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Abstract: A multiscale approach to discrete element modeling is presented. A distinctive feature of
the method is that each macroscopic discrete element has an associated atomic sample representing
the material’s atomic structure. The dynamics of the elements on macro and micro levels are described
by systems of ordinary differential equations, which are solved in a self-consistent manner. A full
cycle of multiscale simulations is applied to polycrystalline silicon. Macroscale elastic properties of
silicon were obtained only using data extracted from the quantum mechanical properties. The results
of computational experiments correspond well to the reference data.

Keywords: multiscale modeling; discrete element method; ODE system; atomic sample; molecu-
lar dynamics

1. Introduction

The desire to consider a wide range of space-time scales in physical systems study
leads to increased interest in multiscale modeling [1–4]. Discrete element methods (DEM)
are a powerful tool in this direction. Typically, methods of this type describe objects as a set
of closely packed interacting particles. The particles move according to classical dynamics
laws, and their motion can be described by a system of ordinary differential equations. The
application of DEM is possible at various scale levels. The potential for parallelization of
computations inherent in this family of methods makes it possible to have a high spatial-
temporal resolution by increasing the number of discrete elements. We should also note
that the method has the property to eliminate the shortcomings of the continuum models,
which is especially important when the medium’s continuity is violated. In the case of
the right choice of particle interaction potential and careful parameter tuning, such an
approach allows for simulating quite complex processes [5–7].

The most common method of this class is the molecular dynamics method. The system
is considered a set of interacting discrete elements (atoms, molecules), the dynamics of
which is described by the laws of classical mechanics. In this case, the parameters of the
interatomic potential can be identified from the data of ab initio (quantum mechanical)
calculations. Such an approach at the current level of computer technology makes it
possible to simulate the behavior of systems consisting of up to hundreds of millions of
structural elements, which corresponds to the nanometer size range (up to 1 µm). The use
of structural formations consisting of a large number of atoms or molecules as discrete
elements makes it possible to reach the mesoscopic level of describing systems. The critical
point here is the availability of information about the parameters of interaction between
elements. The coarse-grained methods are based on a generalization of the molecular
dynamics approach. Effective realizations have been proposed for various systems [8–13].
A comprehensive review of this class of methods can be found in [14]. One of the first
implementations of DEM, as applied to two-dimensional problems, is setting the interaction
mechanism by placing two virtual springs (longitudinal and transverse) between the
elements with their elasticity parameters. Thus, longitudinal and shear stresses in the
material are set depending on deformations. In this case, the parameters of elasticity can be
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estimated from the macroscopic response of the material to characteristic influences. The
method was implemented in the Particle Flow Code (PFC2D). Some effective approaches
have been developed using a combination of discrete elements and continuum mechanics
methods [15–19]. In [20,21], the cohesive discrete element method was presented where
a continuous medium is modeled by packed granular spheres, and cohesive interaction
between the spheres is described with beam elements. Another concept is laid on the basis
of cellular automata methods. This approach is based on the representation of materials as
a set of elements (cellular automata) that change their state at discrete times depending
on the state of the element and its neighbors at the previous time moment. The evolution
of a system of automata is determined by the rules of transition between states, which
gives an alternative to describing processes using differential equations. Movable cellular
automata [22] have the ability of elements to move in space, which makes it possible to
apply the method to fracture mechanics problems.

In our previous paper [23], a discrete element method was proposed that adapts
information on the microstructure of a material. The proposed method’s main feature is a
combination of discrete elements and associated atomic samples. For the atomic sample,
the molecular dynamics simulation is carried out to determine element properties. The
natural assumption is used that the tensors of stress and deformation are equal for the
discrete element and its atomic sample. This enables us to organize the information transfer
between the levels. Thus, no macroscopic material properties have to be known; all the
necessary information can be obtained by atomic sample simulation. In [23], the method
has been validated for materials with embedded-atom interatomic potentials.

This paper presents a full cycle of multiscale discrete-element modeling applied to
the analysis of materials with covalent bonds. The paper’s novelty lies in the fact that all
stages of multiscale modeling, including discrete-element modeling [23], are considered
in relation to polycrystalline materials with Tersoff interatomic potential. The first step of
multiscale modeling is fitting interatomic potential to quantum mechanical properties. It is
conducted using the quasi-Newton limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) optimization method. Gradients of the loss function are extracted using automatic
differentiation. The data obtained in this way (the interatomic potential parameters) make
it possible to proceed to model at the mesoscopic level. A polycrystalline object is simulated
using discrete elements with randomly oriented lattices. Differential equations describing
dynamics on macro and micro levels are solved in a self-consistent manner. As a result,
polycrystalline silicon’s elastic properties are obtained only using data extracted from
quantum mechanical information.

2. Materials and Methods

The discrete element method considers an object as an ensemble of n interacting
particles (discrete elements). Particle motion is described in terms of classical dynamics by
the system of ordinary differential equations:

mi
.
vi = Fi, (1)

.
ri = vi. (2)

Here, mi is a mass the i-th particle, ri a position vector, and Fi(t) a force acting on the
i-th particle. Typically, the force is equal to the sum of forces caused by the interaction with
the surrounding particles:

Fi = ∑n
j = 1
j 6= i

fij
(
rij
)

, (3)

where fij is a force with which the j-th particle acts on the i-th particle, rij = ri − rj.
In the present work, to integrate the system (1)–(2), we use the Verlet velocity method

of the second-order accuracy. This numerical scheme is symplectic and rather effective in
terms of accuracy and computational cost. According to the method, first, the coordinates
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of the particles are updated, then the forces acting on the particles are calculated, after
which the new particle velocities are determined from the average acceleration values over
the time interval:

rk+1
i = rk

i + τkvk
i +

τk
2

2mi

n
∑

j = 1
j 6= i

fij(rk
i − rk

j ),

vk+1
i = vk

i +
τk

2mi
(∑n

j = 1
j 6= i

fij(rk+1
i − rk+1

j ) + ∑n
i = 1
j 6= i

fij(rk
i − rk

j )).
(4)

Here, k is a time step number and τk is a time step value.
Note that since the algorithm contains an implicit element when calculating velocities

(the velocities on a new time layer are calculated from the acceleration (force) on a new
layer), it has a reasonable margin of stability.

In our multiscale method, we use differential Equations (1)–(2) at two scale levels—
atomic level and macro-element level. At the atomic level, the discrete elements are atoms
interacting with interatomic potential. At the macro-element level, the discrete elements
are tetrahedrons interacting by their faces. The dynamics of macro-elements is determined
by their vertex motion. The connection between the systems at different levels is based on
deformation and stress tensors. Here, we use a natural assumption that the tensors are the
same for macro-element and its atomic sample.

The first step of the multiscale approach is ab initio (quantum mechanical) modeling.
Ab initio methods allow for studying various properties of different materials, only requir-
ing knowledge about the atomic composition of studied materials. Since these methods are
computationally very costly, it is hard to implement them for systems with linear sizes of
more than a few nanometers. For our goal, it is principal that from the ab initio modeling,
we can get the unit cell size, cohesion energy, bulk modulus, and elastic constants of the
material. This information is used for the parametric identification of the interatomic
potential to carry out molecular dynamics modeling. In the present work, we consider the
Tersoff potential, which adequately reflects the specificity of covalent bonds. The details of
the identification are considered later in the paper.

When moving to the next macroscopic level, we represent the object as a set of
tetrahedral elements stiffly bound by their faces [23]. With every discrete element, we
associate an atomic sample (representative fragment of atomic structure). For materials
with a crystalline structure, the atomic sample is a representative (in terms of determining
element properties) fragment of crystalline lattice oriented in a certain direction. Figure
1 shows the object as a set of discrete macro-elements (Figure 1a) and the atomic sample
associated with the element (Figure 1b).

Symmetry 2021, 13, 219 3 of 11 
 

of the particles are updated, then the forces acting on the particles are calculated, after 
which the new particle velocities are determined from the average acceleration values 
over the time interval: 

𝐫ାଵ = 𝐫 + 𝜏𝐯 + 𝜏ଶ2𝑚  𝐟୧୨(𝐫 − 𝐫)
ୀଵஷ

, 
𝐯ାଵ = 𝐯୧୩ + ఛೖଶ (∑ 𝐟୧୨(𝐫ାଵ − 𝐫ାଵ)ୀଵஷ + ∑ 𝐟୧୨(𝐫 − 𝐫))ୀଵஷ . 

(4)

Here, k is a time step number and 𝜏 is a time step value. 
Note that since the algorithm contains an implicit element when calculating velocities 

(the velocities on a new time layer are calculated from the acceleration (force) on a new 
layer), it has a reasonable margin of stability. 

In our multiscale method, we use differential Equations (1)–(2) at two scale levels—
atomic level and macro-element level. At the atomic level, the discrete elements are atoms 
interacting with interatomic potential. At the macro-element level, the discrete elements 
are tetrahedrons interacting by their faces. The dynamics of macro-elements is determined 
by their vertex motion. The connection between the systems at different levels is based on 
deformation and stress tensors. Here, we use a natural assumption that the tensors are the 
same for macro-element and its atomic sample. 

The first step of the multiscale approach is ab initio (quantum mechanical) modeling. 
Ab initio methods allow for studying various properties of different materials, only re-
quiring knowledge about the atomic composition of studied materials. Since these meth-
ods are computationally very costly, it is hard to implement them for systems with linear 
sizes of more than a few nanometers. For our goal, it is principal that from the ab initio 
modeling, we can get the unit cell size, cohesion energy, bulk modulus, and elastic con-
stants of the material. This information is used for the parametric identification of the in-
teratomic potential to carry out molecular dynamics modeling. In the present work, we 
consider the Tersoff potential, which adequately reflects the specificity of covalent bonds. 
The details of the identification are considered later in the paper. 

When moving to the next macroscopic level, we represent the object as a set of tetra-
hedral elements stiffly bound by their faces [23]. With every discrete element, we associate 
an atomic sample (representative fragment of atomic structure). For materials with a crys-
talline structure, the atomic sample is a representative (in terms of determining element 
properties) fragment of crystalline lattice oriented in a certain direction. Figure 1 shows 
the object as a set of discrete macro-elements (Figure 1a) and the atomic sample associated 
with the element (Figure 1b). 

  
(a) (b) 

Figure 1. The modeled object as a set of discrete macro-elements (a) and the atomic sample associ-
ated with the element (b). 

Note that there is a huge difference in characteristic time and size between macro-
scopic discrete element (DE) and atomic sample (AS). Nevertheless, it is possible to 

Figure 1. The modeled object as a set of discrete macro-elements (a) and the atomic sample associated
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Note that there is a huge difference in characteristic time and size between macroscopic
discrete element (DE) and atomic sample (AS). Nevertheless, it is possible to organize the
information transfer between the levels. A detailed description can be found in [23]. We
use a natural assumption that the tensors of stress and deformation are the same for the
element DE and its atomic sample AS. Indeed, the AS associated with DE is a representative
fragment of the element, and the DE volume is large enough not to take boundary effects
into account. Thus, we can consider the DE properties to be entirely determined by the
corresponding properties of the associated AS.

Here, we provide basic steps of self-consistent macro- and micro-dynamics.

1. Starting from macro-element deformation, we calculate the DE deformation tensor:

De = (r1 − r0 | r2 − r0 | r3 − r0) · (r∗1 − r∗0 | r∗2 − r∗0 | r∗3 − r∗0)
−1, (5)

where r∗i are initial position vectors of element vertexes and ri are current position
vectors of vertexes.

2. Assuming that the atomic sample associated with the element undergoes the same
deformation as the element, we get the strain tensor for AS:

Da = De (6)

3. Having the deformation tensor, we can calculate new atom positions in the global
coordinate system:

Pg = Da ·Q · B · P, (7)

where B ∈ R3×3 is the matrix of AS basis vectors so that the AS is a parallelepiped
generated by these vectors, Q ∈ R3×3 is the lattice rotation matrix, P ∈ R3×N is the
matrix of atomic positions in local fractional coordinates, and N is the number of
atoms in AS. The obtained positions are used on the next step as initial conditions.

4. Atomic dynamics is simulated solving the system of ordinary differential Equations (1)–(2)
with numerical method (3). The system can be written in a matrix form:{ .

V = FM−1 = −∇E
(
Pg
)
M−1

.
Pg = V

(8)

where M ∈ RN×N is the diagonal matrix of atomic masses, V ∈ R3×N is the matrix of
atomic velocities, and E : R3×N → R is the potential energy function.

5. After the steady state is reached in the process of atomic dynamics simulation, we
calculate the stress tensor of AS:

Sa =
1

|Da ·Q·B|

(
−(V−V)M(V−V)

T
+ 1

2 ∑
i,j 6=i

rijf
T
ij

)
V = V·1N×1·11×N

N

(9)

Here, |Da ·Q · B| is the AS volume and
¯
V is the average atom velocity.

6. Assuming that the stress tensors of AS and DE are equal, we get the stress tensor for
the element

Se = Sa (10)
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7. Having the stress tensor Se, we can calculate the forces acting on every vertex of the
DE. Consider one face of the DE. The force flmk acting on the k-th vertex (k = 1,2,3) of
the m-th face of element l is calculated using the force acting on the face flm:

flmk = flm
almk
alm

flm = Se · nlm
nlm = 1

2
[
(rlm1 − rlm0)× (rlm2 − rlm0)

]
,

(11)

where nlm is the normal to face m of element l, alm is the face area, and almk is the
part of face area attributed to vertex k. Similarly, we assign masses to vertices. We
divide the element’s volume into four parts and distribute the element’s mass between
the vertexes according to the corresponding volumes. Summation over all elements
adjacent to the vertex gives the net force and effective mass of the vertex.

8. After forces acting on vertexes and vertex masses are determined, we calculate new
vertex positions using the system of differential Equations (1)–(2) for vertex dynamics
and numerical method (3).

9. Getting new vertex positions, we turn to step 1, and the computational process
continues.

It should be noted that the proposed approach is computationally expensive. A three-
dimensional model of an object requires a significant number of discrete elements, while
for each element, it is necessary to get the relaxation of the associated atomic sample by
molecular dynamics modeling. In this regard, the computations are parallelized on graphic
processors. The computational process suits well the architecture of graphic processors
since it consists of solving many not too large independent problems (molecular dynamics
modeling inside each atomic sample).

3. Results and Discussion

In [23], we validated the discrete element model on metals. Here, we consider a full
cycle of multiscale modeling as applied to materials with covalent bonds. In this case, the
interatomic interaction can be described with Tersoff potential, which adequately reflects
the specificity of covalent bonds. The Tersoff potential was proposed in 1988, and it has
been widely used in molecular dynamics [24]. For a system of atoms of a single type, it can
be written in the following form:

E =
1
2 ∑

i
∑
j 6=i

Vij, Vij = fC
(
rij
)(

fR
(
rij
)
+ bij fA

(
rij
))

,

fC(r) =


1, r < R− D,
1
2

(
1− sin

(
π
2

r−R
D

))
, R− D ≤ r < R + D,

0, R + D ≤ r,

fR(r) = Aexp(−λ1r), fA(r) = −Bexp(−λ2r), (12)

bij =
(

1 + βnςn
ij

)− 1
2n ,

ςij = ∑
k 6=i,j

fC(rik)g
(

θijk

)
exp

(
λm

3
(
rij − rik

)m
)

,

(θ) = γ

(
1 +

c2

d2 −
c2

d2 + (cos(θ)− cos(θ0))
2

)
,

Here, rij is the distance between atoms i and j and θijk is the bond angle between the ij
and ik bonds. This potential has 14 parameters, but R and D are always fixed before fitting
so that atoms interact only with the nearest neighbors. Additionally, m is generally fixed
and equal to 3, so effectively, there are only 11 parameters that can be used in the fitting.
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As an example, we consider polycrystalline silicon, the characteristics of which are
widely presented in the literature.

The potential parameters are identified to describe the elastic properties and cohesive
energy of a material reasonably well. The target properties are cohesive energy (Ec), bulk
modulus (B), elastic constants (C′, C11, C12, C44

0, C44), and unit cell size (a). Here, C44
0 is

the theoretical value obtained for C44 in the absence of internal displacements. All target
properties can be extracted from ab initio calculations; we do not dive into it but use some
already known values. Table 1 contains the values used [25]. The unit cell size for a given
parameter set is not directly computed, but instead, the loss function contains a derivative
of the cell energy with respect to the cell size, which is required to be zero at the actual
cell size so that the energy is minimized for the unit cell of appropriate size. All elastic
properties are considered equally important so that the chosen loss function is a weighted
root mean square error:

L =

√√√√ 1
∑ wi

(
wEc

(
Ec − E∗c

E∗c

)2
+ wgrad

(
∂E
∂a

∣∣∣∣
a=a∗

)2
+ ∑P∈{B,C′ ,C11,C12,C44,C0

44}

(
P− P∗

P∗

)2
)

(13)

Table 1. Physical properties of diamond silicon.

Experimental (Ab Initio) Values Calculated Properties

Ec [eV] −4.63 −4.63
B [GPa] 99 97
C’ [GPa] 51 51

C11 [GPa] 167 166
C12 [GPa] 65 63
C44

0 [GPa] 106 113
C44 [GPa] 81 78

All elastic properties can be derived from the potential as a second derivative of the
energy with respect to some deformation. For example, for C44

0, the deformation matrix
and resulting evaluation are as follows:

D =

 1 γ 0
0 1 0
0 0 1

; (14)

C0
44 =

1
Ω

d2E
dγ2

∣∣∣∣
γ=0

. (15)

Here, Ω is the volume per atom. The required second derivatives can be evaluated
numerically:

d2E
dγ2 =

E(D+)− 2Ec + E(D−)
γ2 (16)

After fitting, several parameter sets with the lowest loss function are checked by
molecular dynamics simulations for stability. A cube of 4 × 4 × 4 unit cells is modeled for
0.01 nanoseconds with four different boundary conditions: fully periodic in all directions,
periodic in the x- and y-directions but not z-, periodic only in the x-direction, and non-
periodic. The best stable parameters set is selected for further usage.

The optimization of the loss function is an important and rather complex problem.
Methods of parametric identification of the Tersoff potential parameters are considered
in [26,27]. One of the effective ways is using gradient methods based on automatic differen-
tiation of loss function. In our work, the parameters are found using the L-BFGS algorithm,
which requires the loss function gradient. Derivation of an analytical expression for the loss
function gradient is a tedious and error-prone process, whereas the numerical evaluation
of gradients using finite differences suffers from numerical inaccuracies. The automatic
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differentiation solves both of these problems; it is a technique for transforming an arbitrary
program that calculates some numerical values of a function into a program that calculates
numerical values of derivatives of that function with an accuracy close to that of a function
evaluation [28]. There are two main approaches to the implementation of automatic differ-
entiation: forward and reverse accumulation. In general, for a function, f: Rn→Rm, reverse
accumulation is preferable when n >> m. Here, we use forward accumulation because
the differentiation problem is rather modest, but for potentials with more parameters or
multicomponent systems, reverse accumulation can be chosen. Automatic differentiation
with forward accumulation can be implemented using the augmented algebra of real
numbers. Each computation result is replaced by a pair of numbers: the result itself and its
derivatives’ vector with respect to every variable. Then, every operation on such a pair is
implemented in a way to keep the values and derivatives consistent.

It has to be noted that the L-BFGS algorithm is able to find a local minimum of the
loss function, whereas the problem under consideration is multi-extremal. To solve this
problem, the search is performed multiple times from different random start points.

The results of the identification are presented in Tables 1 and 2. The target and calcu-
lated properties are given in Table 1; the identified parameter set (the result of optimization)
is shown in Table 2.

Table 2. Optimized parameters of the potential.

Parameter Value

A 3821.34
B 113.17
λ1 3.36252
λ2 1.27279
λ3 1.19417
β 0.132272
n 4.16334
γ 5.71477
c 9.69902
d 2.35646

cos(θ0) −0.40882
R 2.85
D 0.15

In Figure 2, we compare the discussed method with two other methods: the Nelder–
Mead method and the granular search method [29]. Convergence of the three methods
starting from the same point is presented. It can be seen that the discussed method
converges much faster and is less prone to long explorations of local minima.
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Having interatomic potential parameters, we can continue with discrete element
modeling. The first group of computational experiments is focused on modeling the
stress–strain state of materials. We solve the following problem: a polycrystalline silicon
sample is periodically continued in one direction and stretched in that direction with a
constant speed. We use a quasistatic approach; a few steps are carried out with the sample
deformation, and then a few steps are performed to stabilize the sample. Three experiments
were conducted with varying physical sizes and element sizes. In the first two experiments,
the object was composed of 384 elements; in the third experiment, the object was composed
of 3072 elements. Each element contained 64 atoms. The linear size of the object was
doubled in each experiment. Base lattice orientations are independently randomized in
each experiment. The stress-deformation and volume-deformation dependences were
obtained, which allow for calculating Young’s modulus and Poisson’s ratio. The reference
values of Young’s modulus for silicon are: crystal, 130 ÷ 188 GPa; polycrystal, 160 GPa.
Poisson’s ratio values for silicon are: crystal, 0.064 ÷ 0.28; polycrystal, 0.22 [30].

The experimental results show a good correspondence of the calculated stress and
volume change with linear estimation from Young’s modulus (Figure 3) and Poisson’s ratio
(Figure 4) that does not depend on the object size or the number of elements.

Symmetry 2021, 13, 219 8 of 11 
 

few steps are performed to stabilize the sample. Three experiments were conducted with var-
ying physical sizes and element sizes. In the first two experiments, the object was composed 
of 384 elements; in the third experiment, the object was composed of 3072 elements. Each ele-
ment contained 64 atoms. The linear size of the object was doubled in each experiment. Base 
lattice orientations are independently randomized in each experiment. The stress-deformation 
and volume-deformation dependences were obtained, which allow for calculating Young’s 
modulus and Poisson’s ratio. The reference values of Young’s modulus for silicon are: crystal, 
130 ÷ 188 GPa; polycrystal, 160 GPa. Poisson’s ratio values for silicon are: crystal, 0.064 ÷ 0.28; 
polycrystal, 0.22 [30]. 

The experimental results show a good correspondence of the calculated stress and 
volume change with linear estimation from Young’s modulus (Figure 3) and Poisson’s 
ratio (Figure 4) that does not depend on the object size or the number of elements. 

 
Figure 3. Comparison of the stress obtained from the model with that obtained from the linear 
elasticity theory. 

 
Figure 4. Comparison of the volume change obtained from the model with that obtained from the 
linear elasticity theory. 

In the second group of computational experiments, we simulate the dynamic pro-
cesses in materials. The number of discrete elements in all experiments was 3840, with an 
atomic sample size of 64 atoms. In the first experiment, the pressure wave propagation 
was calculated in a polycrystalline silicon plate under the action of impulse normal to the 
plate surface. The results at two moments are presented in Figure 5. The reference sound 
speed for this case is 8850 m/s. The sound wavefront corresponding to this value is shown 
in the figure with a vertical line. It can be seen that the calculated wave position agrees 
with the reference one. A similar picture can be observed in Figure 6, where we illustrate 

 0

 1x109

 2x109

 3x109

 4x109

 5x109

 6x109

 0  0.005  0.01  0.015  0.02  0.025  0.03

St
re

ss
 [P

a]

Relative elongation

Minimum stress
Maximum stress
Polysilicon stress

Small sample 1
Small sample 2

Big sample

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  0.005  0.01  0.015  0.02  0.025  0.03

Re
lat

ive
 ch

an
ge

 of
 vo

lum
e

Relative elongation

Minimum change
Maximum chenge
Polysilicon change

Small sample 1
Small sample 2

Big sample

Figure 3. Comparison of the stress obtained from the model with that obtained from the linear
elasticity theory.

Symmetry 2021, 13, 219 8 of 11 
 

few steps are performed to stabilize the sample. Three experiments were conducted with var-
ying physical sizes and element sizes. In the first two experiments, the object was composed 
of 384 elements; in the third experiment, the object was composed of 3072 elements. Each ele-
ment contained 64 atoms. The linear size of the object was doubled in each experiment. Base 
lattice orientations are independently randomized in each experiment. The stress-deformation 
and volume-deformation dependences were obtained, which allow for calculating Young’s 
modulus and Poisson’s ratio. The reference values of Young’s modulus for silicon are: crystal, 
130 ÷ 188 GPa; polycrystal, 160 GPa. Poisson’s ratio values for silicon are: crystal, 0.064 ÷ 0.28; 
polycrystal, 0.22 [30]. 

The experimental results show a good correspondence of the calculated stress and 
volume change with linear estimation from Young’s modulus (Figure 3) and Poisson’s 
ratio (Figure 4) that does not depend on the object size or the number of elements. 

 
Figure 3. Comparison of the stress obtained from the model with that obtained from the linear 
elasticity theory. 

 
Figure 4. Comparison of the volume change obtained from the model with that obtained from the 
linear elasticity theory. 

In the second group of computational experiments, we simulate the dynamic pro-
cesses in materials. The number of discrete elements in all experiments was 3840, with an 
atomic sample size of 64 atoms. In the first experiment, the pressure wave propagation 
was calculated in a polycrystalline silicon plate under the action of impulse normal to the 
plate surface. The results at two moments are presented in Figure 5. The reference sound 
speed for this case is 8850 m/s. The sound wavefront corresponding to this value is shown 
in the figure with a vertical line. It can be seen that the calculated wave position agrees 
with the reference one. A similar picture can be observed in Figure 6, where we illustrate 

 0

 1x109

 2x109

 3x109

 4x109

 5x109

 6x109

 0  0.005  0.01  0.015  0.02  0.025  0.03

St
re

ss
 [P

a]

Relative elongation

Minimum stress
Maximum stress
Polysilicon stress

Small sample 1
Small sample 2

Big sample

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  0.005  0.01  0.015  0.02  0.025  0.03

Re
lat

ive
 ch

an
ge

 of
 vo

lum
e

Relative elongation

Minimum change
Maximum chenge
Polysilicon change

Small sample 1
Small sample 2

Big sample

Figure 4. Comparison of the volume change obtained from the model with that obtained from the
linear elasticity theory.

In the second group of computational experiments, we simulate the dynamic processes
in materials. The number of discrete elements in all experiments was 3840, with an atomic
sample size of 64 atoms. In the first experiment, the pressure wave propagation was
calculated in a polycrystalline silicon plate under the action of impulse normal to the plate
surface. The results at two moments are presented in Figure 5. The reference sound speed
for this case is 8850 m/s. The sound wavefront corresponding to this value is shown in
the figure with a vertical line. It can be seen that the calculated wave position agrees with
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the reference one. A similar picture can be observed in Figure 6, where we illustrate the
wave propagation in a polycrystalline silicon rod affected by an instantaneous pulse in
the parallel direction. The reference value here is 8290 m/s. Shear wave propagation is
presented in Figure 7. Here, a polycrystalline silicon rod was impacted by a perpendicular
impulse. The reference value for this case is 5280 m/s. Again, we can see a good agreement
of calculated and reference data.
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Figure 5. Pressure wave propagation in a silicon plate. Velocity distribution at different times: (a) 5 ns; (b) 12.5 ns.
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Figure 6. Pressure wave propagation in a silicon rod. Velocity distribution at different times: (a) 5 ns; (b) 10 ns.
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Figure 7. Shear wave propagation in a silicon rod. Velocity distribution at different times: (a) 10 ns; (b) 15 ns.

4. Conclusions

A multiscale approach to discrete element modeling is presented. A distinctive
feature of the method is that each macroscopic discrete element has an associated atomic
sample representing the material’s atomic structure. The dynamics of the elements on
macro and micro levels are described by systems of ordinary differential equations, which
are solved in a self-consistent manner. A full cycle of multiscale simulation as applied
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to polycrystalline silicon is presented. The first step of multiscale modeling is fitting
interatomic potential to quantum mechanical properties. It is conducted using the quasi-
Newton L-BFGS optimization method. Gradients of the loss function are extracted using
automatic differentiation. In the next stage, a polycrystalline object is simulated using
discrete elements with randomly oriented lattices. Macroscale elastic properties of silicon
were obtained only using data extracted from quantum mechanical information. The
results of computational experiments are in good agreement with the reference data.

Author Contributions: Methodology, software, investigation, A.A.Z.; conceptualization, methodol-
ogy, supervision, K.K.A.; methodology, investigation, validation, D.L.R. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Higher Education of the Russian
Federation, project No 075-15-2020-799.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tadmor, E.B.; Miller, R.E. Modeling Materials. Continuum, Atomistic and Multiscale Techniques; Cambridge University Press:

Cambridge, UK, 2014.
2. Abgaryan, K.K. Mnogomashtabnoe Modelirovanie v Zadachah Strukturnogo Materialovedeniya [Multiscale Modeling in Material Science

Problems]; MAKS Press: Moscow, Russia, 2017. (In Russian)
3. Steinhauser, M.O. Computational Multiscale Modeling of Fluids and Solids: Theory and Applications; Springer: Berlin/Heidelberg,

Germany, 2008.
4. Li, Y.; Abberton, B.C.; Kröger, M.; Liu, W.K. Challenges in multiscale modeling of polymer dynamics. Polymers 2013, 5, 751–832.

[CrossRef]
5. Abgaryan, K.K.; Eliseev, S.V.; Zhuravlev, A.A.; Reviznikov, D.L. High-speed penetration. Discrete-element simulation and

experiments. Comput. Res. Model. 2017, 9, 937–944. [CrossRef]
6. Steinhauser, M.O.; Watson, E. Discrete Particle Methods for Simulating Quasi-Static Load and Hypervelocity Impact Phenomena.

Int. J. Comput. Methods 2019, 16, 1740009. [CrossRef]
7. Tan, Y.; Yang, D.; Sheng, Y. Discrete element method (DEM) modeling of fracture and damage in the machining process of

polycrystalline SiC. J. Eur. Ceram. Soc. 2009, 29, 1029–1037. [CrossRef]
8. Kempfer, K.; Devémy, J.; Dequidt, A.; Couty, M.; Malfreyt, P. Development of Coarse-Grained Models for Polymers by Trajectory

Matching. ACS Omega 2019, 4, 5955–5967. [CrossRef]
9. Noid, W.G.; Chu, J.W.; Ayton, G.S.; Krishna, V.; Izvekov, S.; Voth, G.A. The multiscale coarse-graining method. I. A rigorous

bridge between atomistic and coarse-grained models. J. Chem. Phys. 2008, 128, 244114. [CrossRef]
10. Izvekov, S.; Voth, G.A. A multiscale coarse-graining method for biomolecular systems. J. Phys. Chem. B 2005, 109, 2469–2473.
11. Larini, L.; Lu, L.; Voth, G.A. The multiscale coarse-graining method. VI: Implementation of three-body coarse-grained potentials.

J. Chem. Phys. 2010, 132, 164107. [CrossRef]
12. Xiong, L.; Chen, Y. Coarse-grained simulations of single-crystal silicon. Model. Simul. Mater. Sci. Eng. 2009, 17, 035002:1–035002:17.

[CrossRef]
13. Xiong, L.; Chen, Y. Multiscale modeling and simulation of single-crystal MgO through an atomistic field theory. Int. J. Solids

Struct. 2009, 46, 1448–1455.
14. Chen, Y.; Zimmerman, J.; Krivtsov, A.; McDowell, D.L. Assessment of atomistic coarse-graining methods. Int. J. Eng. Sci. 2011, 49,

1337–1349. [CrossRef]
15. Argilaga, A.; Desrues, J.; Dal Pont, S.; Combe, G.; Caillerie, D. FEM×DEM multiscale modeling: Model performance enhancement

from Newton strategy to element loop parallelization. Int. J. Numer. Methods Eng. 2018, 114, 47–65. [CrossRef]
16. Ferretti, E. DECM: A Discrete Element for Multiscale Modelingof Composite Materials Using the Cell Method. Materials 2020,

13, 880. [CrossRef] [PubMed]
17. Ferretti, E. Multiscale Modeling of Composite Materials with DECM Approach: Shape Effect of Inclusions. Int. J. Mech. 2019, 13,

114–128.
18. Groot, R.D.; Warren, P.B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem.

Phys. 1997, 107, 4423–4435.
19. Moeendarbary, E.; Ng, T.Y.; Zangeneh, M. Dissipative particle dynamics: Introduction, methodology and complex

fluidapplications—A review. Int. J. Appl. Mech. 2009, 1, 737–763. [CrossRef]

http://doi.org/10.3390/polym5020751
http://doi.org/10.20537/2076-7633-2017-9-6-937-944
http://doi.org/10.1142/S0219876217400096
http://doi.org/10.1016/j.jeurceramsoc.2008.07.060
http://doi.org/10.1021/acsomega.9b00144
http://doi.org/10.1063/1.2938860
http://doi.org/10.1063/1.3394863
http://doi.org/10.1088/0965-0393/17/3/035002
http://doi.org/10.1016/j.ijengsci.2011.03.018
http://doi.org/10.1002/nme.5732
http://doi.org/10.3390/ma13040880
http://www.ncbi.nlm.nih.gov/pubmed/32079086
http://doi.org/10.1142/S1758825109000381


Symmetry 2021, 13, 219 11 of 11

20. Leclerc, W. Discrete element method to simulate the elastic behavior of 3D heterogeneous continuous media. Int. J. Solids Struct.
2017, 121, 86–102. [CrossRef]

21. Leclerc, W.; Haddad, H.; Guessasma, M. On the suitability of a Discrete Element Method to simulate cracks initiation and
propagation in heterogeneous media. Int. J. Solids Struct. 2017, 108, 98–114. [CrossRef]

22. Psakhie, S.; Shilko, E.; Smolin, A.; Astafurov, S.; Ovcharenko, V. Development of a formalism of movable cellular automaton
method for numerical modeling of fracture of heterogeneous elastic-plastic materials. Frat. Integrita Strutt. 2013, 24, 26–59.
[CrossRef]

23. Zhuravlev, A.A.; Abgaryan, K.K.; Reviznikov, D.L. Discrete element method adopting microstructure information. In Advances
in Theory and Practice of Computational Mechanics: Proceedings of the 21st International Conference on Computational Mechanics and
Modern Applied Software Systems; Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L., Eds.; Smart Innovation, Systems and
Technologies; Springer: Singapore, 2020; Volume 173, pp. 225–237.

24. Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 1988, 37, 6991–7000. [CrossRef]
[PubMed]

25. Kumagai, T.; Izumi, S.; Hara, S.; Sakai, S. Development of bond-order potentials that can reproduce the elastic constants and
melting point of silicon for classical molecular dynamics simulation. Comput. Mater. Sci. 2007, 39, 457–464. [CrossRef]

26. Abgaryan, K.K.; Posypkin, M.A. Optimization methods as applied to parametric identification of interatomic potentials. Comput.
Math. Math. Phys. 2014, 54, 1929–1935. [CrossRef]

27. Abgaryan, K.K.; Grevtsev, A.V. Parametric Identification of Tersoff Potential for Two-Component Materials. In Advances in
Theory and Practice of Computational Mechanics: Proceedings of the 21st International Conference on Computational Mechanics and
Modern Applied Software Systems; Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L., Eds.; Smart Innovation, Systems and
Technologies; Springer: Singapore, 2020; Volume 173, pp. 257–268.

28. Bartholomew-Biggs, M.; Brown, S.; Christianson, B.; Dixon, L. Automatic differentiation of algorithms. J. Comput. Appl. Math.
2000, 124, 171–190. [CrossRef]

29. Powell, D. Elasticity, Lattice Dynamics and Parameterisation Techniques for the Tersoff Potential Applied to Elemental and Type
III-V Semiconductors. Diploma Thesis, The University of Sheffield, Sheffield, UK, October 2006.

30. Hopcroft, M.A.; Nix, W.D.; Kenny, T.W. What is the Young’s Modulus of Silicon? J. Microelectromech. Syst. 2010, 19, 229–238.
[CrossRef]

http://doi.org/10.1016/j.ijsolstr.2017.05.018
http://doi.org/10.1016/j.ijsolstr.2016.11.015
http://doi.org/10.3221/IGF-ESIS.24.04
http://doi.org/10.1103/PhysRevB.37.6991
http://www.ncbi.nlm.nih.gov/pubmed/9943969
http://doi.org/10.1016/j.commatsci.2006.07.013
http://doi.org/10.1134/S0965542514120021
http://doi.org/10.1016/S0377-0427(00)00422-2
http://doi.org/10.1109/JMEMS.2009.2039697

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Conclusions 
	References

