativity N123 reaches its
maximal value when the bipartite negativities N1−23 and N3−12 are equal. When γ = 0.8β,
at the beginning of the system’s evolution, tripartite and all bipartite entanglements appear
simultaneously. All negativities increase rapidly to their maximal values. Among the
bipartite entanglements, the entanglement between 2− 13 is the strongest, while between
3− 12 is the weakest. Despite being the weakest, the bipartite entanglement 3− 12 achieves
the maximum first. Next, the entanglements between 1− 23 and 2− 13 take their maximal
values, respectively. For a long-time limit, all negativities do not change, and they take the
same values as in the two previous cases.
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Figure 5. The time evolution of bipartite (Ni−jk) and tripartite (Nijk) negativities: (a) ρ̂(t = 0) = |100〉〈100|, γ = 0.01β;
(b) ρ̂(t = 0) = |100〉〈100|, γ = 0.8β; (c) ρ̂(t = 0) = |010〉〈010|, γ = 0.01β; (d) ρ̂(t = 0) = |010〉〈010|, γ = 0.8β;
(e) ρ̂(t = 0) = |001〉〈001|, γ = 0.01β; (f) ρ̂(t = 0) = |001〉〈001|, γ = 0.8β.

From Figure 5, we can conclude that the maximal degree of tripartite and bipartite
entanglements depend on the value of the loss/gain parameter γ. Therefore, next, we
analyze the influence of the values of the ratio γ/β on the maximal degree of generated
entanglements (see Figure 6). In the first analyzed case, at the beginning of the system’s
evolution, the passive cavity is excited while the others are in a vacuum state. The result
(in Figure 6a) shows that when we increase the value of the loss/gain parameter, the
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strength of tripartite and all bipartite entanglements decline to the smallest value and then
gradually increase again. For very small γ, all maximal values of bipartite negativities
(Ni−jk) are close to unity, while the max N123 is slightly less. When we increase γ, the
maximal values of N123 and N3−12 decrease faster than N1−23 and N2−13. However, after
reaching their minima, the N123 and N3−12 increase more slowly than the others do when we
increase the value of the gain/loss parameter. We also see that the bipartite entanglement
between 1−23 is the strongest for the ratio γ/β less than 0.58. For the other values of
γ/β, the bipartite entanglement between 2−13 is the strongest. For the values of γ/β,
that is, close to the phase transition point, the maximal values of all negativities are
slightly decreasing.

In the next analyzed case, at the beginning of the time evolution of the system, only
the neutral cavity is excited. We can see (in Figure 6b) that for very small values of ratio
γ/β, all bipartite negativities Ni−jk are approximately equal to unity while the tripartite
negativity N123 is slightly smaller. When the value of the loss/gain parameter γ increases,
the strength of bipartite entanglements between 1−23 and 2−13 gradually decreases. The
tripartite entanglement and the bipartite entanglement between 3−12 initially decrease to
their minima and then gradually increase to a certain value, then slightly decrease again,
when the ratio γ/β is close to the phase transition point. For all values of γ/β in the
unbroken phase of PT -symmetry, the bipartite entanglement between 2−13 is always the
strongest, while the weakest one is the entanglement between 3−12.

In the last case, the active cavity will be excited, while the others will remain in a
vacuum state. The changes in the maximal values of bipartite and tripartite negativities
are illustrated in Figure 6c. We can see that when we increase the ratio of γ/β while
remaining in the unbroken phase of PT -symmetry, the tripartite entanglement and all
bipartite entanglements between subsystems initially decrease to their minima and then
increase again to their local maxima. After that, they slightly decrease and increase again.
These changes after reaching γ/β = 1 are quite small in comparison to the overall changes
of those functions. Although all entanglement measures differ in values, they follow the
same kind of shape, and thus they are closer to each other than in the first two scenarios.
For all ratios of γ/β in the unbroken phase, the bipartite entanglement between 2−13 is
always the strongest. Among all bipartite measures Ni−jk, the lowest value of entanglement
is achieved for subsystem pair 1−23. As the changes of negativities start to stabilize, the
entanglement between 3−12 becomes the weakest one.

In Figure 5a,c,e, the same as in Figure 2a,c,e, we see that the entanglements disappear
in time, and the strongest entanglements are generated at the initial time of evolution. This
decrease is related to the growth of the number of states that are populated. However, after
a sufficiently long time, the situation stabilizes, and we achieve an equilibrium between
the inflow and outflow of energy. Then the negativities values do not change with time,
and we obtain a stable entanglement. Such a stabilization, we can observe faster when the
gamma parameter reaches higher values. With the increase in the values of gamma, a larger
group of three-mode states is populated faster, so the maximal negativities are smaller,
and the generated entanglements are weaker (see Figures 2b,d,f and 5b,d,f). For small
values of the gain/loss parameter, the entanglements appear in the subspace defined by the
states |0〉 and |1〉. With an increase in the parameter gamma, the strength of entanglement
decreases what is related to the growth of the number of populated states. However, with
a further increase in the gamma, we observe the increase of maximal values of negativities
(see Figures 3 and 6). Such behavior is correlated with the appearance of entanglements
related to states |0〉 and |2〉, and the disappearance of entanglements related to states
|0〉 and |1〉.
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Figure 6. Maximal values of bipartite (Ni−jk) and tripartite (Nijk) negativities versus γ/β for ω = 5β and for various initial
states ρ̂(t = 0): (a) |100〉〈100|, (b) |010〉〈010|, (c) |001〉〈001|.

In Figure 7, we present the tripartite entanglement of our system’s steady-state solution
for various ratios of γ/β. Similarly to Figure 2, we notice that for small values of γ/β
and time t→ ∞, all bipartite (i− jk) entanglements and thus the tripartite entanglement
are not generated. As previously, when we increase the ratio γ/β, the entanglements
start to appear. However, in this case, all values of negativities become nonzero. We
see that by increasing the value of γ/β, we can produce stable entangled states even
when the ratio γ/β converges towards the phase transition point. Among all bipartite
entanglements (i− jk), the entanglement between 2−13 always remains the strongest, while
the entanglement between 3−12 is the weakest for all considered values of γ/β. Moreover,
the negativity N123 reaches a value of 0.4, which is higher than for the negativities Nij
presented in Figure 4.
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Figure 7. Steady-state solutions for the negativities (full tripartite N123 and bipartite Ni−jk) versus
the value of the ratio γ/β for ω = 5β.

4. Conclusions

In this paper, we have discussed a PT -symmetric system that consists of three optical
resonant elements coupled together. This so-called optical trimer composed of three
cavities characterized by the same resonant frequency formed a chain. The first and third
cavities were related to the loss and gain of energy, respectively. Moreover, the strength of
interaction between these cavities and the neutral cavity was set to be equal. For various
initial scenarios and parameters of the system, we investigated quantum correlations by
calculating bipartite and tripartite negativities as quantifiers of entanglement. To ensure
that we are in the PT -symmetric unbroken phase, we limited ourselves to parameters
obeying the relation γ <

√
2β. In our analysis, we have tuned the gain/loss parameter γ

to examine the generation of bipartite and tripartite entanglements, leaving the coupling
parameter β constant and equal to one. We distinguished three various initial states of the
system. Those initial states were situations when one of the three possible cavities was
excited, while the others remained in a vacuum state. In each such case, we examined the
impact of the ratio between the gain/loss parameter and the coupling parameter (γ/β) on
the bipartite and tripartite entanglements. In all analyzed scenarios, we have found that
the strength of bi- and tripartite entanglement not only strongly depends on the value of
γ/β but also on the initial state of the system. The time evolution of all negativities for all
initial states and small values of the ratio γ/β = 0.01 is periodical. The amplitudes of those
oscillations decrease over time. On the other hand, for the ratio γ/β = 0.8, the oscillations
disappear, and after some initial fluctuations, the evolutions of negativities converge fast
to constant values. We also calculated and presented, for all initial cases, the maximal
values of bipartite negativities concerning the parameter γ/β. We have noticed that the
entanglement between subsystems 1−3 for γ/β is significantly stronger in the second case,
which is when initially the neutral cavity is excited. Moreover, in the first two situations
when the passive or neutral cavities are excited, we have shown that the entanglement
between 1−2 is higher than between 2−3 for all permissible values of γ/β. This tendency
is completely reversed in the last case when the active cavity is excited. Subsequently, we
analyzed the evolution of tripartite entanglement for all three initial states and two values
of γ/β, namely, for γ/β = 0.01 and γ/β = 0.8. Similarly to the analysis for the bipartite
entanglements, we have noticed periodical oscillations with damping of the tripartite
entanglement over time, for γ/β = 0.01. Moreover, the highest tripartite entanglement can
be observed for the case when the neutral cavity is initially excited. In the case of γ/β = 0.8,
we see that again, the oscillations disappeared, and after initial fluctuations, the tripartite
negativities converge to constant values over time. Here, the highest value of tripartite
negativity was observed at the beginning of the time evolution for the neutral cavity.
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Finally, we analyzed the maximal values of tripartite negativity for the ratio of γ/β for the
three initial states. We have seen that again the highest tripartite entanglement is created
in the situation when the neutral cavity is initially excited. To investigate the behavior
of bi- and tripartite entanglements for unlimited time and various gain/loss parameter
γ, we analyzed the dependence of steady-state entanglements on the ratio γ/β. We have
realized that all bi- and tripartite entanglements are not generated for very small values of
γ/β. When we increase the value of γ/β, except for the slow rise of bipartite entanglement
between 1−3, all other bi- and tripartite entanglements begin to appear and increase their
strength quite rapidly. Even when the value of γ/β is close to the phase transition point,
bi- and tripartite entanglements are still generated. Finally, to investigate the behavior of
bipartite and tripartite entanglement in the context of various values of the ratio γ/β and
the long time limit, we have calculated the steady-state solutions. Importantly, it turns out
that for large enough ratios of γ/β, we can observe a quite strong entanglement. This is
an important result since we obtain the desired and strong entanglement after our system
stabilizes by applying a high enough value of γ. This observation refers to both bipartite
and tripartite entanglements.

Summarizing, we have shown that the entanglement generation in a physical system
consisting of three optical resonant elements coupled together strongly depends on the
ratio of gain and loss parameter γ and coupling parameter β. For higher values of this ratio,
the negativity values stabilize around lower but noticeable values. Most importantly, for
the ratio γ/β > 1.2, we can achieve a high degree of entanglement in steady-state solutions
for not only bipartite but also tripartite negativity.
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