
symmetryS S

Article

A Coordinated Air Defense Learning System Based on
Immunized Classifier Systems

Sulemana Nantogma, Yang Xu * and Weizhi Ran

����������
�������

Citation: Nantogma, S.; Xu, Y.; Ran,

W. A Coordinated Air Defense

Learning System Based on

Immunized Classifier Systems.

Symmetry 2021, 13, 271.

https://doi.org/10.3390/sym13020271

Academic Editor: Kóczy László

Received: 15 January 2021

Accepted: 28 January 2021

Published: 5 February 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Computer Science and Engineering, University of Electronic Science and Technology of China,
Chengdu 611731, China; 201814080012@std.uestc.edu.cn (S.N.); 202012081713@std.uestc.edu.cn (W.R.)
* Correspondence: xuyang@uestc.edu.cn; Tel.: +86-189-809-478-76

Abstract: Autonomous (unmanned) combat systems will become an integral part of modern defense
systems. However, limited operational capabilities, the need for coordination, and dynamic battlefield
environments with the requirement of timeless in decision-making are peculiar difficulties to be
solved in order to realize intelligent systems control. In this paper, we explore the application of
Learning Classifier System and Artificial Immune models for coordinated self-learning air defense
systems. In particular, this paper presents a scheme that implements an autonomous cooperative
threat evaluation and weapon assignment learning approach. Taking into account uncertainties
in a successful interception, target characteristics, weapon type and characteristics, closed-loop
coordinated behaviors, we adopt a hierarchical multi-agent approach to coordinate multiple combat
platforms to achieve optimal performance. Based on the combined strengths of learning classifier
system and artificial immune-based algorithms, the proposed scheme consists of two categories of
agents; a strategy generation agent inspired by learning classifier system, and strategy coordination
inspired by Artificial Immune System mechanisms. An experiment in a realistic environment shows
that the adopted hybrid approach can be used to learn weapon-target assignment for multiple
unmanned combat systems to successfully defend against coordinated attacks. The presented
results show the potential for hybrid approaches for an intelligent system enabling adaptable and
collaborative systems.

Keywords: air defense system; artificial immune system; command and control; learning classifier
system; multi-agent systems; weapon-target assignment

1. Introduction

In recent years, the challenges arising from the deployment of robotic systems in
defense and security applications have been addressed from several different perspectives.
As a typical multi-agent system, the complexity does not only emanate from the dynamics
of the application domain, but also the limited and uncertainty in perceived information.
In an attempt to handle these uncertainties, the research community has proposed several
theories [1–3].

In the domains of defense application, unmanned combat platforms may be deployed
to provide defense against targets and coordinated attacks by enemy adversaries. In these
regards, an important functionality required by the multi-agent system is the threat evalua-
tion and weapon assignment to targets that pose threats to its survival and/or the assets
being protected. The threat evaluation and weapon assignment functionality is one of
the fundamental problems in Command and Control Systems [4]. Threat evaluation and
weapon assignment includes the evaluation and assignment of defensive weapons to inter-
cept detected hostile threats with the primary objective of minimizing the total expected
survivability of the threat [5,6]. Threat evaluation and weapon assignment functionalities
are a fundamental part of achieving successful outcomes in naval combat scenarios.

To assist with the ever more complex and rapidly changing combat environment, com-
bat systems require access to real-time adaptable control systems that can handle uncertain
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information to provide intelligent decision-making when executing combat tasks. Research
work in this area seeks to realize the effective utilization of combat resources by minimizing
defensive assets loss, amount of resource utilized during interception, and maximizing the
effective kill probability while operating within the multiple constraints of the operating
platforms [5,7–10]. Effective combat systems in a multi-agent setting must be able to solve
conflicts of interest and optimize resource allocation.

Conflicts of interest and optimized resource allocation in general have received ex-
tensive attention in recent decades through the application of various approaches [11–13].
However, the limited operational capabilities and sophisticated battlefield environments
with the requirement of timeless in decision-making are peculiar difficulties to be solved
by Unmanned Combat Systems in modern battles. The dynamic and sophistication in
missions and situations encountered in the battlefield makes it challenging to design
intelligent and self-adaptive decision-making agents that are robust and fit for the battle-
field since the urgency associated with combat decision-making has many consequences.
Hence, the need to design methods and models to enable self-learning and coordinated
decision-making that is capable of adapting online by employing learning algorithms and
simulation-based training.

Multiple unmanned combat systems performing air defense operation is a typical
multi-agent system. In these type of missions, multiple entities are connected in a network,
with each system capable of computing and communicating autonomously and concur-
rently. Decision-making is based on the agents’ knowledge of the environment and various
entities in their locality of the network. The actions of individual agents in a multi-agent
system are suppressed or stimulated during the lifetime of the agents. This suppression
and stimulation are key characteristics of the artificial immune system.

The Artificial Immune System is an example of multi-agent and decentralized infor-
mation processing system that is capable of learning and remembering [14]. The artificial
immune system is based on working mechanisms exhibited by the Biological Immune
System. The complexity exhibited by the immune system has inspired various theories and
models which represent the different aspects proposed under the artificial Immune system
such as the immune network [15], Clonal Selection [16], Negative Selection, and Danger
Theory [17]. Several applications have been demonstrated based on these theories [18].
Despite the distributed nature of the immune system, their many engineering implementa-
tions are centralized.

On the other hand, the learning classifier system is one of the machine learning
techniques introduced by Holland in 1976. It combines evolution and learning in an
integrated way. A Learning classifier system evolves a group of IF− THEN rules called
classifiers [19] to find a suitable response of a learning system (agent) to incoming sensory
inputs. As opposed to other learning approaches such as neural networks, rules evolved by
a learning classifier system and its variants are easily understandable and general enough
for a wide range of learning tasks such as traffic control problems [20,21], multi-agent
control problems [22–25], and robotic control [26–28] etc. In the learning classifier system
approach, agents acquire appropriate strategies while interacting with an environment
by updating their classifier sets. The adaptation of classifiers is mostly done through
evolutionary computing based on genetic algorithms.

In this paper, a hybrid of artificial immune and learning classifier system is utilized to
design a self-learning system that implements autonomous cooperative threat evaluation
and weapon assignment learning. Based on the combined strengths of the two approaches,
we seek to realize an intelligent and adaptive system for a team of combat surface platforms
to successfully perform air defense weapon-target allocation against a coordinated attack of
heterogeneous targets in a realistic maritime environment. By considering the air defense
operation from a force coordination perspective, heterogeneous distributed combat systems
are required to make effective weapon-target assignment decisions to achieve interception
of fast and multi-batch targets. To meet the requirement of real-time decision-making,
combat systems are controlled by intelligent agents to coordinate and engage threats in
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stages based on the observed outcome of previous engagements. Threat evaluation and
weapon assignment is done in a distributed manner to reduce communication complexity.
Each agent only communicates and receives initial action strategies it generates with its
neighbors. This approach can increase the adaptability and success rate of the overall
mission. An experiment in a realistic environment shows that the method can be utilized
to learn weapon-target assignment for groups of combat platforms to successfully defend
against coordinated attacks. This research presents the following general contributions:

1. We investigate and demonstrate the applicability of a hybrid artificial immune and
Learning Classifiers System for realizing air defense intelligence.

2. A hierarchical self-learning scheme for multiple unmanned combat systems air de-
fense weapon-target allocation that integrates artificial Immune based algorithms
with learning classifier system is presented.

3. We propose an approach to facilitate learning by applying a negative selection concept
to filter out and condense situations from individual decision units.

The rest of this paper is presented as follows. In Section 2, the related work of this study
and a brief background of the learning classifier system and the artificial immune system
algorithms are discussed briefly. In Section 3, a description, analysis, and requirement of
the air defense system are described and the air defense problem formulated. Based on this
analysis and requirement, the framework allowing the multiple unmanned combat systems
to learn an air defense strategy using artificial Immune system and learning classifier
system is presented in Section 4. Having presented the framework for the autonomous
air defense strategy learning, experimental results in a realistic combat environment are
presented in Section 5. Finally, we present our concluding remarks by summarizing our
contribution and experimental results.

2. Background and Related Work

In this section, we first present some related works in unmanned combat vehicles
autonomous decision-making and learning approaches. Next, the biological principles
of the artificial immune system that are relevant to this work are presented. Finally,
the background knowledge of learning classifier system and it‘s working mechanism
is presented.

2.1. Related Work

It is expected that unmanned combat systems such as unmanned combat aerial ve-
hicles, unmanned combat surface vehicles, unmanned combat ground vehicles, etc., will
be deployed in diverse missions in the near future. However, the insufficient and noisy
information available for decision-making and control, simultaneous control variables,
several conflicting objectives toppled with a dynamic and complex operating environment
presents a challenge.

Several algorithms and approaches have been applied to realize control systems that
enable autonomous systems to execute complex missions [29–35]. For instance, an au-
tonomous decision-making for unmanned combat aerial vehicles (UCAVs) using genetic
fuzzy trees is presented by authors in [29]. The proposed system shows the capability of
obtaining strategies that are robust, aggressive and responsive against opponents. In [30],
an intelligent air combat learning system based on the learning dynamics of the human
brain is designed and its strategy acquisition without prior rules is demonstrated. The au-
thors in [34] used deep q-neural networks to obtain combat strategies in an attack-defense
pursuit-warfare of multiple UCAVs in a simplified environment. Alpha C2, an intelligent
Air Defense Commander operations using a deep reinforcement learning framework was
presented in [10]. The proposed system makes combat decision independent of human
decision-making. A multi-agent-based training system for USVs was presented in [35]
and a combat task for combat USVs was used to evaluate the system performance. Other
methods such as optimizations and game theoretic approaches have been reported [31–33].
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This work contributes to these body of literature by hybridising two known control and
decision-making approaches; Learning Classifier Systems and Artificial Immune Systems.

2.2. Learning Classifier Systems

In addition to the different variations proposed since its first introduction by Holland,
learning classifier systems have witnessed some improvement and real-world applications
in recent years [36–41]. One of the most main-stream and widely applied learning classifier
systems is the extended classifier system [42]. In the extended classifier system, classifiers
that always receive the same reward are sort after. As in a standard learning classifier
system, the extended classifier system consists of three main components; Performance,
Reinforcement, and Discovery components.

P(ai) =
Σclk∈[M]|ai

clk.p× clk.F
Σcll∈[M]|ai

cll .F
(1)

In the Performance Component, actions are selected and executed. To do this,
a matched set [M] of classifiers that match the current input messages in a population [P]
are formed and the acquisition reward for each action ai is calculated to obtain a prediction
array P(ai) using Equation (1). An action inferred from the prediction array is selected
and performed in the environment. Meanwhile, classifiers in P(ai) that have the selected
action are stored in an action set [A]. After the execution of the selected action, execution is
passed on to the Reinforcement component.

In the Reinforcement Component, the parameters of the classifiers in [M] are updated.
These parameters include the prediction p, the error ε which is the difference between the
reward received R and classifier prediction cl.p and the fitness of classifiers. To update the
p, the reward received from the environment is used as shown in Equation (2).

cl.p = cl.p + β(R− cl.p); (2)

where β is the learning rate. Consequently, the prediction error, ε is updated using Equation (3)

cl.ε = cl.ε + β(|R− cl.p| − cl.ε); (3)

cl.F = cl.F + β(λ̂(cl)− cl.F); (4)

λ(cl) =
{

1 i f ε < ε0
α( ε

ε0
)−v otherwise ; (5)

λ̂ =
cl.n× λcl

σclb∈[A]λ(b)× b.n (6)

On the other hand, the fitness of a classifier is updated based on its accuracy λ of the
classifier cl as represented in Equation (4), where λ̂ is the relative accuracy of the classifier.
And λ̂ is computed using Equation (6) by first computing the accuracy, λ of the classifier
with Equation (5). In Equation (5), ε0 is an accuracy criterion constant. A classifier cl is
deemed accurate when cl.ε is less than ε0. The variables α and v are used to control the
rate of reduction of accuracy.

Finally, the Discovery component applies Genetic Algorithms (GA) to generate new
rules. This is usually done by selecting two parents from [A] using a selection probability to
produce new offspring through a crossover process. The new off-springs further undergo
some mutation with a probability before they are added back to [P]. To keep the population
fixed, classifiers with lower fitness are deleted if the number of classifiers in [P] exceeds a
certain value. A subsumption process can be applied to replace classifiers whose condition
parts are included in more accurate and experienced classifiers.

A learning classifier system largely employs genetic algorithm for rules discovery. Ge-
netic Algorithm is a gradient-free and parallel optimization algorithms. Genetic Algorithm
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searches for global optimum using performance criteria for evaluation and population
of possible solutions. Due to its ability to handle complex and irregular solution spaces,
various difficult optimization problems have been studied with genetic algorithm. Gener-
ally, in a genetic algorithm, parameters of a possible solution are encoded as chromosomes
which are manipulated using genetic operators. In its simplest form, selection, crossover,
and mutation are the main operators applied in a genetic algorithm.

During Selection operation, higher fitted chromosomes in the population are selected
for reproduction. Thus, the fitter a chromosome, the more chances for it to be selected
to reproduce.

Crossover on the other hand, enables the creation of new offspring. By biologically
mimicking recombination between two single chromosome organisms, this process leads
to the exchange of sub-sequences between two chromosomes to create two offspring.

Lastly, Mutation operator changes the values of genes in the chromosome. In the case
of binary encoded chromosomes, some of the bits are randomly flipped. Mutation can
occur on any of the genes of the chromosome. In this paper, genetic algorithm is applied
as in standard learning classifier system for rules discovery at the strategy generation
level while the clonal selection and immune network theory are applied at the strategy
coordination level.

2.3. Artificial Immune System

The domain of artificial immune system involves the study and application of various
computational techniques based on the biological immune system [43]. The biological
immune system provides defense mechanisms that protect a host organism against harmful
foreign agents such as viruses and bacteria. The two main biological defense mechanisms
influencing each other include the Innate Immunity and the Adaptive Immunity that
utilizes a set of cells referred to as T-cell to recognize harmful foreign agents (antigens) and
B-cells to eliminate these harmful foreign agents. The acquired immune system located
in the vertebrates of the organism retains a memory of encountered exposures which is
recalled when reinfection occurs to cure the infection.

The dynamism exhibited by the biological immune system has inspired various
theories and models which represent the different aspects proposed under the artificial
Immune system such as the Immune Network [15], Clonal Selection [16], and the Danger
Theory [17]. These under-listed theories which are relevant to our proposed approach are
explained below.

2.3.1. Clonal Selection

The Clonal Selection Based Algorithms are inspired by the working mechanisms
of antigen-antibody recognition, binding, cell propagation, and separation into memory
cell [16]. The clonal selection algorithm, CLONALG [44] based on clonal selection and
affinity maturation principles with engineering applications are one such algorithm. Ac-
cording to the clonal selection theory, the presence of affinity between stimulated antigen’s
epitope and B-cell receptors causes the B-cells to divide. These divided cells then undergo
maturity to become plasma cells that secrete antibodies. Subsequently, the Antibodies with
higher affinities undergo reproduction through hyper-mutation of B-cells. Some matching
B-cells are retained by the Immune System. The adaptation feature emanates from the
mechanism of building up of concentrations of the B-cells and the diversity in mutation of
the cells in the bone marrow. The interaction in the clonal selection theory is between the
antigens and the antibodies only.

2.3.2. Danger Theory

Among the mechanisms that inspire the immune system theories is its ability to
identify events that signify danger and those that do not. The concept of responding to
these harmful events that cause damage form the hypothesis of the danger theory [17].
The idea of danger theory is that the immune systems does not just respond to foreign
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antigens but harmful ones. Which introduces the concept of discrimination on which
non-self/antigens to respond to. Hence, the immune system chooses to respond to danger
instead. Danger in this case, is measured by cells’ damage, indicated by distress signals
emanating from unnatural deaths of cell. These danger signals essentially establish a
danger zone. Consequently, only B-cells that match antigens within this danger zone are
stimulated and undergo the clonal expansion process [45].

Similarly, in an immunized air defense system, determining which threat to prioritize
is key to a successful defense. Since defense systems employ other mechanisms such
as jamming, weapon assignment decision should be made taking into concentration the
threatening level of the target. For instance, successfully jammed weapons should not be
intercepted by the defense system.

2.3.3. Immune Network Concepts

The network theory of the immune system proposed by Jerne in [15] presents a
generic view of the working mechanism of the biological immune system. It is premised
on the concept that the immune system is constructed as a large-scale closed system
of lymphocytes through mutual interaction between different species of lymphocytes.
The interaction of cells happens regardless of the presents of harmful foreign agents or
not. Jerne’s theory stipulates that, the antibody of an immune cell possess paratope and
idiotope. The idiotope of one antibody can be recognized by the paratope of another
antibody with or without the presence of an antigen that posses an epitope (analogous to
an idiotope). This recognition and interaction results in a network that is dynamic and
leads to stimulation and suppression. The recognised antibody is suppressed while the
recognizer antibody is simulated. This process of antibodies being able to recognize each
other drives the adoption of this theory to heterogeneous robotic applications.

3. Air Defense System Model

In this paper, the problem of threat evaluation and weapon assignment decision-
making for air defense operations is considered. In particular, this work considers the
problem where a team of unmanned combat systems is deployed to protect a high-value
target or contested region. The group consists of a heterogeneous set of unmanned combat
systems with different capabilities and multiple types of air-to-surface weapon systems.
In this scenario, high valued asset is to be protected from enemy air units trying to pen-
etrate the defense area and destroy the defended asset. This problem is challenging as
the characteristics of the scenario can scale to an unlimited number of stages based on
the following.

• The number of detected targets at the decision time.
• The types of targets (attackers),
• The weapon capability vector of attackers,
• The number of air defense platforms,
• The weapon capability vector of defenders
• The state of high valued assets being protected, etc.

In all the different stages that the mission can be modified, the objective is to destroy
enemy targets and protect the asset from being destroyed by enemy units. The objective is
in conflict with the enemy targets who seek to penetrate the defense area. Hence, an efficient
threat evaluation and weapon assignment system is required by both sides to achieve their
mission objectives. For every detected target, the control system should make its decision
based on the following.

• The defense system evaluation of the threat.
• The high valued asset state if any.
• Weapon capability and state of the unit.
• Available weapons and teammates.
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Taking these into consideration, the control system decides on whether to deploy a weapon
against the threat or not. If yes,

• the type of weapon to use against the target and
• quantity to be fired.

Formally, at a certain time T, the multi-agent system ag detects N targets H which can
be a weapon (e.g., missile) or hostile flying unit. Meanwhile, each agent has C categories
of weapons. Each category Cp has j quantity of ammunition, Cp = {cp1, cp2, ...cpj} to
intercept targets at different ranges and efficiency. Here, the objective is to survive the
attack with minimal loss and cost of resource utilization by maximizing targets being
destroyed while minimizing the cost of operations in other to be able to defend against
subsequent engagements. Hence, the objective can be formulated as:

Ob =


min ∑

H′(t)
j=1 ∑C

i=1 βiqijδij

max ∑
H′(t)
j=1 vj(1−∏C

i=1(1− pij)
δij(s))

(7)

1. W is the total remaining number of employable weapons of the combat platform.
i.e., weapon that can be used against the contact by any member of the group.

2. H′ is the remaining number of unassigned detected targets
3. δij is the minimum delay before weapon i can be deployed against target j based on

ready time and current allocation of the weapon of a unit.
4. qij is the quantity of ammunition of weapon of type i allocated to target j,
5. βi represents the unit cost of the ammunition of weapon i
6. vj means the threat value of target j
7. pij is the weapon kill probability

In this mission, the two main problems to be solved are: action strategy selection and
cooperation. Action strategy selection in this case, involves deciding the type of weapon to
deploy, the salvo or number of weapons. Cooperation is the coordination of the multi-agent
system so that the assignment is distributed as much as possible among several agents to
minimize the time between target detection and interception.

4. Approach

In this section, we present the approach and scheme adopted in this paper to realize a
robust control system. The focus is to design a self-learning system to dynamically acquire
threat evaluation and weapon assignment and coordination strategies. In this section,
the details of system model are presented.

4.1. System Architecture

The framework which is an integration of artificial Immune system and learning
classifier system proposed in this work is shown in Figure 1. The general framework
is a typical multi-agent system consisting of two main agents; the Strategy Generation
Agent and Strategy Coordination Agent. The Strategy Generation Agent is a low level
agent that learns the appropriate weapons and quantity to deploys against a given target
using learning classifier mechanism. The Strategy Coordination Agent receives proposed
assignments from other agents and takes as input the generate classifiers as antigens
from the Strategy Generation Agent perform immune network dynamics to determine the
actions of the agent.
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Figure 1. Immunized air Learning Classifier System Model.

In the Strategy Generation Agent, each weapon type is an abstract B-cell (decision unit)
which is a vessel for carrying antibodies. Antibodies are classifiers that contain the control
decisions as its consequent. While detected contacts are modeled as antigens, whose epi-
topes are expressed in terms of their intent, capability, and opportunity. The characteristic
mapping based on the local detectors of antigen and individual B-cells and their activation
leads to the generation of possible classifier sets that forms a sub-population of classifiers
according to the specific targets. The competition between these sub-populations of classi-
fiers produces a single classifier whose action part is applied against a target. The Strategy
Generation Agent interfaces with the environment through the intermediate module which
provides local detectors for B-cells.

Strategy Coordination Agent performs the final actions selection based on the concen-
tration of classifiers in the Immune network by applying the AI algorithms. The Immune
network models a collection of classifiers of the various B-cells. Each classifier has a con-
nections part that is used to determine its appropriateness in a given situation with respect
to the other classifiers. Strategy Coordination Agent receives classifiers from the B-cells,
established their connections to form a network, and apply the immune network dynamics.
The individual classifiers that undergo genetic operations and updates are based on the
output classifiers of the immune network dynamics.

4.2. Classifier Representation and Encoding

In order to be able to apply immune network dynamics and coordinate classifiers
generated by different B-cells, the form of classifiers is changed. In this case, classifiers
generated by a b-cell are partitioned into 4 parts that corresponds to the paratope and
idiotope of a cell. These connections are synonymous with idiotope and indicate which
other classifiers it is connected to. The Identifier is used to indicate the particular b-cell
that the classifier belongs. The antecedent indicates when the B-cell and weapon type is
applicable while the consequent specifies quantity to fire. The parameters of standard
extended classifier still applies. The antecedent part is encoded as singletons of fuzzy sets
that represent the states of the variables of decision elements. The consequence part of
each classifier is the number of ammunition to fire. The weapon to employ can directly
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be inferred from the posted classifiers since classifiers are identified by B-cells which
represents the agent and weapon type. Figure 2 shows a schema of a classifier in our
system. Both unit and target states are vectors of the individual variable representations of
the classifier.

Figure 2. A schematic representation of a classifiers.

We design an intermediate module to further quantize all variable and apply binary
coding scheme for the antecedent with size equal to the sum of the states of quantization in
each input variable. The consequent part employs an integer coding scheme where each
gene contains the index of the state used for the corresponding output variable. The levels
of quantization of decision variables and continuous variables’ value ranges are mapped
to seven states from 1 to 7 of the corresponding value bits. For instance, consider the
continues variable of ’velocity, distance, heading’ of a detected target. If we are to quantize
them to 3 states (fuzzy sets) each as shown in Equations (8)–(10). The indexes are 1, 2,
and 3 from low to high. By this quantization, the velocity variable state can be represented
by 3-bits only, where allele ‘1’ means that the corresponding state/index is used in the
velocity variable. That is, the encoding ‘001’ means the velocity of a contact as read from
the environment is high.

velocity =


high when velocity > 500 m/s
medium when 250 < velocity ≤ 500 m/s
low when 0 ≤ velocity ≤ 250 m/s

(8)

distance =


high when distance > 1000 km
medium when 500 < velocity ≤ 1000 km
low when 0 ≤ distance ≤ 500 km

(9)

heading =


high when heading > 90 deg
medium when 45 < heading ≤ 90 deg
low when 0 ≤ heading ≤ 45 deg

(10)

Hence, a B-cell with sub characteristic detectors of distance, velocity and heading
respectively for a target as an input, can have a classifier as ‘1;2|100;010;001|2|1;3;5’
conforming schema as shown in Figure 2. The individual parts are separated by ‘|’ and
can be interpreted as; “IF distance IS low AND velocity IS medium AND heading IS high
THEN fire 2 ammunition USING weapon 2”. Also, in this particular example, the classifier
is connected to classifiers 1, 3, 5.

It is worth noting that each hypothetical B-cell (decision unit) implement an extended
classifier system for action selection. However, contrary to the many approach, the entire
prediction array from individual classifiers are synthesized with respect to other B-cells
predictions using the artificial immune network dynamics to obtain an optimal weapon-
target assignment for the current environment state.

4.3. Coping with Multiple Targets

Learning to prioritizing contacts to counter first by an autonomous defense system
when multiple threats are detected is key to a successful defense. Since each weapon is a
B-cell with specific characteristics with respect to the detected threats, the concept of danger
signals and affinity can be modeled. Based on the hypothesis of the danger theory, when a
target is detected, a danger zone is constructed based on the trajectory of the detected target.
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The value of the combat units within the danger zone signals how much priority should
be given in intercepting the target. This is important since combat systems with jamming
capability will succeed in jamming some incoming targets. Therefore it is unnecessary to
intercepts those targets after it has been jammed.

4.4. Action Strategy Selection

At time t during an engagement, an agent receives observation from the environment.
The trajectories of the targets are use to construct danger zone and the danger level of all
detected targets determined. The intermediate module process the targets information and
encode as antigens to the individual B-cells in range of the targets. The input information is
of two types: (1) The external observation from the battlefield which include the observed
state of detected targets, high value asset and teammate agents information. This informa-
tion includes basic information such as distance, heading, speed, and contact type, etc. for
detected targets as observed by a unit; (2) The characteristic internal state of decision units,
including weapon types and states, range, quantity, etc.

Based on the quantized variables and characteristics of each B-cell, a matched set is
generated by each B-cell for each target. To form the prediction array [Pa], the expected
action payoff for every action strategy of B-cells is calculated using Equation (11). v is the
affinity between B-cell of classifiers and antigens.

P(ai) =
Σclk∈[M]|ai

clk.p× clk.F ∗v

Σcll∈[M]|ai
cll .F ∗v

(11)

The affinity between B-cell’s generated classifiers and antigens is estimated base on
Equation (12). In Equation (12), q is the quantity of ammo suggested by the classifier, dg is
normalized distance between target c and combat unit (B-cell), pg is the speed advantage
of fire unit weapon against target. we is the effectiveness (kill probability) of the weapon
suggested, rt is the ready time of weapon if it were to be deployed and vc is the quantified
target type that estimates the value of the target.

v =

[
1−

q

∏
i=1

(
1− dg ∗ pg ∗ we ∗ rt

)]
∗ vc (12)

The classifiers are condensed by applying the negative selection described in the next
section. Next, the condensed classifier set is transmitted to its neighbors and execution is
passed to the Strategy Coordination Agent.

In the Strategy Coordination Agent, the connections of the classifiers are established
based on the classifiers from the Strategy Generation Agent and neighbor units. Classifier i
is said to be connected to classifier j if they produce antibodies for the same target. Based
on the classifiers’ connections the immune network dynamics are executed to obtain the
classifiers whose action will be posted to the environment by a combat unit. The classifiers
with the higher concentrations for each target are allowed to post their actions.

Since classifiers must cooperate and compete with other classifiers, each classifier has
a concentration level based on it connectivity and affinity to the observed environment
state. This concentration is determined by a system of ordinary differential equations,
which corresponds to the immune network dynamics introduced in [46]. Equation (13) is
used to control the network model’s dynamics in this work.

dai(t + 1)
dt

=

(
α

N

∑
j=1

mjiaj(t)− β
N

∑
j=1

mikak(t) + γmi − k

)
ai(t) (13)

where:

• N is the number of classifiers (antibodies) that composes the sub-population of classi-
fiers dealing with a target.
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• mi is the affinity between classifier i and current stimuli (antigen).
• mji is the mutual stimulus coefficient of antibody j into classifier i.
• mki represents the inhibitory effect of classifier k into classifier i.
• k is the rate of natural death rate of classifier i;
• a(t) is the bounded concentrations imposed on classifiers;
• the coefficients α, β and γ is weight factor that determines the significance of the

individual terms.

4.5. Methods for Coordinated Learning and Knowledge Sharing

The training of classifiers is done through the conventional extended classifier system
mechanisms and facilitated by the negative selection and immune network mechanism of
the artificial immune system. Figure 3 shows the top-level view of the negative selection
mechanism. The training and learning procedure are as follows.

Figure 3. Negative selection Mechanism during action strategy selection.

1. Before the training begins each B-cells’ population of individuals are initialized
randomly. In this work, partial Pittsburgh-Style is adopted. That is, classifiers are
treated both at the classifier level and as individuals. An individual is a collection of
classifiers. Each classifier connection part is initialized as empty since the connections
of a classifier are dynamically established during action selection. For each generation,
an individual from each agent B-cells’ population is selected and used to control the
agent’s actions. By initializing each population independently, a diverse population
of classifier are generated collectively. Based on the characteristics detectors and
quantized variables using the classifier encoding and representations above, the size
of classifiers in a population can be determined a prior. However, the initial number
of classifiers of an individual is chosen at the beginning of the training.

2. When individual B-cells generate their classifier sets based on the current environment,
Non-matching and characteristics detectors in a form of rules obtained from an expert
are used to filter out redundant classifiers in the matched set of the individual B-cells
after merging to produce a condensed set of classifiers that undergo further processing
for actions selection. In this case, manual rules are encoded to discriminates certain
classifiers in the match set from being processed further. For example, if the status of
a weapon is damage or a weapon has no ammunition remaining, all classifiers of that
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particular weapon are filtered out. This forms a first phase of matching and message
processing the system.

3. Next, the action selection mechanism in Section 4.4 is applied to obtain the weapon-
target assignment of the agent. After executing the actions in the environment,
the agent receives a reward based on the targets that were successfully intercepted
as against the resources utilized. The reward obtained and concentration value of
the classifier is used to update the fitness of classifiers within the individual under
evaluation whose actions resulted in the reward. Also, in order to properly evaluate
the classifiers of an individuals and their connections, each individual is simulated a
predetermined number of times in each generation. While the immune network is
applied each episode, genetic algorithm is applied on each extended classifier system
at the individual level.

4. Finally, classifiers of individual with high accuracy are cloned and merged with other
individuals of the same type. Two types of cloning are adopted: whole classifier
cloning and merging and classifier action cloning, and replacement with higher
accuracy classifiers’ actions after all the individuals in the populations are evaluated.

5. Experimental Setup

In order to realize autonomous combat platforms operations, intelligent agents are
required to interact with the battlefield environment during training. This is unrealistic
in the physical environment as the process can be dangerous and costly. Hence, for facili-
tating the development of military intelligence, the physical environments are normally
recreated in a virtual environment through modeling and simulation. To provide a realistic
environment for training and evaluation, a scenario of digital battlefield is established in a
real-time wargame, “Command: Modern Operations”. The system generates battlefield
data in real-time and log the damages of combat units after every engagement both in
stages and end of engagement. In this scenario, there are two parties involved the ground
combat units herein referred to as the ally (blue) faction who are the defending side and
the air combat units herein referred to us the enemy (red) faction which are the invaders.
The experiments setup for this work are described as follows.

5.1. Configuration of Ally Faction

The Ally faction consists of 7 combat ships. These include two (2) class A combat ships
with 4 different weapons of ranges and kill probabilities, four (4) class B combat ships with
two weapons types on board and one (1) carrier ship with 2 short ranges weapons on board.
The number of weapon types of all the units, M = 5, the main difference between these
weapons is the different interception range and probability of kill which is shown in Table 1.
The per salvo is the number that can be fired in succession without delay. The subscripts
for weapon types is the ID of the weapon used in classifiers.

Table 1. Information on weapons deployed on combat units.

Weapon Type Min. Range (nm) Max. Range (nm) Per Salvo Type

Weapon1 2 80 1 missile

Weapon2 2 21 1 missile

Weapon3 0.2 4 1 missile

Weapon4 0 1 5 Gun

Weapon5 1 1.8 40 Gun

The air defense weapons are deployed on the seven combat ships in different defensive
formation. The types and quantities of weapons equipped on each combat platform of
the Ally faction are indicated in Table 2. Zero (0) means that the unit is not equipped with
this type of weapon. Figure 4 depicts a typical confrontational setup of the digital battle
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environment. The survival of middle and large ships is the most critical requirement of a
successful defense in this work. In this defense formation, Unit7 is the center ship, and the
task of the entire formation is to intercept as many missiles as possible before the center
warship is destroyed.

Table 2. The number of weapons equipped on each warship.

Combat Platform ID Weapon1 Weapon2 Weapon3 Weapon4 Weapon5

Unit1 48 0 24 20 220

Unit2 48 0 24 20 220

Unit3 0 32 0 20 0

Unit4 0 32 0 20 0

Unit5 0 32 0 20 0

Unit6 0 32 0 20 0

Unit7 0 0 72 20 0

Figure 4. A typical air maritime combat digital battlefield scenario.

5.2. Reinforcement Program

In order for a learning system to improve its performance, reward function design is of
great importance. Hence, much attention is given to designing the reward and punishment
mechanisms employed in this work. In our case the destruction of Unit7 is deemed as
mission failure. However, the system must be encouraged to search for the best strategy
that can enable it to succeed. So, we define two types of wins; Confident Win and Weak
Win. The Ally Faction is said to win Confidently if more than two of its units survived
in addition to Unit7 after a confrontation in an episode. On the other hand, a weak win
is encountered if at most 2 other units survived in addition to Unit7. In addition to these
specifics, each weapon of the ally and the enemy factions are assigned a cost and reward
values respectively. The cost of losing a unit of the ally faction is function of the total
number of ammunition on the unit at the time of destruction. However, the cost of losing
Unit7 is always higher in any case. Also, each of the 3 types of enemy units are assigned
values which are rewarded to the ally faction when the enemy unit is destroyed. Table 3
shows the costs of weapons consumption. In addition, the interception of a bomber aircraft,
fighter jet T2 and UAVs T1 rewards the Ally Faction with 0.2, 0.15 and 0.1 respectively.
For the weapons deployed by these units of the enemy faction the rewards for intercepting
them are 0.25, 0.2 and 0.15 respectively. Also, the Ally Faction is reward 0 when Unit7 is
destroyed and +10 when it survived. A squashed function is used to normalize the final
rewards to a range between 0 and 1.
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Table 3. Costs of Ally Faction’s weapons consumption.

Weapon Type Cost of Consumption

Weapon1 0.004

Weapon2 0.002

Weapon3 0.001

Weapon4 0.0001

Weapon5 0.0001

5.3. Configuration of Enemy Faction

The Enemy faction consist of multiple hostile air units approaching the Ally faction
in formations. A formation consists of a maximum of 8 fighter units and can comprise
of different types of units. Each unit has a maximum of 8 ammunition of its weapon
type that it can deploy on a defensive unit. However, a unit may run out of fuel and
may need to return to based. Hence, not all weapons maybe deployed during its initial
engagement. It is assumed that the enemy faction already knows the location of the ally
faction, this means they only need to send out attackers. The enemy faction consists of
different units comprising bomber aircraft, fighter jet T2 and unmanned combat aerial
vehicles T1. The bombers have the shortest firing range and proximity hence must get
closed enough to drop the bombs. In doing so the enemy unit is exposed to the firing range
of the ally units. The other two types of units consist can also deploy short to medium
range missiles.

5.4. Scenarios Setup

The engagements and battle rounds are design based on three scenarios as follows:
Scenario 1: In this scenario, the defense units know the approach direction of the

enemy units. So, the defense units form a formation that ensures that the defended unit
is put at the rear of the formation. Also, the attack in this scenario is executed in a single
formation deployment. Each of the enemy units can fire only 3 of its ammunition before it
must return to base for refueling and there is no second wave of attack.

Scenario 2: In this scenario, a formation is formed around the defended unit which
is placed at the center. The enemy units can appear from multiple direction. The attack,
in this case, is done on 3 confrontations. In each confrontation, the formations can consist
of different units and each unit can fire as many weapons as possible within its maximum
allowed capacity. Also, they attack the ally units on different rounds. Each round presents
more challenges by increasing the number of enemy units and number of weapons fired.

Scenario 3: In the final scenario, the entire enemy units are divided into 4 groups of 8
each with each group approaching from the north, south, east and west of the ally faction.
However, the formation of the ally faction is similar to scenario 2. Also, jamming is enabled
in all scenarios except scenario one.

Each of these strategies are employed to train a different model independently from
scratch. During training, parallel simulations were run on three different machines simul-
taneously for almost 2400 training instances (generations). The population of individuals
was 20 for each classifier system and maximum number of classifiers in an individual was
set to 1000 with Mutation probability = 0.15. The results of the 3 scenarios are shown in
Figures 5–7. In each case, the score, win rate and rate of resource utilization is plotted as
the training progresses. As can be seen, the win rate for the ally faction increases whiles
the total quantity of weapons deployed reduces as training progresses. Except for scenario
3 which obtained a final win rate of around 50%, the other two models of scenario 2 and 3
attained a win rate of about 75%. Similarly, the resource utilization in all scenarios saw a
reduction of at least 30% at end of training Figure 8. The comparison of the 3 models with
regards to battle costs is presented in Figure 8d.
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(a) Model training performance score (b) Winning rate of model during training

Figure 5. Training performance on scenario 2.

(a) Model training performance score (b) Winning rate of model during training

Figure 6. Training performance on scenario 1.

(a) Model training performance score (b) Winning rate of model during training

Figure 7. Training performance on scenario 3.

(a) Rate of resource consumption in scenario 1 (b) Rate of resource consumption in scenario 2

Figure 8. Cont.
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(c) Rate of resource consumption in scenario 3 (d) Resource utilization of the 3 models during training

Figure 8. Individual and Compared resource utilization of the 3 scenarios models during training.

5.5. Baseline Heuristics

In order to evaluate the performance of the obtained strategies or models of the
system, a heuristic assignment strategy was developed. This heuristic model employs
multiple rules to govern the decision-making of the system to serve as a credible baseline
to benchmark this work.

Hence, in the heuristic baseline,

1. Weapon-target assignment is performed based on priority.
2. To achieve priority-based assignment, the threat value of targets is evaluated based

on the assigned targets values, heading and the distance to the Unit7.
3. Based on the computed values, a sorting algorithm is used to sort the targets in

ascending order. Targets with low computed values are considered to pose higher
threat to the ally faction.

4. After the threat levels are determined and sorted, for each target we select the closest
ally unit to attack it with any weapon within range. The number of ammunition to
fire is set to a maximum of 4.

5. When intercepting targets, targets identified as weapons are intercept first. This is
different from the threat level computation of targets. In other words, targets identified
as weapons are assigned first based on their threat level before non-weapons are also
assigned based on their threat levels.

6. Also, when a target is within multiple weapon range of a unit, the shortest ranged
weapon is utilized.

To evaluate the final models with the baseline, we run the simulations for 30 rounds
each. In this case, a round consists of 10 episodes of simulations. The results of the win
rate and average costs are presented in Figure 9. From the results, it can be seen that even
though model 2 took longer time to make a significant increase in win rate it turns our to
perform well in all the scenarios. On the other, model 3 turns to perform better in the other
scenarios than it performs in the trained scenario. The three models generalized well to
scenarios they were not trained in. Table 4 shows the summary of the percentage wins in
the final experiment conducted. Figure 10 shows a successful defense scenario run that
employs model 1 of in the first scenario. In this case, the yellow colored units means that
those units are not detected by any of the ally units.
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(a) Resource consumption for the 3 models and baseline model (b) Win rate for the 3 models and baseline model

Figure 9. Comparison of performance of the 3 models and baseline model.

Table 4. Detail Performance of trained models.

Scenario/Model
Scenario 1 (% Win) Scenario 2 (% Win) Scenario 3 (% Win)

Confident Weak Total Confident Weak Total Confident Weak Total

Model 1 44 35 79 23.8 28.2 52 20.3 19.7 40
Model 2 40.3 38.8 79.1 44.7 33.4 78.1 39.3 35.8 75.1
Model 3 28.7 37.9 66.7 33.9 30.8 64.7 29.6 24.6 54.2
Baseline 26.6 29.7 56.3 21.5 19.5 41 19.3 21.3 40.6

(a) Battle state At the beginning of confrontation (t = 10 s) (b) Battle state Mid-way during enemy confrontation (t = 20 s)

(c) Battle state towards the end of confrontation t = 30 s (d) At the end of confrontation (t = 40 s)

Figure 10. A typical confrontation details of model 1 on scenario 1.

5.6. Discussion

From the results presented, the trained models show a more efficient use of resources.
This can be realized from the models’ winning rate and rate of resource consumption
graphs of the respective models. In all cases, in addition to the ally faction winning mores
as training progresses, it does so with less resources. The trained models show better
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weapon distribution and target prioritization strategy compared with the baseline and
target prioritization approach. At the initial stages of training, the system will assign
weapons to targets that does not pose immediate danger to its survival. This behavior was
also peculiar to the baseline heuristic model. However, at the end of the training process
targets such as non-weapon units are ignored and only assigned in some instances when
no weapon targets were detected. Figure 11 depicts the two situations as indicated. Also,
as can be seen in Figure 11b, the model exhibits better cooperative behaviors as the threat
level of targets increases. In this case, detected targets are distributed among suitable units
for interceptions.

(a) Confrontation behavior of model 2 (before) (b) Confrontation behavior of model 2 (after)

Figure 11. A typical confrontation details of model 2 before and after training.

In comparison with other approaches such as neural network based models, the system
realized by this approach is interpretable and can be refined using prior knowledge.
The learning process is facilitate by prior specification and quantization of fuzzy sets
for classifier variables and the classifiers filtering introduced by the negative selection
mechanism. From the data presented, the performances and winning rates appear to
increase more sharply after 400 generations except for model 2. This might be attributed to
the complexity level of the scenario model 2 was trained on. Even though model 2 turns
out to be the most optimal of the 3. Therefore, even though more complex scenarios might
take time for performance to start manifesting, the resulting controllers can achieve more
optimal performances.

However, this approach also has its challenges, one of which is the memory consump-
tion to keep track of classifiers and their connections. Also, the computations of classifiers
concentrations with respect to other classifiers add additional computational burden on
the approach as the size and number of classifiers increase.

6. Conclusions

In this paper, the air defense problem is studied. We explore the application of
classifier system and artificial immune models for coordinated self-learning air defense.
In particular, this paper presents an approach for multiple unmanned combat systems for
coordinated air defense that implements autonomous cooperative threat evaluation and
weapon assignment learning approach. We investigate and demonstrate the applicability
of a hybrid artificial immune and learning classifiers system for realizing air defense
intelligence and presents a hierarchical self-learning approach for multiple unmanned
combat systems air defense operations that integrates artificial Immune based algorithms
with classifier systems. We further design a mechanism to speed up learning by applying
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a negative selection mechanism to filter out and condense situations from individual
decision units that proposed solutions for the situations in the battlefield using domain
knowledge. We evaluate the proposed approach by designing several simulation scenarios.
The experimental results of training multiple combat systems demonstrate the learning
ability of the approach. Finally the proposed scheme is compared with baseline heuristics
by comparing the resource utilization and win rate of the different models obtained and
the baseline. Based on the data presented, the most optimal model (model 2) was able to
increase its win rate to about 75% and reduce its resource utilization by 30%. The approach
is easily scalable since the addition of new units will only require the transfer of knowledge
from similar decision units. The ability to transfer and encode prior knowledge facilitates
transfer learning and prevent the system from learning from scratch when new units are
added to the team. This will speed up the learning process of the system. The model is
interpretable by humans compared to ’blackbox’ approaches, which is a desirable feature
for military applications. The generalization capability of the approach was validated by
testing them in the scenarios they were not trained in.

However, more work is still required to improve the performance of the system and
approach adopted in this work. For instance, there is a significant level of disparity between
the physical world and the simulation environment. In the physical environment, there
might not be an immediate confirmation of a successful interception. Hence, the perfor-
mance in the real battlefield might be degraded to some extend. Also, it will be interesting
to consider tuning or learning of the input variables and not just the appropriate consequent
as adopted in this approach. In this regard, the learning of the input variables for each
classifier system can either be done along with the rule base learning or one after the other.
Similarly, further investigation as to how to identify useful knowledge, and condense and
merge with other learning agents is needed. We plan to extend this framework to develop
a general training system for autonomous decision-making of unmanned combat vehicles
for cooperative missions.
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