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Abstract: Recently a non-supersymmetric conformal field theory with an exactly marginal deforma-
tion in the large N limit was constructed by Chaudhuri–Choi–Rabinovici. On a non-supersymmetric
conformal manifold, the c coefficient of the trace anomaly in four dimensions would generically
change. In this model, we, however, find that it does not change in the first non-trivial order given by
three-loop diagrams.
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Conformal field theories are no longer conformally invariant in curved space-time
due to the trace anomaly in even space-time dimensions. They do, however, play a
fundamental role in understanding the structure of the energy–momentum tensor and the
renormalization group flow.

In four-dimensional conformal field theories, the trace anomaly has the form

Tµ
µ = cWeyl2 − aEuler (1)

and it is known that coefficient a cannot change under exactly marginal deformations, but
coefficient c may [1–7]. However, there has been no explicit field theory example where c
changes (except for the effective holographic constructions in [2]). The main obstruction
has been that we have no good examples of non-supersymmetric conformal field theories
with exactly marginal deformations; in superconformal field theories, while it is easier to
realize exactly marginal deformations, c does not change [8].

Recently, Chaudhuri, Choi and Rabinovici have constructed a non-supersymmetric
conformal field theory with an exactly marginal deformation in the large N limit [9] (see
also [10,11] for other recently constructed examples of non-supersymmetric field theories
with exactly marginal deformations in different dimensions than four). This theory may
serve as a first non-trivial check if c can really change under exactly marginal deformations.
In this short note, we, however, show that it does not change at the first non-trivial order
given by three-loop diagrams.

The model (called complex bifundamental model in [9]) is given by four SU(Nc) gauge
theories with names 1, 1′, 2 and 2′, each of which has N f Dirac fermions in the fundamental
representation. We have two complex scalars in the bifundamental representations Φ1
(under gauge group 1 and 1′) and Φ2 (under gauge group 2 and 2′). The gauge coupling
constant for each gauge group is gi. It has no Yukawa interaction, the absence of which is
protected by chiral symmetry, but it has a scalar potential

V= h̃1Tr
[
Φ†

1Φ1Φ†
1Φ1

]
+ h̃2Tr

[
Φ†

2Φ2Φ†
2Φ2

]
+ f̃1Tr

[
Φ†

1Φ1

]
Tr
[
Φ†

1Φ1

]
+ f̃2Tr

[
Φ†

2Φ2

]
Tr
[
Φ†

2Φ2

]
+ 2ζ̃Tr

[
Φ†

1Φ1

]
Tr
[
Φ†

2Φ2

]
.

(2)

We take the Veneziano limit of Nc, N f → ∞ with fixed x =
N f
Nc

and consider the limit
x → 21

4 to make the theory weakly coupled.
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In terms of rescaled coupling constants (i = 1, 2)

λi =
Ncg2

i
16π2 , hi =

Nc h̃i
16π2 , fi =

N2
c f̃i

16π2 , ζ = N2
c ζ̃

16π2 ,
(3)

the renormalization group β functions in the Veneziano limit are expressed as (no sum over
i unless explicitly shown)

βλi= −
21− 4x

3
λ2

i +
−54 + 26x

3
λ3

i

βhi
= 8h2

i − 12λihi +
3
2

λ2
i

β fi
= 4 f 2

i + 16 fihi + 12h2
i + 4ζ2 − 12λi fi +

9
2

λ2
i

βζ= ζ
2

∑
i=1

(4 fi + 8hi − 6λi).

(4)

The zero of the β functions was studied in [9] and they found that there exists a
conformal manifold given by

λ1= λ2 = λ =
21− 4x
−54 + 26x

h1= h2 =
3−
√

6
4

λ

fp≡
f1 + f2

2
=

√
3
2

λ

ζ2 + f 2
m=

18
√

6− 39
16

λ2 ,
(5)

where fm ≡ f1− f2
2 . From the last line of Equation (??), we see that it has the topology of a

circle. As long as λ is small, we may neglect higher order corrections.
We now ask if the coefficient c in the trace anomaly can change on this conformal man-

ifold. In addition to the coupling constant-independent contributions from the one-loop
diagrams (that count a number of fields), the coupling constant-dependent contributions
to the trace anomaly that are relevant for us come from the three-loop diagrams shown in
Figure 1. The detailed computation for Figure 1A (as well as other two-loop diagrams) can
be found in [12–14], but we only need the relative coefficient, so we can simply work on
combinatorics.
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Figure 1. Three-loop Feynman diagrams that could contribute to c. Wavy lines correspond to gauge
fields and dotted lines correspond to scalar fields.

The three-loop Figure 1B–D are not evaluated in the literature, but we see that Figure
1B,C do not contribute to c. This is because the divergence can be simply removed by
adding the “mass counter-term”. Figure 1D may contribute in general, but the contributions
to c in our theory do not depend on ζ or fm from the symmetry of the diagrams (It cannot
be proportional to ζ because the gauge fields cannot connect Φ1 and Φ2. The relevant
diagrams are all symmetric with respect to the exchange of f1 and f2).

As for Figure 1A, since the overall contribution to c is known, we can just enumerate
diagrams appearing in the Wick contractions of

〈 f̃1Tr[Φ†
1Φ1]Tr[Φ†

1Φ1](x) f̃1Tr[Φ†
1Φ1]Tr[Φ†

1Φ1](y)〉free
or

〈2ζ̃Tr[Φ†
1Φ1]Tr[Φ†

2Φ2](x)2ζ̃Tr[Φ†
1Φ1]Tr[Φ†

2Φ2](y)〉free
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We see that only planar diagrams will contribute in the Veneziano limit.
Up to an overall proportionality factor, the result in the Veneziano limit is summarized

as
c2,3−loop = −4 f 2

m − 4ζ2 + cλλ2 (6)

on the conformal manifold, where cλ is some numerical constant, which is unimportant
for our discussions (A typo in the two-loop gauge contribution [14] that could affect cλ

has been corrected in [15]). Since the relative coefficient appearing here coincides with
what appears in the last line of Equation (??), we conclude that c does not change on the
conformal manifold, although the value itself is perturbatively corrected. We also note
that these two- and three-loop diagrams do not change the value of a as anticipated [1,16]
(rather trivially without cancellation, unlike c).

The result is surprising in the sense that we generically expect that c would change
on a non-supersymmetric conformal manifold. It is an interesting question to see whether
the higher loop corrections modify our conclusion. It may be possible to relate the all-loop
argument for the existence of the exactly marginal deformation in [9] with the computation
of c by closing all the external lines in beta functions to make vacuum diagrams.
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