GENAVOS: A New Tool for Modelling and Analyzing Cancer Gene Regulatory Networks Using Delayed Nonlinear Variable Order Fractional System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Time Series Dataset
2.2. Case Study and Network Structure
2.3. GRN Modelling by VOF Systems
2.4. Function Approximation for Variable Order
2.5. Expression Approximations for Genes That Have No Data
2.6. Parameters Identification and Optimization
2.7. Summary of the Proposed Method
2.8. GENAVOS Analytical Tools for System Dynamics
3. Results
3.1. Initial Settings and Parameters Tuning
3.2. Numerical Solution and Parameters Identification
3.3. System Dynamics Evaluation
4. Discussion
4.1. The Model Fits Well on the Nature of Real Data
4.2. Realistic Prediction of the Role of the miR-17-92 Cluster
4.3. The Role of System Parameters in GRN Dynamics
4.4. Control of GRN Dynamics by Possible Epigenetic Signals
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Latchman, D.S. Inhibitory transcription factors. Int. J. Biochem. Cell Biol. 1996, 28, 965–974. [Google Scholar] [CrossRef]
- Han, K.; Lee, J. GeneNetFinder2: Improved Inference of Dynamic Gene Regulatory Relations with Multiple Regulators. IEEE/ACM Trans. Comput. Biol. Bioinform. 2016, 13, 4–11. [Google Scholar] [CrossRef]
- Chen, B.S.; Li, C.W. Constructing an integrated genetic and epigenetic cellular network for whole cellular mechanism using high-throughput next-generation sequencing data. BMC Syst. Biol. 2016, 10, 18. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.Y.Y. Chromatin Memory in the Development of Human Cancers. Gene Technol. 2014, 4, 114. [Google Scholar] [CrossRef] [Green Version]
- Environmental Influences on Gene Expression|Learn Science at Scitable. Available online: https://www.nature.com/scitable/topicpage/environmental-influences-on-gene-expression-536/ (accessed on 7 September 2020).
- Parmar, K.; Blyuss, K.B.; Kyrychko, Y.N.; Hogan, S.J. Time-Delayed Models of Gene Regulatory Networks. Comput. Math. Methods Med. 2015, 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, L.L.; Wang, X.H.; Sun, B.F.; Zhang, X.D.; Zhu, X.H.; Yu, Z.J.; Luo, H. Expression, regulation and mechanism of action of the miR-17-92 cluster in tumor cells (Review). Int. J. Mol. Med. 2017, 40, 1624–1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell, A.E.; Shung, C.Y.; Saylor, K.W.; Müllendorf, K.A.; Weiss, J.B.; Wong, M.H. Lessons from development: A role for asymmetric stem cell division in cancer. Stem Cell Res. 2010, 4, 3–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frost, J.J.; Pienta, K.J.; Coffey, D.S. Symmetry and symmetry breaking in cancer: A foundational approach to the cancer problem. Oncotarget 2018, 9, 11429–11440. [Google Scholar] [CrossRef] [Green Version]
- Brazhnik, P.; De La Fuente, A.; Mendes, P. Gene networks: How to put the function in genomics. Trends Biotechnol. 2002, 20, 467–472. [Google Scholar] [CrossRef]
- Bar-Joseph, Z.; Gitter, A.; Simon, I. Studying and modelling dynamic biological processes using time-series gene expression data. Nat. Rev. Genet. 2012, 13, 552–564. [Google Scholar] [CrossRef]
- Yaghoobi, H.; Haghipour, S.; Hamzeiy, H.; Asadi-Khiavi, M. A review of modeling techniques for genetic regulatory networks. J. Med. Signals Sens. 2012, 2, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Iglesias-Martinez, L.F.; Kolch, W.; Santra, T. BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef]
- Network Medicine: Complex Systems in Human Disease and Therapeutics; Medicine & Health Science Books; Harvard University Press: London, UK, 2017; ISBN 978-0674436534.
- Artyomov, M.N.; Meissner, A.; Chakraborty, A.K. A Model for Genetic and Epigenetic Regulatory Networks Identifies Rare Pathways for Transcription Factor Induced Pluripotency. PLoS Comput. Biol. 2010, 6, e1000785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, Y.; Lu, M.; Ben-Jacob, E.; Onuchic, J.N. Periodic, Quasi-periodic and Chaotic Dynamics in Simple Gene Elements with Time Delays. Sci. Rep. 2016, 6, 21037. [Google Scholar] [CrossRef] [Green Version]
- Levnajić, Z.; Tadić, B. Stability and chaos in coupled two-dimensional maps on gene regulatory network of bacterium E. coli. Chaos Interdiscip. J. Nonlinear Sci. 2010, 20, 033115. [Google Scholar] [CrossRef] [Green Version]
- Nikolov, S.; Gonzalez, J.V.; Nenov, M.; Wolkenhauer, O. Dynamics of a miRNA model with two delays. Biotechnol. Biotechnol. Equip. 2012, 26, 3315–3320. [Google Scholar] [CrossRef]
- Yue, D.; Guan, Z.-H.; Chen, J.; Ling, G.; Wu, Y. Bifurcations and chaos of a discrete-time model in genetic regulatory networks. Nonlinear Dyn. 2017, 87, 567–586. [Google Scholar] [CrossRef]
- Ahmed, A.; Verriest, E.I. Modeling & Analysis of Gene Expression as a Nonlinear Feedback Problem with State-Dependent Delay. IFAC-PapersOnLine 2017, 50, 12679–12684. [Google Scholar] [CrossRef]
- Tyson, J.J.; Novak, B. Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis, and irreversible transitions. J. Theor. Biol. 2001, 210, 249–263. [Google Scholar] [CrossRef] [Green Version]
- Wei, K.; Gao, S.; Zhong, S.; Ma, H. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Ali Al-Radhawi, M.; Sontag, E.D. A mathematical model exhibiting the effect of DNA methylation on the stability boundary in cell-fate networks. Epigenetics 2020. [Google Scholar] [CrossRef] [PubMed]
- Berry, S.; Dean, C. Environmental perception and epigenetic memory: Mechanistic insight through FLC. Plant J. 2015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, M.; Costello, J. DNA methylation: An epigenetic mark of cellular memory. Exp. Mol. Med. 2017, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halley-Stott, R.P.; Gurdon, J.B. Epigenetic memory in the context of nuclear reprogramming and cancer. Brief. Funct. Genom. 2013, 12, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Yue, D.; Guan, Z.-H.; Chi, M.; Hu, B.; Liu, Z.-W.; Chen, J. Stability and Hopf bifurcation of fractional genetic regulatory networks with diffusion. IFAC-PapersOnLine 2017, 50, 10443–10448. [Google Scholar] [CrossRef]
- Sheng, H.; Sun, H.G.; Coopmans, C.; Chen, Y.Q.; Bohannan, G.W. A Physical experimental study of variable-order fractional integrator and differentiator. Eur. Phys. J. Spec. Top. 2011, 193, 93–104. [Google Scholar] [CrossRef]
- Glöckle, W.G.; Nonnenmacher, T.F. A fractional calculus approach to self-similar protein dynamics. Biophys. J. 1995, 68, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Tao, B.; Xiao, M.; Sun, Q.; Cao, J. Hopf bifurcation analysis of a delayed fractional-order genetic regulatory network model. Neurocomputing 2018, 275, 677–686. [Google Scholar] [CrossRef]
- Sun, Q.; Xiao, M.; Tao, B. Local Bifurcation Analysis of a Fractional-Order Dynamic Model of Genetic Regulatory Networks with Delays. Neural Process. Lett. 2018, 47, 1285–1296. [Google Scholar] [CrossRef]
- Nowaková, J.; Pokorný, M. System Identification Using Genetic Algorithms. In Advances in Intelligent Systems and Computing; Springer: Berlin/Heidelberg, Germany, 2014; Volume 303, pp. 413–418. [Google Scholar] [CrossRef]
- Atashpaz-Gargari, E.; Lucas, C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition. In Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 4661–4667. [Google Scholar] [CrossRef]
- Bar-Joseph, Z.; Siegfried, Z.; Brandeis, M.; Brors, B.; Lu, Y.; Eils, R.; Dynlacht, B.D.; Simon, I. Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proc. Natl. Acad. Sci. USA 2008, 105, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Whitfield, M.L.; Sherlock, G.; Saldanha, A.J.; Murray, J.I.; Ball, C.A.; Alexander, K.E.; Matese, J.C.; Perou, C.M.; Hurt, M.M.; Brown, P.O.; et al. Identification of Genes Periodically Expressed in the Human Cell Cycle and Their Expression in Tumors. Mol. Biol. Cell 2002, 13, 1977–2000. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Meng, Y.; Bao, C.; Liu, W.; Ma, C.; Li, A.; Xuan, Z.; Shan, G.; Jia, Y. Robustness and Backbone Motif of a Cancer Network Regulated by miR-17-92 Cluster during the G1/S Transition. PLoS ONE 2013, 8, e57009. [Google Scholar] [CrossRef]
- Sun, H.; Chang, A.; Zhang, Y.; Chen, W. A review on variable-order fractional differential equations: Mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 2019, 22, 27–59. [Google Scholar] [CrossRef] [Green Version]
- Fractional-Order Nonlinear Systems—Modeling, Analysis and Simulation|Ivo Petras|Springer. Available online: https://www.springer.com/gp/book/9783642181009 (accessed on 19 July 2020).
- Cao, J.; Qi, X.; Zhao, H. Modeling gene regulation networks using ordinary differential equations. Methods Mol. Biol. 2012, 802, 185–197. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, E.R. Genomic Signal Processing and Statistics; Hindawi Pub. Corp: London, UK, 2005. [Google Scholar]
- Mai-Duy, N.; Tran-Cong, T. Approximation of function and its derivatives using radial basis function networks. Appl. Math. Model. 2003, 27, 197–220. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.; Saha Ray, S.; Das, S.; Bera, R.K. The formation of dynamic variable order fractional differential equation. Int. J. Mod. Phys. C 2016, 27. [Google Scholar] [CrossRef]
- Gottwald, G.A.; Melbourne, I. The 0-1 test for chaos: A review. In Lecture Notes in Physics; Springer: Heidelberg, Germany, 2016; Volume 915, pp. 221–247. [Google Scholar]
- Grant, G.D.; Brooks, L.; Zhang, X.; Mahoneya, J.M.; Martyanov, V.; Wood, T.A.; Sherlock, G.; Cheng, C.; Whitfield, M.L. Identification of cell cycle-regulated genes periodically expressed in U2OS cells and their regulation by FOXM1 and E2F transcription factors. Mol. Biol. Cell 2013, 24, 3634–3650. [Google Scholar] [CrossRef]
- Ghorbani, M.; Jonckheere, E.A.; Bogdan, P. Gene Expression Is Not Random: Scaling, Long-Range Cross-Dependence, and Fractal Characteristics of Gene Regulatory Networks. Front. Physiol. 2018, 9, 1446. [Google Scholar] [CrossRef] [Green Version]
- Xiang, J.; Wu, J. Feud or Friend? The Role of the miR-17-92 Cluster in Tumorigenesis. Curr. Genom. 2010, 11, 129–135. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Li, Y.; Qi, P.; Ma, Z. Biology of MiR-17-92 cluster and its progress in lung cancer. Int. J. Med. Sci. 2018, 15, 1443–1448. [Google Scholar] [CrossRef] [Green Version]
- McManus, J.; Cheng, Z.; Vogel, C. Next-generation analysis of gene expression regulation-comparing the roles of synthesis and degradation. Mol. Biosyst. 2015, 11, 2680–2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gedeon, T.; Bokes, P. Delayed protein synthesis reduces the correlation between mRNA and protein fluctuations. Biophys. J. 2012, 103, 377–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goutsias, J.; Kim, S. A Nonlinear Discrete Dynamical Model for Transcriptional Regulation: Construction and Properties. Biophys. J. 2004, 86, 1922–1945. [Google Scholar] [CrossRef] [Green Version]
ICA Iteration | ||||||||
---|---|---|---|---|---|---|---|---|
Log-sigmoid | RBF-NN | 33 h | 2 h | 100 | 0.1 | 17 | 8 | 1000 |
Dataset | Hela Cell | Primary Skin Fibroblasts | ||
---|---|---|---|---|
Constant | RBF NN | Constant | RBF NN | |
SAE | 27.82 | 4.11 | 18.43 | 4.94 |
Dataset | Hela Cell | Primary Skin Fibroblasts | ||||||
---|---|---|---|---|---|---|---|---|
0.1 | 0.2 | 0.3 | 0.4 | 0.1 | 0.2 | 0.3 | 0.4 | |
SAE | 7.33 | 6.53 | 4.11 | 6.71 | 4.94 | 6.68 | 7.21 | 7.94 |
Target Genes | Synthesis Rate of Controller Genes | Degradation of Target Genes | |||||||
---|---|---|---|---|---|---|---|---|---|
MYC | E2F1 | RB1 | CDK4 | CDC25A | CDK2 | CDKN1B | miR-17-92 | ||
MYC | 2.46 | 0.46 | -- | -- | -- | -- | -- | -- | 0.26 |
E2F1 | 1.96 | 0.25 | 5 | -- | -- | -- | -- | 4.02 | 1.15 |
RB1 | -- | -- | -- | 2.47 | -- | 3.24 | -- | -- | 0.65 |
CDK4 | -- | -- | -- | 3.78 | -- | -- | -- | -- | 0.34 |
CDC25A | 4.2 | 4.64 | -- | -- | 5 | 4.84 | -- | -- | 1.4 |
CDK2 | 3.91 | 0.14 | -- | -- | 0.51 | -- | 4.98 | -- | 0.63 |
CDKN1B | -- | -- | -- | -- | -- | 2.87 | -- | -- | 0.3 |
miR-17-92 | 1.73 | 4.5 | -- | -- | -- | -- | -- | 0 | 0 |
Genes | MYC | E2F1 | RB1 | CDK4 | CDC25A | CDK2 | CDKN1B | miR-17-92 |
---|---|---|---|---|---|---|---|---|
Without Change in parameters | ||||||||
R | 0.638 | 0.638 | 0.638 | 0.638 | 0.638 | 0.638 | 0.638 | 0.619 |
Change the Delay parameter | ||||||||
R | 0.649 | 0.729 | 0.646 | 0.645 | 0.733 | 0.657 | 0.645 | 0.742 |
Change the MYC Self-Synthesis Rate parameter | ||||||||
R | 0.712 | 0.668 | 0.669 | 0.669 | 0.668 | 0.668 | 0.669 | 0.652 |
Change the miR-17-92 Degradation parameter | ||||||||
R | 0.643 | 0.664 | 0.643 | 0.643 | 0.643 | 0.643 | 0.643 | 0.643 |
Change the Variable Order parameter | ||||||||
R | 0.664 | 0.664 | 0.664 | 0.664 | 0.664 | 0.664 | 0.664 | 0.643 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yaghoobi, H.; Maghooli, K.; Asadi-Khiavi, M.; Dabanloo, N.J. GENAVOS: A New Tool for Modelling and Analyzing Cancer Gene Regulatory Networks Using Delayed Nonlinear Variable Order Fractional System. Symmetry 2021, 13, 295. https://doi.org/10.3390/sym13020295
Yaghoobi H, Maghooli K, Asadi-Khiavi M, Dabanloo NJ. GENAVOS: A New Tool for Modelling and Analyzing Cancer Gene Regulatory Networks Using Delayed Nonlinear Variable Order Fractional System. Symmetry. 2021; 13(2):295. https://doi.org/10.3390/sym13020295
Chicago/Turabian StyleYaghoobi, Hanif, Keivan Maghooli, Masoud Asadi-Khiavi, and Nader Jafarnia Dabanloo. 2021. "GENAVOS: A New Tool for Modelling and Analyzing Cancer Gene Regulatory Networks Using Delayed Nonlinear Variable Order Fractional System" Symmetry 13, no. 2: 295. https://doi.org/10.3390/sym13020295
APA StyleYaghoobi, H., Maghooli, K., Asadi-Khiavi, M., & Dabanloo, N. J. (2021). GENAVOS: A New Tool for Modelling and Analyzing Cancer Gene Regulatory Networks Using Delayed Nonlinear Variable Order Fractional System. Symmetry, 13(2), 295. https://doi.org/10.3390/sym13020295