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Abstract: A smooth map γ in the symplectic space R2n is Lagrangian if γ, γx, . . ., γ
(2n−1)
x are linearly

independent and the span of γ, γx, . . . , γ
(n−1)
x is a Lagrangian subspace of R2n. In this paper, we

(i) construct a complete set of differential invariants for Lagrangian curves in R2n with respect to the
symplectic group Sp(2n), (ii) construct two hierarchies of commuting Hamiltonian Lagrangian curve
flows of C-type and A-type, (iii) show that the differential invariants of solutions of Lagrangian curve
flows of C-type and A-type are solutions of the Drinfeld-Sokolov’s Ĉ(1)

n -KdV flows and Â(2)
2n−1-KdV

flows respectively, (iv) construct Darboux transforms, Permutability formulas, and scaling transforms,
and give an algorithm to construct explicit soliton solutions, (v) give bi-Hamiltonian structures and
commuting conservation laws for these curve flows.

Keywords: Lagrangian curve flows; KdV type hierarchies; Darboux transforms

1. Introduction

The modern theory of soliton equations dates from the famous numerical compu-
tation of the interaction of solitary waves of the Korteweg-de Vries (KdV) equation by
Zabusky and Kruskal [1] in 1965. In 1967, Gardner, Green, Kruskal, and Miura [2] ap-
plied the Gelfand-Levitan’s inverse scattering transform of the one-dimensional linear
Schrödinger operator to solve the Cauchy problem for rapidly decaying initial data for the
KdV equation. In 1968, Lax [3] introduced the Lax-pair for KdV. Zakharov and Faddeev [4]
gave a Hamiltonian formulation of KdV, and proved that KdV is completely integrable by
finding action-angle variables. Zakharov and Shabat [5] found a Lax pair of 2× 2 first order
differential operators for the non-linear Schrödinger equation (NLS), Adler-Kostant-Symes
gave a method to construct completely integrable Hamiltonian systems using splitting of
Lie algebras (cf. [6–9]), Kupershmidt-Wilson [10] constructed n× n modified KdV (mKdV)
using a loop algebra, and finally Drinfeld-Sokolov [11] gave a general method to construct
soliton hierarchies from affine Kac-Moody algebras. In particular, soliton equations have
many remarkable properties including: a Lax pair, infinite families of explicit soliton
solutions, Bäcklund and Darboux transformations that generate new solutions from a
given one by solving a first order system, a permutability formula to superpose solutions,
a rational loop group action, a scattering theory and an inverse scattering transform to
solve the Cauchy problem, a bi-Hamiltonian structure, and infinitely many commuting
Hamiltonians. For more detail and references, we refer readers to the following books and
survey articles: [11–18].

Soliton equations are also found in classical differential geometry: the sine-Gordon
equation (SGE) arose first through the theory of surfaces of negative constant Gauss curvature
in R3, and the reduced 3-wave equation can be found in Darboux’s work [19] on triply
orthogonal coordinate systems of R3. These equations were rediscovered later independently
of their geometric history. The main contribution of the classical geometers lies in their
methods for constructing explicit solutions of these equations from geometric transformations.

There are many classes of submanifolds in space forms and symmetric spaces whose
Gauss-Codazzi equations are soliton equations. For example, the Gauss-Codazzi equations
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for the following classes of submanifolds are soliton equations: n-dimensional submani-
folds of constant sectional curvature −1 in in R2n−1 (cf. [20,21]), isometric immersions of
space forms in space forms (cf. [22,23]), flat Lagrangian submanifolds in R2n [24], confor-
mally flat submanifolds in spheres [25], and isothermic submanifolds in Rn (cf. [26–28]).
For a survey of submanifold geometry and related soliton equations see [29].

Next we discuss how curve flows appeared in soliton theory. In 1906, da Rios, a
student of Levi-Civita, wrote a master’s thesis, in which he modeled the movement of a
thin vortex by the motion of a curve propagating in R3 along its binormal with curvature
as speed, i.e.,

γt = kb.

This is the vortex filament equation (VFE). It was much later, in 1971, that Hasimoto
showed in [30] the equivalence of VFE with the NLS,

qt = i(qxx + 2|q|2q).

In fact, if γ(x, t) is a solution of VFE, then there exists a function θ(t) such that

q(x, t) = k(x, t) exp(i(θ(t)−
∫ x

−∞
τ(s, t)ds))

is a solution of the NLS, where k, τ are the curvature and torsion of the curve. This corre-
spondence between the VFE and NLS given above uses the Frenet frame. If we use the
parallel normal frame, then the correspondence can be stated as follows: If γ is a solution
of the VFE, then there exists an orthonormal moving frame g = (e1, e2, e3) : R2 → SO(3)
such that

g−1gx =

 0 −k1 −k2
k1 0 0
k2 0 0

,

and q = k1 + ik2 is a solution of the NLS, where e1(·, t) is tangent to the curve γ(·, t), e2(·, t)
and e3(·, t) are parallel normal fields along γ(·, t), and k1(·, t) and k2(·, t) are the principal
curvatures along e2(·, t) and e3(·, t) respectively. Since the NLS is a soliton equation, we can
use techniques in soliton theory to study geometric and Hamiltonian aspects of the VFE.

The NLS admits an so(3) valued Lax pair with phase space C∞(R, V), where

V =


 0 −k1 −k2

k1 0 0
k2 0 0

 ∣∣∣∣ k1, k2 ∈ R

.

Please note that the differential invariants constructed from the parallel frames for
curves in R3 lie in C∞(R, V). Hence a good way to construct integrable curve flows on
a homogeneous space M = G · p0 = G/H is to find a class of curves in G/H, which has
a moving frame g : R → G so that γ = g · p0, g−1gx gives a complete set of differential
invariants, and g−1gx lies in the phase space of a soliton equation. A more detailed
discussion of how to use this scheme to construct integrable curve flows can be found
in [31].

There are many recent works on integrable geometric curve flows in homogeneous
spaces. For example, Langer-Perline studied Poisson structures and local geometric in-
variants of the VFE in [32,33], and constructed curve flows that relate to Fordy-Kulish
NLS type hierarchies associated with Hermitian symmetric spaces in [34]. Doliwa-Santini
constructed curve flows in R2 and R3 that give the mKdV and NLS respectively in [35].
Ferapontov gave hydro-dynamic type curve flows on homogeneous isoparametric hyper-
surfaces in sphere in [36]. Yasui-Sasaki studied the integrability of the VFE in [37]. Chou-Qu
constructed integrable curve flows in affine plane in [38] and integrable curve flows in
the plane for all Klein geometries in [39]. Anco constructed integrable curve flows on the
symmetric space U

K in [40]. Sanders-Wang studied curve flows in Rn whose curvatures
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are solutions of the vector mKdV in [41]. Terng-Thorbergsson constructed curve flows
on Adjoint orbits of a compact Lie group G that relate to the n-wave equation associated
with G in [42], Terng-Uhlenbeck explained the relation between the Schrödinger flow on
compact Hermitian symmetric space and the Fordy-Kulish NLS system and wrote down a
bi-Hamiltonian structure, geometric conservation laws, and commuting curve flows in [43]
for the Schrödinger flows. Terng constructed Darboux transforms and explicit soliton
solutions of the Airy curve flow in Rn in [44]. Mari Beffa gave natural Poisson structures on
semi-simple homogeneous spaces and discussed their relations to integrable curve flows
in [45,46]. Readers are referred to these papers for more references.

Drinfeld and Sokolov in [11] associated with each affine Kac-Moody algebra Ĝ a
hierarchy of soliton equations of KdV type, which will be called the Ĝ-KdV hierarchy. It was
proved in [11] that the KdV hierarchy is the Â(1)

1 -KdV hierarchy and the Gelfand-Dickey

hierarchy is the Â(1)
n−1-KdV hierarchy.

There are recent works on integrable curve flows on flat spaces whose differential in-
variants satisfy the Ĝ-KdV hierarchies. The first example was given by Pinkall, who in [47]
constructed a hierarchy of central affine curve flows on R2 invariant under the group
SL(2,R) and showed that their differential invariant (the central affine curvature) satisfies
the KdV hierarchy. Calini-Ivey-Mari Beffa in [48] (for n = 3) and Terng and Wu in [49]
(for general n) constructed a hierarchy of curve flows on the affine space Rn invariant under
SL(n,R) whose differential invariants satisfy the Â(1)

n−1-KdV hierarchies. Terng and Wu
also constructed in [50] two hierarchies of curve flows on Rn+1,n, whose differential invari-
ants under the group O(n + 1, n) are solutions of the B̂(1)

n -KdV and Â(2)
2n -KdV hierarchies

respectively. In this paper, we construct two hierarchies of curve flows on the symplectic
space R2n whose differential invariants under the symplectic group are solutions of the
Ĉ(1)

n -KdV and the Â(2)
2n−1-KdV hierarchies respectively.

We need to set up some more notations before we explain our results. Let R2n be the
symplectic space with the symplectic form

ω(X, Y) = XtSnY, where Sn =
2n

∑
i=1

(−1)i+1ei,2n+1−i, (1)

Sp(2n) = {g ∈ GL(2n,R) | gtSng = Sn} the group of linear isomorphisms of R2n that
preserves w, and

sp(2n) = {A ∈ sl(2n) | AtSn + Sn A = 0}

the Lie algebra of Sp(2n). A linear subspace V of R2n is isotropic if ω(x, y) = 0 for all
x, y ∈ V. A maximal isotropic subspace has dimension n, and is called Lagrangian. The
action of Sp(2n) on the space of Lagrangian subspaces of R2n defined by g · V = gV
is transitive.

Definition 1. A smooth map γ : R→ R2n is a Lagrangian curve if

(i) γ(s), γs(s), . . . , γ
(2n−1)
s (s) are linearly independent for all s ∈ R,

(1) the span of γ(s), . . . , γ
(n−1)
s (s) is a Lagrangian subspace of R2n for all s ∈ R,

where γ
(i)
s = diγ

ds .

We show that if γ : R → R2n is Lagrangian then there exists a unique orientation
preserving parameter x = x(s) such that ω(γ

(n)
x , γ

(n−1)
x ) = (−1)n. We call such parameter

the Lagrangian parameter for γ.
Let

M2n =
{

γ ∈ R2n | γ is Lagrangian, ω(γ
(n)
s , γ

(n−1)
s ) = (−1)n

}
.

Vn = ⊕n
i=1Ren+1−i,n+i, where⊕ is the direct sum.



Symmetry 2021, 13, 298 4 of 38

We prove that given γ ∈ M2n, there exists a unique g = (g1, . . . , g2n) : R→ Sp(2n)
such that gi = γ

(i−1)
x for 1 ≤ i ≤ n + 1 and

g−1gx = b + u

for some u = ∑n
i=1 uien+1−i,n+i ∈ C∞(R, Vn), where

b =
n−1

∑
i=1

ei+1,i. (2)

We call this g the Lagrangian moving frame and u = ∑n
i=1 uien+1−i,n+i the Lagrangian

curvature along γ.
It is easy to see that

γ(x) = (1, x,
x2

2!
, · · · ,

x2n−1

(2n− 1)!
)t

is inM2n with Lagrangian frame g(x) = exp(bx) and zero Lagrangian curvature.

Definition 2. The Lagrangian curvature map

Ψ :M2n → C∞(R, Vn),

is defined by Ψ(γ) = u, where u is the Lagrangian curvature of γ ∈ M2n.

It follows from the theory of existence and uniqueness of solutions of ordinary differen-
tial equations that the Lagrangian curvatures form a complete set of differential invariants
for curves inM2n.

A Lagrangian curve flow is an evolution equation onM2n, i.e., the flow preserves the
Lagrangian parameter. Such flow can be written in the form γt = gξ(u) so that gξ(u)
is tangent to M2n at γ, where g(·, t) and u(·, t) are the Lagrangian moving frame and
Lagrangian curvature along γ(·, t) and ξ(u) is a R2n×1 valued differential polynomial of u
in x variable.

Please note that when n = 1, we have sp(2) = sl(2,R), ω(X, Y) = det(X, Y), the
Lagrangian parameter, frame, curvature are the central affine parameter, frame, central
affine curvature on R2 under the group SL(2,R), and the Lagrangian curve flows on R2

are the central affine curve flows studied in [47] (see also in [51,52]). For example,

γt =
ux

4
γ− u

2
γx

is a Lagrangian flow on R2 and its Lagrangian curvature u satisfies the KdV,

ut =
1
4
(uxxx − 6uux).

In this paper, we construct two hierarchies of Lagrangian curve flows on R2n whose La-
grangian curvatures are solutions of the Ĉ(1)

n -KdV and Â(2)
2n−1-KdV hierarchies respectively.

In particular, we obtain the following results:

(1) We construct a sequence of commuting Lagrangian curve flows of C-type and A-type
respectively onM2n such that the third flows are

γt = −
3

4n
(u1)xγ− 3

2n
u1γx + γxxx, (3)

γt = −
3

2n− 1
u1γx + γxxx (4)
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respectively, where u1 is the first Lagrangian curvature.
(2) The Lagrangian curvature map Ψ maps the space of solutions of Lagrangian curve

flows of C-type (A-type resp.) modulo Sp(2n) bijectively onto the space of solutions
of Ĉ(1)

n -KdV (Â(2)
2n−1-KdV resp.) flows. For example, the Lagrangian curvatures u1, u2

of a solution γ of (3) and (4) satisfy the third Ĉ(1)
2 -KdV flow{

(u1)t = − 5
4 u(3)

1 + 3u′2 +
3
4 u1u′1,

(u2)t = − 3
8 u(5)

1 + u(3)
2 + 3

8 (u1u(3)
1 + u′1u′′1 )−

3
4 u1u′2.

(5)

and the third Â(2)
3 -KdV flow{

(u1)t = 3(u2)x,
(u2)t = (u2)xxx − (u1u2)x

(6)

respectively.
(3) A bi-Hamiltonian structure and commuting conservation laws for Lagrangian curve

flows of C- and A-types are given. For example, the curve flows (3) and (4) are
Hamiltonian flows for functionals

F̂3(γ) =
∮

u2 +
2n− 3

4n
u2

1dx

Ĥ3(γ) =
∮

u2 +
n− 2

2n− 1
u2

1dx

respectively onM2n with respect to the second Hamiltonian structure, where u is the
Lagrangian curvature of γ.

(4) We construct Darboux transforms (DTs), Permutability formulas, scaling transforms,
and give an algorithm to compute explicit soliton solutions of these flows.

This paper is organized as follows: We construct Lagrangian moving frames in
Section 2, and review the constructions of the Ĉ(1)

n -KdV and Â(2)
2n−1-KdV hierarchies in

Section 3. Lagrangian curve flows of C- and A- types and the evolutions of their La-
grangian curvatures are given in Section 4. In Section 5, we construct Darboux transforms
(DTs) and a Permutability formula for the Ĉ(1)

n -KdV and for the Lagrangian curve flows of
C-type. DTs for the A case and its Permutability formula are given in Section 6. The scaling
transforms are given in Section 7. Bi-Hamiltonian structures and commuting conserved
functionals are given in Section 8. We give an outline of a method for constructing inte-
grable curve flows whose differential invariants satisfy the Ĝ(1)-KdV hierarchy for general
simple real non-compact Lie algebra G and give some open problems in the last section.

2. Lagrangian Moving Frame

In this section, we prove the existence of Lagrangian parameter and construct the
Lagrangian moving frame and curvatures for Lagrangian curves (cf. Definition 1).

Proposition 1. If γ : R → R2n is a Lagrangian curve, then there exists a unique Lagrangian
parameter x = x(s), i.e., ω(γ

(n)
x , γ

(n−1)
x ) = (−1)n.

Proof. If ω(γ
(n)
s , γ

(n−1)
s ) is zero at s0, then it follows from ω(γ

(i)
s , γ

(j)
s ) = 0 for all 0 ≤

i, j ≤ n− 1 that ω(γ
(n)
s , γ

(i)
s ) = 0 at s0. Hence γ(s0), γs(s0), . . ., γ

(n)
s (s0) span an (n + 1)-

dimension isotropic subspace. However, the maximal dimension of an isotropic subspace
is n, a contradiction. Hence ω(γ

(n)
s , γ

(n−1))
s ) never vanishes. Choose x = x(s) such that

(dx
ds )

2n−1 = (−1)nω(γ
(n)
s , γ

(n−1)
s ).
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Theorem 1. If γ ∈ M2n, then there exists a unique Lagrangian moving frame g along γ, i.e.,
g−1gx = b + ∑n

i=1 uien+1−i,n+i for some u1, . . . , un, where b is defined by (2).

Proof. Let u1 = (−1)n−1ω(γ
(n+1)
x , γ

(n)
x ), and gn+2 = γ

(n+1)
x − u1γ

(n−1)
x . We derive gi’s

and ui’s by the recursive formula:

uj = (−1)n−jω((gn+j)x, gn+j) = (−1)n−jω(dn+j
x γ, gn+j), 2 ≤ j ≤ n− 1,

gn+j+1 = dxgn+j − ujγ
(n−j)
x , 2 ≤ j ≤ n− 1,

un = ω((g2n)x, g2n).

Then g = (γ, . . . , γ
(n)
x , gn+2, . . . , g2n) satisfies g−1gx = b + u, i.e., g is a Lagrangian

moving frame along γ.

Example 1. For n = 1, we have ω(X, Y) = det(X, Y), thus γ ∈ M2 if and only if det(γ, γx) =
1. So the Lagrangian parameter is the central affine parameter, the Lagrangian frame along γ is
g = (γ, γx) is the central affine moving frame along γ, and the Lagrangian curvature is the central
affine curvature. Moreover,

g−1gx =

(
0 u1
1 0

)
.

Example 2. The Lagrangian frame g = (γ, γx, γxx, g4) along γ ∈ M4 satisfies

g−1gx =


0 0 0 u2
1 0 u1 0
0 1 0 0
0 0 1 0

,

where

u1 = −ω(γ
(3)
x , γxx), u2 = ω((g4)x, g4) = ω(γ

(4)
x , γ), g4 = γ

(3)
x − u1γx.

It follows from the Existence and Uniqueness of ordinary differential equations that
{u1, · · · , un} forms a complete set of local differential invariants for γ ∈ M2n under the
Sp(2n)-action. So we have the following:

Proposition 2. The Lagrangian curvature map Ψ :M2n → C∞(R, Vn) defined by Definition 2
is onto and Ψ−1(u) is a Sp(2n)-orbit.

Example 3. A Lagrangian curve in R2n with zero Lagrangian curvature is of the form:

γ = c0(1, x,
x2

2
, · · · ,

x2n−1

(2n− 1)!
)t, c0 ∈ Sp(2n).

3. The Ĉ(1)
n -KdV and the Â(2)

2n−1-KdV Hierarchies

In this section, we review the constructions of the Ĉ(1)
n -, Â(2)

2n−1-, Ĉ(1)
n -KdV, and Â(2)

2n−1-
KdV hierarchies and derive some elementary properties of these hierarchies (cf. [11,53]).

3.1. The Ĉ(1)
n -KdV Hierarchy

A splitting of a Lie algebra L is a pair of Lie subalgebras L+,L− such that L =
L+ ⊕L− as linear subspaces (but not as subalgebras). For ξ ∈ L, we write

ξ = ξ+ + ξ−, where ξ+ ∈ L+, ξ− ∈ L−.
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A vacuum sequence is a linearly independent, commuting sequence {Jj | j ≥ 1} in L+.
Let

Sp(2n,C) = {A ∈ GL(2n,C) | AtSn A = Sn},

and sp(2n,C) its Lie algebra. Then sp(2n) is a real form of sp(2n,C) defined by the
involution τ(A) = Ā.

Let

Ĉ(1)
n :=

{
A = ∑

i
Aiλ

i | Ai ∈ sp(2n)

}
,

(Ĉ(1)
n )+ =

{
∑
i≥0

Aiλ
i ∈ Ĉ(1)

n

}
, (Ĉ(1)

n )− =

{
∑
i<0

Aiλ
i ∈ Ĉ(1)

n

}
.

Then ((Ĉ(1)
n )+, (Ĉ(1)

n )−) is a splitting of Ĉ(1)
n .

Please note that ξ(λ) = ∑i ξiλ
i is in Ĉ(1)

n if and only if ξ satisfy the sp(2n)-reality
condition, i.e.,

ξ(λ)tSn + Snξ(λ) = 0, ξ(λ̄) = ξ(λ).

A meromorphic map f : C→ SL(2n,C) is said to satisfy the Sp(2n)-reality condition if

f (λ)tSn f (λ) = Sn, f (λ̄) = f (λ). (7)

For ξ(λ) = ∑i ξiλ
i, we have

ξ+(λ) = ∑
i≥0

ξiλ
i, ξ−(λ) = ∑

i<0
ξiλ

i.

Let B+
n and N+

n denote the subgroups of upper, strictly upper triangular matrices in
Sp(2n) respectively, and B+n ,N+

n the corresponding Lie subalgebras of sp(2n).
Set

J =
2n−1

∑
i=1

ei+1,i + e1,2nλ = b + e1,2nλ ∈ (Ĉ(1)
n )+.

Then

Ji = (bt)n−iλ + bi, 1 ≤ i ≤ 2n− 1, (8)

J2n = λI2n. (9)

It is easy to check that J2j−1 is in (Ĉ(1)
n )+, but J2j is not. So {J2j−1 | j ≥ 1} is a vacuum

sequence. Note that
[J, (Ĉ(1)

n )−]+ = B+n .

Next we use the general method given in [53] to construct the Ĉ(1)
n -hierarchy generated

by the vacuum sequence {J2j−1 | j ≥ 1}. First a direct computation gives the following
known results:

Theorem 2 ([49,53]). Given q ∈ C∞(R,B+n ), then there exists a unique

P(q, λ) = ∑
i≤1

P1,i(q)λi

in Ĉ(1)
n satisfying {

[∂x + J + q, P(q, λ)] = 0,
P2n(q, λ) = λI2n.

(10)
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Moreover, P1,i(q) can be computed recursively by equating the coefficients of λi in (10) and
they are polynomials in u and x-derivatives of u (i.e., a differential polynomial in u).

Please note that if operators A, B commute, then A and Bj also commute. Hence it
follows from the first equation of (10) that we have

[∂x + J + q, P2j−1(q, λ)] = 0. (11)

Write the power series

P2j−1(q, λ) = ∑
i

P2j−1,i(q)λi. (12)

We compare coefficient of λi of (11) to obtain

[∂x + b + q, P2j−1,i(q)] = [P2j−1,i−1(q), e1,2n], (13)

which implies that the left hand side lies in B+n . So

qt2j−1 = [∂x + b + q, P2j−1,0(q)], j ≥ 1. (14)

defines a flow on C∞(R,B+n ). We call (14) the (2j− 1)-th Ĉ(1)
n -flow.

We need the following well-known elementary result to explain the Lax pair:

Proposition 3. Let G be the Lie algebra of G, and A, B : R2 → G smooth maps. Then the following
statements are equivalent:

(1) the linear system {
gx = gA,
gt = gB

is solvable for g : R2 → G,
(2) A, B satisfy

At = Bx + [A, B] = [∂x + A, B],

(3) [∂x + A, ∂t + B] = 0.

Proposition 4. The following statements are equivalent for smooth q : R2 → B+n :

(1) q is a solution of (14),
(2) the following linear system is solvable for h : R2 → Sp(2n),{

h−1hx = b + q,
h−1ht = P2j−1,0(q).

(15)

(3) the following linear system is solvable for F(x, t, λ) ∈ SL(2n,C),
Fx = F(J + q),
Ft = F(P2j−1(q, λ))+,
F(x, t, λ)tSnF(x, t, λ) = Sn, F(x, t, λ̄) = F(x, t, λ).

(16)

The last equation says that F(x, t, λ) satisfies the Sp(2n)-reality condition (7) in λ.

Proof. Equation (13) implies that the coefficients of λi for i > 0 of

[∂x + J + q, ∂t + (P2j−1(q, λ))+]
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are zero. The constant term is [∂x + b + q, ∂t + P2j−1,0(q)]. This proves that [∂x + J +
q, ∂t + (P2j−1(q, λ))+] = 0 is equivalent to [∂x + b + q, ∂t + P2j−1,0(q)] = 0. It follows from
Proposition 3 that (2) and (3) are equivalent.

Equation (14) can be written as

(b + q)t = (P2j−1,0(q))x + [b + q, P2j−1,0(q)].

It follows from Proposition 3 that (1) and (2) are equivalent.

The group C∞(R, N+
n ) acts on C∞(R,B+n ) by gauge transformation,

f (∂x + b + q) f−1 = ∂x + b + f ∗ q (17)

for f ∈ C∞(R, N+
n ) and q ∈ C∞(R,B+n ), where

f ∗ q = f (b + q) f−1 − fx f−1 − b. (18)

The following Proposition shows that C∞(R, Vn) is a cross-section of this gauge action.

Proposition 5. Given q ∈ C∞(R,B+n ), then there exist a unique 4 ∈ C∞(R, N+
n ) and u =

∑n
i=1 uien+1−i,n+i in C∞(R, Vn) such that

4(∂x + J + q)4−1 = ∂x + J + u. (19)

In particular, u = 4 ∗ q.

Proof. Let Gj = ⊕2n−j
i=1 Rei,i+j, G−j = ⊕2n−j

i=1 Rei+j,i for 0 ≤ j ≤ 2n − 1. Equation (19)
implies that

4(J + q)−4x = (J + u)4. (20)

Proposition is proved by equating components of Gj of (20) for |j| ≤ 2n− 1.

It can be checked by the same method for the Â(1)
n -hierarchy (cf. [53]) that flow (14) is

invariant under the C∞(R, N+
n )-action. So given u ∈ C∞(R, Vn) and j ≥ 1, there exists a

unique N+
n -valued differential polynomial ηj(u) satisfying

[∂x + J + u, (P(u)2j−1)+ − ηj(u)] ∈ C∞(R, Vn). (21)

The induced quotient flow of (14) on the cross-section C∞(R, Vn) is obtained by
projecting (14) down along gauge orbits. So the induced quotient flow on C∞(R, Vn) is

ut2j−1 = [∂ + J + u, P2j−1,0(u)− ηj(u)]. (22)

The above equation is the (2j− 1)-th Ĉ(1)
n -KdV flow.

As a consequence of the construction, we have the following.

Proposition 6. The following statements are equivalent for smooth u : R2 → Vn:

(i) u is a solution of (22),
(ii) [∂x + J + u, ∂t + (P2j−1(u, λ))+ − ηj(u)] = 0.
(iii) The following linear system is solvable for g : R2 → Sp(2n),{

g−1gx = b + u,
g−1gt = P2j−1,0(u)− ηj(u).

(23)
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(iv) The following linear system is solvable for E(x, t, λ) ∈ SL(2n,C) for all parameter λ ∈ C,
Ex = E(J + u),
Et = E((P2j−1(u, λ))+ − ηj(u)),
E(x, t, λ)tSnE(x, t, λ) = Sn, E(x, t, λ̄) = E(x, t, λ).

(24)

Example 4. The third Ĉ(1)
1 -KdV flow is the KdV for q = u1:

qt =
1
4
(qxxx − 6qqx).

Example 5. The third Ĉ(1)
2 -KdV flow

The Ĉ(1)
2 -KdV flows are for u = u1e23 + u2e14. We compare coefficients of λi in (10) to

compute P1,i(q). Then P2j−1,i(q) can be computed from P1,k(q)’s. We obtain the first few terms
of P3(q, λ):

P3,1(u) =


0 1 0 − 3

4 u1
0 0 1 0
0 0 0 1
0 0 0 0

,

P3,0(u) =


− 3

8 u′1 u2 − 3
8 u′′1 u′2 − 3

8 (u1)
(3)
x ξ

1
4 u1 − 1

8 u′1 − 1
2 u′′1 + u2 +

1
4 u2

1 −u′2 +
3
8 (u1)

(3)
x

0 1
4 u1

1
8 u′1 u2 − 3

8 u′′1
1 0 1

4 u1
3
8 u′1

, where

ξ = −3
8
(u1)

(4)
x + u′′2 +

3
8

u1u′′1 −
3
4

u1u2.

Therefore the third Ĉ(1)
2 -KdV flow is (5).

3.2. The Â(2)
2n−1-KdV Hierarchy (n ≥ 2)

Let κ be the involution of sl(2n,C) defined by

κ(X) = −SnXtS−1
n ,

where Sn is as in (1). Then the fixed point set of κ is sp(2n,C) and the −1 eigen-space of κ
in sl(2n) is

P2n = {ξ ∈ sl(2n) | ξ = SnξtS−1
n }.

Let

Â(2)
2n−1 =

{
A(λ) = ∑

i≤m0

Aiλ
i | Ai ∈ sl(2n,R), κ(A(−λ)) = A(λ)

}
,

and

(Â(2)
2n−1)+ =

{
∑
i≥0

Aiλ
i ∈ Â(2)

2n−1

}
, (Â(2)

2n−1)− =

{
∑
i<0

Aiλ
i ∈ Â(2)

2n−1

}
.

Then ((Â(2)
2n−1)+, (Â(2)

2n−1)−) is a splitting of Â(2)
2n−1.

Please note that the following are equivalent for A(λ) = ∑i Aiλ
i:

(1) A ∈ Â(2)
2n−1,

(2) A2i ∈ sp(2n) and A2i+1 ∈ P2n for all i,
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(3) A satisfies
−Sn A(−λ)tS−1

n = A(λ), A(λ̄) = A(λ).

Set
β =

1
2
(e1,2n−1 + e2,2n). (25)

JB =
1
2
(e1,2n−1 + e2,2n)λ +

2n−1

∑
i=1

ei+1,i = βλ + b.

Please note that J2i−1
B ∈ (Â(2)

2n−1)+ and

J2n
B = λJB.

Then {J2j−1
B | j ≥ 1} is a vacuum sequence in (Â(2)

2n−1)+.

Next we use the general method given in [53] to construct the Â(2)
2n−1-hierarchy gener-

ated by {J2j−1
B | j ≥ 1}. Similarly, we have the following:

Theorem 3. Given q ∈ C∞(R,B+n ) and j ∈ Z, then there exists a unique

Q(q, λ) = ∑
i≤1

Q1,i(q)λi ∈ Â(2)
2n−1

satisfying {
[∂x + JB + q, Q(q, λ)] = 0,
Q2n(q, λ) = λQ(q, λ).

(26)

Moreover, Q1,i(q)’s are polynomial differentials in q and derivatives of q and can be computed
recursively by equating the coefficient of λi of (26).

Proof. It was proved in [11] that given any ξ = ∑i≤i0 ξiλ
i ∈ sl(2n,R), there exists unique

diagonal matrices hi such that
ξ = ∑

j≤2n(i0+1)
hi J j,

where J = b + e1,2nλ.
Given permutation s in S2n and h = diag(h1, . . . , h2n), let

hs = diag(hs(1), . . . , hs(2n)).

Let θ ∈ S2n be the cyclic permutation defined by θ(1) = 2n, and θ(i) = i − 1 for
2 ≤ i ≤ 2n. A simple computation implies that

Jh = hθ J, Jih = hθi
Ji. (27)

Please note that

1
2
(e1,2n−1 + e2n) = diag(

1
2

,
1
2

, 0, . . . , 0)J2.

q =
2n

∑
i=1

ki Ji−2n,

where q = (qij) and ki are diagonal matrices defined by

ki = diag(q1,2n−i+1, q2,2n−i+2, . . . , qi,2n, 0, . . . , 0).
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Write

Q(q, λ) = diag(
1
2

,
1
2

, 0, . . . , 0)J2 + diag(0, 1, . . . , 1)J + ∑
j≤0

hj J j,

We compare the coefficients of J j’s of both sides of each equation in (26) and use (27)
to solve hj uniquely as differential polynomial of q. This gives the formula for Q(q, λ).
We plug in Formulas (8) and (9) to obtain Q1,j(q)’s.

The first equation of (26) implies that

[∂x + JB + q, Q2j−1(q, λ)] = 0. (28)

Write Q2j−1(q, λ) as a power series in λ,

Q2j−1(q, λ) = ∑
i

Q2j−1,i(q)λi. (29)

We compare the coefficient of λi of (28) to obtain

[∂x + b + q, Q2j−1,i(q)] = [Q2j−1,i−1(q), β], (30)

where β is defined by (25). So the left hand side of (30) is B+n -valued and

qt2j−1 = [∂x + b + q, Q2j−1,0(q)], j ≥ 1, (31)

is a flow on C∞(R,B+n ). This is the (2j− 1)-th flow in the Â(2)
2n−1-hierarchy.

We use the same proof of Proposition 4 to obtain the following:

Proposition 7. The following statements are equivalent for smooth q : R2 → B+n :

(i) q is a solution of (31).
(ii) The following linear system is solvable for smooth g : R2 → Sp(2n),{

g−1gx = b + q,
g−1gt = Q2j−1,0(u).

(32)

(iii) The following linear system is solvable for F(x, t, λ) ∈ SL(2n,C) for all parameter λ ∈ C,
Fx = F(JB + q),
Ft = F((Q2j−1(u, λ))+,
F(x, t, λ)tSnF(x, t,−λ) = Sn, F(x, t, λ̄) = F(x, t, λ).

It follows from Proposition 5 that there exist a unique 4 ∈ C∞(R, N+
n ) and u ∈

C∞(R, Vn) such that u = 4 ∗ q. So given u ∈ C∞(R, Vn) and j ≥ 1, there exists a unique
ξ j(u) ∈ C∞(R,N+

n ) such that

[∂x + b + u, Q2j−1,0(u)− ξ j(u)] ∈ C∞(R, Vn). (33)

The (2j− 1)-th Â(2)
2n−1-KdV flow is the following flow on C∞(R, Vn):

ut2j−1 = [∂x + b + u, Q2j−1,0(u)− ξ j(u)]. (34)

Proposition 8. The following statements are equivalent for smooth u : R2 → Vn:

(i) u is a solution of (34).
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(ii) The following linear system is solvable for g : R2 → Sp(2n),{
g−1gx = b + u,
g−1gt = Q2j−1,0(u)− ξ j(u).

(35)

(iii) The following linear system is solvable for E(x, t, λ) ∈ SL(2n,C) for all λ ∈ C,
Ex = E(JB + u),
Et = E(Q2j−1(u, λ))+ − ξ j(u)),
E(x, t, λ)tSnE(x, t,−λ) = Sn, E(x, t, λ̄) = E(x, t, λ).

Example 6. We use (26) to compute Q1,i(u), then use these to compute Q3,0(u). A direct compu-
tation implies that the third Â(2)

3 -KdV flow is (6).

Definition 3. F(x, t, λ) (E(x, t, λ) resp.) is a frame of a solution q : R2 → B+n of (14) (u : R2 →
Vn of (22) resp.) if F(x, t, λ) (E(x, t, λ) resp.) is holomorphic for all λ ∈ C and satisfies the linear
system (16) ((24) resp.). Frames for solutions of (31) and (34) are defined similarly.

It follows from the constructions of the Ĉ(1)
n -KdV and Â(2)

2n−1-KdV flows that we have
the following.

Proposition 9.

(1) Let F(x, t, λ) be a frame of a solution q : R2 → B+n of (14) ((31) resp.), and the unique
4 : R2 → N+

n such that u := 4 ∗ q is Vn-valued (as in Proposition 5). Then u is a solution
of (22) ((34) resp.) and E(x, t, λ) = F(x, t, λ)4−1(x, t) is a frame of u, where ∗ is the gauge
action defined by (18) or equivalently (17).

(2) Let E be a solution u : R2 → Vn of (22) ((34) resp.), and 4 : R2 → N+
n satisfying

4t4−1 = ηj(u) (4t4−1 = ξ j(u) resp.), where ηj(u) (ξ j(u) resp.) is defined by (21) ( (33)
resp.). Then q := 4−1 ∗ u is a solution of (14) ((31) resp.) and F = E4 is a frame of q.

4. Lagrangian Curve Flows on R2n

In this section, we

(i) give a description of the tangent space ofM2n at γ and show that it is isomorphic to
C∞(R,Rn),

(ii) construct two hierarchies of Lagrangian curve flows whose curvatures satisfy the

Ĉ(1)
n -KdV and the Â(2)

2n−1-KdV flows respectively.

Henceforth in this paper we set

e1 = (1, 0, . . . , 0)t ∈ R2n.

Theorem 4. Let g and u denote the Lagrangian frame and Lagrangian curvature along γ ∈ M2n,
and Ψ :M2n → C∞(R, Vn) the Lagrangian curvature map. Then

dΨγ(δγ) = [∂x + b + u, g−1δg], (36)

where b = ∑2n−1
i=1 ei+1,i. Moreover,

(1) C : R→ sp(2n) satisfies
[∂x + b + u, C] ∈ C∞(R, Vn). (37)

if and only if gCe1 is tangent toM2n at γ,
(2) if ξ is tangent toM2n at γ then there exists a unique smooth C : R→ sp(2n) satisfying (37)

such that ξ = gCe1.
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Proof. A direct computation gives (36) (cf. [49]).
Suppose δγ is tangent toM2n at γ. By (36), dΨγ(δγ) = [∂ + b + u, g−1δg] is in Vn.

So C := g−1δg satisfies (37).
Suppose C satisfies (37). Let ηi denote the i-th column of gC. Please note that ξ is

tangent toM2n at γ if and only if{
ω(ξ

(i)
x , γ

(j)
x ) + ω(γ

(i)
x , ξ

(j)
x ) = 0, 1 ≤ i, j ≤ n− 1,

ω(ξ
(n−1)
x , γ

(n)
x ) + ω(γ

(n−1)
x , ξ

(n)
x ) = 0.

(38)

To prove η1 satisfies (38), we let ρ = [∂x + b + u, C]. Then

(gC)x = gxC + gCx = gC(b + u) + gρ.

Since ρ ∈ Vn, ηi = (η1)
(i−1)
x for 1 ≤ i ≤ n + 1. By

(gC)tSng + gtSngC = CtgtSng + gtSngC = CtSn + SnC = 0,

so η1 satisfies (38).

By (14) and (33), we see that both P2j−1,0(u)− ηj(u) and Q2j−1,0(u)− ξ j(u) satisfy (37).
So it follows from Theorem 4 that

γt = g(P2j−1,0(u)− ηj(u))e1, γt = g(Q2j−1,0(u)− ξ j(u))e1

are flows onM2n. Since ηj(u) and ξ j(u) are all strictly upper triangular, we have

ηj(u)e1 = ξ j(u)e1 = ζ j(u)e1 = 0.

Hence we have the following.

Proposition 10. Let g and u be the Lagrangian moving frame and Lagrangian curvature along
γ ∈ M2n respectively. Then

γt = g(P2j−1,0(u)− ηj(u))e1 = gP2j−1,0(u)e1, (39)

γt = g(Q2j−1,0(u)− ξ j(u))e1 = gQ2j−1,0(u)e1, (40)

are Lagrangian curve flows on M2n, where P2j−1,0(u), Q2j−1,0(u), ηj(u), and ξ j(u) are given
by (12), (29), (21), and (33) respectively.

We call (39) and (40) the (2j − 1)-th Lagrangian curve flow on M2n of C-type and A-
type respectively.

Example 7. Lagrangian curve flows of C-type

(i) When n = 1, sp(2) = sl(2,R), the symplectic form ω(ξ, η) defined by (1) is det(ξ, η),
γ ∈ M2 if and only if γ satisfies det(γ, γx) = 1, and the Lagrangian parameter, moving
frame, and curvature for γ ∈ M2 are the central affine parameter, moving frame and curvature
respectively. The third Ĉ(1)

1 -KdV is the KdV,

qt =
1
4
(qxxx − 6qqx). (41)

The third Lagrangian curve flow of C-type onM2 is

γt =
1
4
(u1)xγ− 1

2
u1γx, (42)
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which is the third central affine curve flow on the affine plane (cf. [47]). Moreover, if γ is a
solution of (42), then its Lagrangian curvature is a solution of the KdV (41).

(ii) Let g = (γ, γx, γxx, g4) be the Lagrangian moving frame of γ ∈ M4, and u1, u2 the
Lagrangian curvatures as in Example 2. From Example 5, we see that the first column of
P3,0(u) is

(−3
8
(u1)x,

1
4

u1, 0, 1)t.

So the third Lagrangian curve flow of C-type onM4 is

γt = −
3
8
(u1)xγ +

1
4

u1γx + g4,

where g4 is the fourth column of the Lagrangian frame of γ. This is the curve flow (3) for
n = 2 because g4 = γxxx − u1γx (given in Example 2).
Similar computation implies that the first column of P5,0(u) is

(− 5
32

(u1)
(3)
x +

3
8
(u2)x +

5
32

u1(u1)x,
1

16
(u1)

(2)
x −

1
4

u2 −
3
32

u2
1,

1
8
(u1)x,−1

4
u1)

t.

Hence the fifth Lagrangian curve flow of C-type onM4 is

γx = (− 5
32

(u1)
(3)
x +

3
8
(u2)x +

5
32

u1(u1)x)γ

+ (
1

16
(u1)

(2)
x −

1
4

u2 −
3

32
u2

1)γx +
1
8
(u1)xγxx −

1
4

u1g4.

(iii) We use Equation (10) to compute P1,i(u) and the first column of P3,0(u) for general n.
Then we see that the third Lagrangian curve flow of C-type onM2n for n ≥ 3 is (3).

Example 8. Lagrangian curve flows of A-type
We use the algorithm given in Theorem 3 to compute Q1,i(u). Then we use these Q1,i(u)’s to

compute Qi,0(u). Then we obtain the following:

(i) The third Lagrangian curve flow of A-type onM4 is

γt = γ
(3)
x − u1γx. (43)

The fifth Lagrangian curve flow of A-type onM4 is

γt = (−5
3
(u2)x −

1
9
(u1)

(3)
x +

1
6

u1(u1)x)γ−
1
9
(6u2 + (u1)

(2)
x + u2

1)γx

+
1
3
(u1)xγxx −

2
3

u1g4.

(ii) The third Lagrangian curve flow of A-type onM2n(n ≥ 2) is (4). Since γ
(3)
x = u1γx + g4,

(4) becomes (43) when n = 2.

Theorem 4 (1) states that gξ is tangent toM2n at γ if and only if there is a C satis-
fying (37) and ξ = Ce1. So to get a better description of the tangent space ofM2n at γ,
we need to understand properties of C that satisfies (37).

Theorem 5. Let u ∈ C∞(R, Vn) and v = ∑n
i=1 vien+i,n+1−i : R → Vt

n a smooth map. Let π0 :
sp(2n)→ Vt

n be the linear projection onto Vt
n defined by

π0(y) =
n

∑
i=1

yn+i,n+1−ien+i,n+1−i, y = (yij). (44)
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If C = (Cij) : R→ sp(2n) satisfies

[∂x + b + q, C] ∈ C∞(R, Vn), π0(C) = v, (45)

then we have the following:

(i) There exists differential polynomial φij(u, v) that is linear in v such that Cij = φij(u, v) for
all 1 ≤ i, j ≤ 2n, and φn+i,n+1−i(u, v) = vi for 1 ≤ i ≤ 2n.

(ii) φ2i,1(u, v) = vi + φi for 1 ≤ i ≤ n, where φi’s are differential polynomials in u, vi+1, · · · , vn.
(iii) There exist differential polynomials h2i+1 for 0 ≤ i ≤ n− 1 such that

C2i+1,1 = h2i+1(u, C2i+2,1, · · · , C2n,1).

(iv) Ci,j’s are differential polynomials of u, C21, · · · , C2n,1.

Conversely, given u ∈ C∞(R, Vn) and v ∈ C∞(R, Vt
n), define C = (Cij) by Cij = φij(u, v)

for 1 ≤ i, j ≤ 2n. Then C satisfies (45).

Proof. Let Gi = span{ej,i+j | 1 ≤ i + j ≤ 2n}. For ξ ∈ sp(2n), we use ξGi to denote the
Gi-component of ξ with respect to sp(2n) = ⊕2n−1

i=1−2nGi, and write C = ∑2n−1
i=1−2n Ci, Ci ∈ Gi.

Set [∂x + b + u, C] = ∑n
i=1 ηien+1−i,n+i. Then

(Ci)x + [b, Ci+1] + [u, C]Gi =

{
ηjen+1−j,n+j, i = 2j− 1,
0, else.

(46)

We prove (i) by induction. When i = 1− 2n, we have C2n,1 = vn. From (C1−2n)x +
[b, C2−2n] = 0, we get C2n−1,1 = −C2n,2 = − 1

2 (vn)x. For j < 0, ad(b) : G2j → G2j−1 is a bi-
jection, and dim(ad(b)(G2j+1)) = dim(G2j) = dim(G2j+1)− 1. Then by (46) and induction,
Cj (j < 0) are differential polynomials in u, vi and the linear system (46) implies (ii).

Please note that ad(b) : G0 → G−1 is bijection, and [u, C]G−1 depends only in u, v1, · · · , vn.
Hence C0 can be solved uniquely from Ci, i < 0. This proves (iii).

For j > 0, ad(b) : G2j+1 → G2j is a bijection. Hence G2j+1 is a differential polynomial in G2j.
In addition, ad(b) : G2j+2 → G2i+1 is an injection and dim(ad(b)(G2j+2)) = dim(G2j+1)− 1.
Then by induction, Cj (j > 0) are differential polynomials in u, v1, · · · , vn. This proves
(i). Moreover, from the argument, we see that ηi’s are differential polynomials in u and
v1, · · · , vn.

Statement (iv) is a consequence of (i) and (ii).
The proof of (i) to (iv) implies that the converse is also true.

Corollary 1. Let u and g be the Lagrangian curvature and frame of γ ∈ M2n. Then TγM2n is
the set of all gξ, where ξ = (ξ1, . . . , ξ2n)

t satisfies ξ2i+1 = h2i+1(u, ξ2i+2, · · · , ξ2n) and h2i+1
is given in Proposition 5. In particular, the tangent space of M2n at γ ∈ M2n is isomorphic
to C∞(R,Rn).

Proof. It follows from Theorem 4 (1) and Proposition 5 (iv).

Corollary 2. Given C1, C2 : R→ sp(2n) satisfying (37), then we have the following:

(1) If the first columns of C1 and C2 are the same, then C1 = C2.
(2) If π0(C1) = π0(C2), then C1 = C2, where π0 is the projection defined by (44).

Proof. (1) follows from Proposition 5 (iv), and (2) follows from Proposition 5 (i).

It follows from Proposition 5 (i) that we have the following:

Corollary 3. Given smooth u : R→ Vn and v : R→ Vt
n, there exists a unique C : R→ sp(2n)

satisfying (45) and entries of C are polynomial differentials of u, v and linear in v.
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The above Corollary leads us to define a natural linear differential operator Pu de-
fined below.

Definition 4. Given u ∈ C∞(R, Vn), let

Pu : C∞(R, Vt
n)→ C∞(R, sp(2n))

be the linear differential operator defined by Pu(v) = the unique C ∈ C∞(R, sp(2n)) satisfies (45).

It follows from the definition of Pu and Theorem 5 that we have the following:

Proposition 11. Let u ∈ C∞(R, Vn). Then

(i) C satisfies (37) if and only if C = Pu(v) for some v ∈ C∞(R, Vt
n).

(ii) If C satisfies (37), then C = Pu(π0(C)).

Example 9. Let u = u1e23 + u2e14 ∈ C∞(S1, V2), and ξ = ξ1e32 + ξ2e41 ∈ C∞(S1, Vt
2). We use

the algorithm given in the proof of Proposition 5 to obtain:

Pu(ξ) =


− 1

2 (ξ
′′′
2 + 3ξ ′1 − u1ξ ′2) C12 C13 C14

1
2 ξ ′′2 + ξ1 − 1

2 ξ ′1 C23 −C13
− 1

2 ξ ′2 ξ1
1
2 ξ ′1 C12

ξ2
1
2 ξ ′2

1
2 ξ ′′2 + ξ1

1
2 (ξ
′′′
2 + 3ξ ′1 − u1ξ ′2)

,

and

C12 = −1
2

ξ
(4)
2 −

3
2

ξ ′′1 +
1
2
(u1ξ ′2)

′ + u2ξ2,

C23 = −1
2

ξ
(4)
2 − 2ξ ′′1 +

1
2
(u1ξ ′2)

′ + u2ξ2 + u1ξ1,

C13 = −1
2

ξ
(5)
2 −

3
2

ξ
(3)
1 +

1
2
(u1ξ ′2)

′′ + (u2ξ2)
′ +

1
2

u2ξ ′2,

C14 = −1
2

ξ
(6)
2 −

3
2

ξ
(4)
1 +

1
2
(u1ξ ′2)

(3) +
1
2

u1ξ
(4)
2 + (u2ξ2)

′′ + u2ξ ′′2 +
1
2

u′2ξ ′2

+ u2ξ1 +
3
2

u1ξ ′′1 −
1
2

u1(u1ξ ′2)
′ − u1u2ξ2.

Example 10 (Tangent space ofM4 at γ). Let u = u1e23 + u2e14 and g = (γ, γ′, γ′′, g4) be
the Lagrangian curvature and frame along γ as in Example 2, where g4 = γ′′′ − u1γ′. It follows
from Corollary 1 and Proposition 11 that the tangent space ofM4 at γ is

{gPu(ξ)e1 | ξ ∈ C∞(R, Vt
n)}.

We use the formula of Pu(ξ) given in Example 9. Set η1 = 1
2 ξ ′′2 + ξ1 and η2 = ξ2. Then we

have ξ1 = η1 − 1
2 η′′2 and ξ2 = η2. So the first column of Pu(ξ) is

(
1
4

η′′′2 −
3
2

η′1 +
1
2

u1η′2, η1,−1
2

η′2, η2)
t.

Hence the tangent space ofM4 at γ is the space of

(
1
4

η′′′2 −
3
2

η′1 +
1
2

u1η′2)γ + η1γx −
1
2

η′2γxx + η2g4,

where η1, η2 are smooth functions.
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Proposition 12. Let u ∈ C∞(R, Vn), P2j−1,0(u), Q2j−1,0(u), ξ j(u), ηj(u) as in (12), (29), (21), (33)
respectively. Then

Pu(π0(P2j−1,0(u))) = P2j−1,0(u)− ηj(u),

Pu(π0(Q2j−1,0(u))) = Q2j−1,0(u)− ξ j(u),

and the (2j− 1)-th Ĉ(1)
n -KdV and Â(2)

2n−1-KdV flows can be written respectively as

ut = [∂x + b + u, Pu(π0(P2j−1,0(u)))],

ut = [∂x + b + u, Pu(π0(Q2j−1,0(u)))].

Proof. It follows from (21) and (34) that both P2j−1,0(u) − ηj(u) and Q2j−1,0(u) − ξ j(u)
satisfies [∂x + b + q, C] is Vn-valued. Proposition follows from Proposition 11 (ii).

Theorem 6.

(i) If γ ∈ M2n is a solution of the (2j− 1)-th Lagrangian curve flow (39) of C-type ((40) of

A-type resp.), then its Lagrangian curvature u is a solution of the (2j− 1)-th Ĉ(1)
n -KdV flow

(22) (Â(2)
2n−1-KdV flow (34) resp.).

(ii) Let u ∈ C∞(R2, Vn) be a solution of (22) ((34) resp.), and g : R2 → Sp(2n) a solution
of (23) ((35) resp.). Then γ(x, t) := g(x, t)e1 is solution of the (2j− 1)-th isotropic curve
flow of C-type (39) (A-type (40) resp.) with Lagrangian curvature u(·, t) and Lagrangian
moving frame g(·, t).

(iii) Let q be a solution of the (2j− 1)-th Ĉ(1)
n -flow (14) (Â(2)

2n−1-flow (31) resp.), and g : R2 →
Sp(2n) a solution of (15) ((32) resp.). Then γ(x, t) = g(x, t)e1 is a solution of the (2j− 1)-th
Lagrangian curve flow (39) of C-type ((4) of A-type resp).

Proof. We claim that Z := g−1gt satisfies (37). Since g−1gx = b + u with u ∈ Vn, a direct
computation implies that

y := (g−1gx)t = −Z(b + u)− g−1gxt (47)

is Vn-valued. By (47), we obtain

Zx + [b + u, Z] = −g−1gxg−1gt + g−1gxt = y,

which is Vn-valued. So Z satisfies (37). By definition of ηj(u), P2j−1(u)− ηj(u) also satis-
fies (37). The first column of gZe1 is γt, which is P2j−1(u)e1. Since ηj(u) is strictly upper
triangular, the first column of P2j−1(u)− ηj(u) is also P2j−1(u)e1. It follows from Corollary 2
that Z = P2j−1(u)− ηj(u). Hence we have proved g satisfies (23). By Proposition 6, u is a
solution of (22). This proves (i).

Since g−1gx = b + u, g(·, t) is the Lagrangian frame along γ = ge1. So γt = gte1 =
g(P2j−1(u)− ηj(u))e1 = gP2j−1(u)e1. This proves (ii). (iii) is proved similarly.

Remark 1. We use the same proof as in [49] for the n-dimensional central affine curve flow to show
that solutions of the Cauchy problem of (22) give solutions of the Cauchy problem for Lagrangian
curve flow (39) with both rapidly decaying and periodic initial data. Similar results hold for the
Lagrangian curve flows (34) and (40).

5. Darboux Transforms for the Ĉ(1)
n -Hierarchy

In this section, we use the loop group factorization method given in [54] to construct
Darboux transformations for the Ĉ(1)

n -, Ĉ(1)
n -KdV, and the Lagrangian curve flows of C-

type. We also give a Permutability formula for these Darboux transforms. To use this
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method, we need to identify the loop groups, find simple rational elements, and write
down formulas for the factorizations.

Let (Ĉ(1)
n )+ denote the group of holomorphic maps f : C→ GL(2n,C) satisfying the

Sp(2n)-reality condition (7), i.e.,

f (λ̄) = f (λ), f (λ)tSn f (λ) = Sn,

and RĈ(1)
n the group of rational maps f : C → GL(2n,C) satisfying (7) and f (∞) = I.

Then the Lie algebras of (Ĉ(1)
n )+ and RĈ(1)

n are contained in (Ĉ(1)
n )+ and (Ĉ(1)

n )− respectively.
Next Proposition gives the uniqueness of factorization.

Proposition 13. Let f1, g1 ∈ (Ĉ(1)
n )+, and f2, g2 ∈ RĈ(1)

n . If f1 f2 = g1g2, then f1 = g1 and
f2 = g2.

Proof. Let h := g−1
1 f1 = g2 f−1

2 . Then h is both holomorphic for λ ∈ C and at λ = ∞. So h
is constant. However, at λ = ∞, h = I. Therefore, h ≡ I.

The following result was proved in [54] for soliton hierarchies constructed from a
splitting of loop algebras. So it works for both the Ĉ(1)

n - and Â(2)
2n−1-hierarchies given in

Section 3.

Theorem 7 ([54]). Let F(x, t, λ) be a frame of a solution q of (14) ((31) resp.) and g ∈ RĈ(1)
n .

Then there exists an open neighborhood O of (0, 0) such that we can factor

g(λ)F(x, t, λ) = F̃(x, t, λ)g̃(x, t, λ)

with F̃(x, t, ·) in (Ĉ(1)
n )+ and g̃(x, t, ·) ∈ RĈ(1)

n for all (x, t) ∈ O. Moreover, write

g̃(x, t, λ) = I + g−1(x, t)λ−1 + g−2(x, t)λ−2 + · · · .

Then q̃ = q + [g−1, β] is a new solution of (14) ((31) resp.) and F̃ is a frame of q̃, where
β = e1,2n (β = 1

2 (e1,2n−1 + e2,2n) resp.).

Theorem 8. Let g • q denote the solution of (14) ((31) resp.) constructed from the frame F(x, t, λ)

of solution q of (14) ((31) resp.) satisfying F(0, 0, λ) = I. Then g • q defines an action of RĈ(1)
n on

the space of solutions of (14) ((31) resp.).

Proof. It suffices to prove that (g f ) • q = g • ( f • q) for f , g ∈ RĈ(1)
n . Assume that

f (λ)F(x, t, λ) = F1(x, t, λ) f̃ (x, t, λ),

g(λ)F1(x, t, λ) = F̃(x, t, λ)g̃(x, t, λ),

where f̃ (x, t, ·), g̃(x, t, ·) are in RĈ(1)
n and F1(x, t, λ) F̃(x, t, λ) are holomorphic for λ ∈ C.

It follows from Theorem 7 that we have

f • q = q + [ f̃−1, β],

g • ( f • q) = f • q + [g̃−1, β] = q + [ f̃−1 + g̃−1, β]

are solutions of (14), where

f̃ (x, t, λ) = I + f̃−1(x, t)λ−1 + f̃−2(x, t)λ−2 + · · · ,

g̃(x, t, λ) = I + g̃−1(x, t)λ−1 + g̃−2(x, t)λ−2 + · · · .
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To obtain (g f ) • q, we factor

(g f )F = g( f F) = g(F1 f̃ ) = (gF1) f̃ = (F̃g̃) f̃ = F̃(g̃ f̃ ).

Since f̃ (x, t, ·) and g̃(x, t, ·) are in RĈ(1)
n , g̃ f̃ is in RĈ(1)

n . Please note that the coefficient
of λ−1 of g̃ f̃ is f̃−1 + g̃−1. Hence it follows from Theorem 7 that we have

(g f ) • q = q + [β, f̃−1 + g̃−1].

So we have proved that (g f ) • q = g • ( f • q).

Given a linear subspace V of R2n, let

V⊥ = {y ∈ R2n | ω(ξ, y) = 0 for all ξ ∈ V}.

Lemma 1. Let R2n = V1 ⊕ V2 be a direct sum of linear subspaces, and π the projection of R2n

onto V1 along V2. Then we have ω(πX, Y) = ω(X, πsY), where

πs = S−1
n πtSn

is a projection of R2n onto V⊥2 regarding R2n = V⊥2 ⊕V⊥1 .

Proof. Please note that

ω(π(X), Y) = XtπtSnY = ω(X, S−1
n πtSn(Y)) = ω(X, πsY),

where ω is the symplectic form defined by (1).
If ω(πsX, Y) = 0 for all X ∈ R2n, then ω(X, πY) = 0. Hence (Im(πs))⊥ ⊂ Ker(π) = V2,

which implies Im(πs) = V⊥2 .
On the other hand, if Y ∈ Ker(πs), then ω(πX, Y) = ω(X, πsY) = 0 for any X ∈ R2n.

So Y ∈ V⊥1 , which implies Ker(πs) = V⊥1 .

We use Lemma 1 and a direct computation to get:

Lemma 2.

(1) A linear subspace of R2n is Lagrangian if and only if V⊥ = V.
(2) Let π be a projection of R2n. Then

Imπ and Kerπ are Lagrangian subspaces, (48)

if and only if
πs = I2n − π. (49)

Given α ∈ R \ 0 and a projection π of R2n, let

kα,π(λ) = I +
2α

λ− α
(I− π). (50)

A direct computation implies that

k−1
α,π(λ) = I− 2α

λ + α
(I− π). (51)

Lemma 3. Given α ∈ R \ 0, if π is a projection of R2n satisfying (48) then

kt
α,π(λ)Snkα,π(λ) =

λ + α

λ− α
Sn. (52)
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Proof. Lemmas 1 and 2 (2) implies that S−1
n πtSn = I− π. So we have I− πt = SnπS−1

n .
Then a direct computation gives (52).

Lemma 4. Let α ∈ R \ 0, π a projection satisfying (48), and f : C→ GL(2n,C) a meromorphic
map, holomorphic at λ = α,−α, and f satisfying the Sp(2n)-reality condition (7). Let Ṽ1 =
f (α)−1(Imπ), and Ṽ2 = f (−α)−1(Kerπ). Assume that Ṽ1 ∩ Ṽ2 = {0}. Let π̃ be the projection
onto Ṽ1 along Ṽ2. Then

(1) Ṽ1 and Ṽ2 are Lagrangian subspaces,
(2) f̃ := kα,π f k−1

α,π̃ is holomorphic at λ = α,−α and satisfies the Sp(2n)-reality condition (7).

Proof. Since f satisfies the Sp(2n)-reality condition, f (r) ∈ Sp(2n) for all r ∈ R. Hence
f (r)−1(Vi) is again a Lagrangian subspace. This proves (i).

By (51), we have

f̃ (λ) = (I +
2α

λ− α
(I− π)) f (λ)(I− 2α

λ + α
(I− π̃)).

Please note that f̃ has a simple pole at λ = α and the residue of f̃ at λ = α is
2α(I− π) f (α)π̃, which is zero because

(I− π) f (α)Imπ̃ = (I− π) f (α) f (α)−1(Imπ) = (I− π)(Imπ) = 0.

Similarly, f̃ has a simple pole at λ = −α and its residue is 2απ f (−α)(I− π̃), which is
again zero because its image is

π f (−α)Kerπ̃ = π f (−α) f (−α)−1(Kerπ) = 0.

This proves f̃ is holomorphic at λ = α,−α.
It follows from (52) that k−1

α,π = λ−α
λ+α (kα,π)s. Since f satisfies f (λ)−1 = ( f (λ))s, a direct

computation shows that f̃−1 = f̃s. Hence f̃ satisfies (7).

Theorem 9 (Darboux transform for the Ĉ(1)
n -flow (14)).

Let c ∈ Sp(2n) be a constant, F(x, t, λ) the frame of a solution q of (14) satisfying F(0, 0, λ) =
c, α ∈ R\{0}, and π a projection of R2n satisfying (48). Let

Ṽ1(x, t) = F−1(x, t, α)(Imπ), Ṽ2(x, t) = F−1(x, t,−α)(Kerπ).

Then

(1) Ṽi(x, t) are Lagrangian subspaces for all (x, t) ∈ R2,
(2) there is an open subsetO of (0, 0) in R2 such that R2n = Ṽ1(x, t)⊕ Ṽ2(x, t) for all (x, t) ∈ O,
(3) let π̃(x, t) be the projection of R2n onto Ṽ1(x, t) along Ṽ2(x, t), and

F̃(x, t, λ) = kα,π F(x, t, λ)k−1
α,π̃(x,t)(λ), (53)

then
q̃ = q + 2α[e1,2n, π̃] (54)

is a new solution of (14) and F̃ is a frame for q̃.

In particular, we have
kα,π • q = q + 2α[e1,2n, π̃] (55)

if F is chosen so that F(0, 0, λ) = I.

Proof. Let V1 = Imπ, and V2 = Kerπ. By assumption, V1, V2 are Lagrangian. Since
F(x, t, λ) satisfies the Sp(2n) reality condition (7) and α,−α ∈ R, (1) follows.
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By assumption, V1 ∩V2 = {0}. Please note that Ṽ1(0, 0) = F(0, 0, α)−1(V1) = c−1(V1)
and Ṽ2(0, 0) = c−1V2. So (c−1V1)∩ (c−1V2) = {0}. SinceO = {(x, t) | Ṽ1(x, t)∩ Ṽ2(x, t) =
{0}} is an open subset of R2 and (0, 0) ∈ O, (2) follows.

(3) follows from Lemma 4 and Theorem 7.

Theorem 9 can be reformulated as follows:

Theorem 10. Let q be a solution of (14), λ ∈ R \ 0, and Dq,λ the following linear system

Dq,λ

{
yx = −(e1,2nλ + b + q)y,
yt = −(P2j−1(q, λ))+y.

(56)

Then (56) is solvable. Moreover, let {v1, . . . , v2n} be a basis of R2n such that the span of
v1, . . . , vn and the span of vn+1, . . . , v2n are Lagrangian subspaces. Let yi be the solution of
Dq,α with initial data yi(0, 0) = vi, and yn+i the solution of Dq,−α with yn+i(0, 0) = vn+i
for 1 ≤ i ≤ n. Let Ṽ1(x, t) be the span of y1(x, t), . . . , yn(x, t), and Ṽ2(x, t) the span of
yn+1(x, t), . . . , y2n(x, t). Then

(1) Ṽi(x, t) is Lagrangian for all (x, t) ∈ R2 and i = 1, 2,
(2) there is an open subset O of (0, 0) such that Ṽ1(x, t) ∩ Ṽ2(x, t) = 0 for all (x, t) ∈ O,
(3) q̃ defined by (54) is a solution of (14) defined on O, where π̃ is the projection onto Ṽ1(x, t)

along Ṽ2(x, t).

Remark 2 (Bäcklund transformations for the Ĉ(1)
n -flow).

Let q, q̃, F, F̃ be as in Theorem 9. Then we have{
F−1Fx = J + q,
F−1Ft = B(q, λ),

{
F̃−1 F̃x = J + q̃,
F̃−1 F̃t = B(q̃, λ),

(57)

where B(q, λ) = (P2j−1(q, λ))+. Let k̃(x, t) = kα,π̃(x,t). Then it follows from (57) and (53) that
we have {

k̃(J + q)− k̃x = (J + q̃)k̃,
k̃B(q, λ)− k̃t = B(q̃, λ)k̃.

(58)

Equate the residues of (58) at λ = α to get

(BT)q,λ

{
π̃x = [αe1,2n − b− q, π̃]− 2α[e1,2n, π̃]π̃,
π̃t = B(q + 2α[e1,2n, π̃], α)(I − π̃)− (I − π̃)B(q, α),

which is the Bäcklund transformation for the Ĉ(1)
n -flow. Moreover,

(1) (BT)q,λ is solvable for π̃ if and only if q is a solution of the Ĉ(1)
n -flow,

(2) if π0 is a projection satisfies (49), then the solution π̃ of (BT)q,α with initial data π̃(0, 0) = π0

also satisfies (49) and q̃ defined by (54) is also a solution of the Ĉ(1)
n -flow. In fact, q̃ = kα,π • q.

The following DTs for (22) is a consequence of Proposition 9 and Theorem 9.

Theorem 11 (DT for Ĉ(1)
n -KdV).

Let E be a frame of a solution u of (22), kα,π as in Lemma 3, 4 : R2 → N+
n satisfying

4t4−1 = ηj(u), and q = 4−1 ∗ u. Let

Ṽi(x, t) = 4−1(x, t)E−1(x, t, αi)(Vi)
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for i = 1, 2, and π̃(x, t) the projection onto Ṽ1(x, t) along Ṽ2(x, t). Let q̃ be defined by (54),
4̃ : R2 → N+

n the unique map such that ũ = 4̃ ∗ q̃ is Vn valued. Then ũ is a solution of (22) and

Ẽ(x, t, λ) = kα,π(λ)E(x, t, λ)4(x, t)k̃−1
α,π̃(x,t)(λ)4̃

−1(x, t)

is a frame of ũ, where ∗ is defined by (18).

As a consequence of Theorems 9 and 6 (iii), we have

Theorem 12 (DT for Lagrangian curve flow of C-type).
Let γ be a solution of the Lagrangian curve flow (39), and g(·, t) and u(·, t) the Lagrangian

frame and curvature along γ(·, t). Let E be the frame of the solution u of (22) satisfying E(0, 0, λ) =
g(0, 0). Let 4, kα,π , and π̃ be as in Theorem 11. Then

γ̃ = (2π − I)g4(2π̃ − I)e1

is a new solution of (39).

Example 11. [1-soliton solutions of C-type]
First, we apply Theorem 9 to the trivial solution q = 0 of the third Ĉ(1)

2 -flow to construct
1-soliton solutions and their corresponding frames. Then we use Theorem 11 to construct solutions
of the third Ĉ(1)

2 -KdV flow (5). In the end, we apply Theorem 12 to get explicit solutions of the third
Lagrangian curve flow of C-type on R4:

γt = −
3
8
(u1)xγ +

1
4

u1γx + g4 = −3
8
(u1)xγ− 3

4
uxγx + γxxx.

Please note that
F(x, t, λ) = exp(Jx + J3t)

is a frame of the solution q = 0 of the third Ĉ(1)
2 -flow. We use λ = z4 to write down F(x, t, λ) in

terms of known functions,

F(x, t, z4) =
1
4


m1(x, t, z) zm2(x, t, z) z2m3(x, t, z), z3m4(x, t, z)

1
z m4(x, t, z) m1(x, t, z) zm2(x, t, z) z2m3(x, t, z)
1
z2 m3(x, t, z) 1

z m4(x, t, z) m1(x, t, z) zm2(x, t, z)
1
z3 m2(x, t, z) 1

z2 m3(x, t, z) 1
z m4(x, t, z) m1(x, t, z)

,

where 
m1(x, t, z)
m2(x, t, z)
m3(x, t, z)
m4(x, t, z)

 =


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i




ezx+z3t

ei(zx−z3t)

e−(zx+z5t)

e−i(zx−z3t)

.

(Although the entries of F(x, t, z3) involves zi in the denominators, use power series expansion
and a simple computation to see that they are holomorphic at z = 0).

Next we apply DTs for the third Ĉ(1)
2 -flow to the trivial solution q = 0 and z = 1. Let π be

the projection onto V1 along V2, where

V1 =




1
0
1
0

,


1
0
−1
0


, V2 =




0
1
0
1

,


0
1
0
−1


.
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Then π̃ is the projection onto Ṽ1 along Ṽ2, where

Ṽ1 = E(x, t, 1)−1V1 = span{p1, p2}

= span




cosh(x + t)
− sinh(x + t)
cosh(x + t)
− sinh(x + t)

,


cos(x− t)
− sin(x− t)
− cos(x− t)

sin(x− t)


,

Ṽ2 = E(x, t, 1)−1V1 = span{p3, p4}

= span




sinh(x + t)
cosh(x + t)
sinh(x + t)
cosh(x + t)

,


− sin(x− t)
cos(x− t)
sin(x− t)
− cos(x− t)


.

From a direct computation, we have

π̃(x, t) =
(

p̃1, p̃2, 0, 0
)(

p̃1, p̃2, p̃3, p̃4
)−1

=
1
2

(
1√
y1

p̃1, (1 + y2
y3
) p̃2, 0, y2

y3
p̃2

)
1√
y1

p̃t
1

p̃t
2

0
p̃t

4

,

where

y1 = cosh(2(x + t)),

y2 = sin(2(x− t)),

y3 = (1− sin(2(x− t)))(1 +
1
2

sin(4(x− t))).

Applying (54), we can get a solution of the third Ĉ(1)
2 -flow,

q̃ = q1(e11 − e44) + q2(e12 + 434) + q3(e13 − e24) + q4e14.

Using the algorithm in the proof of Proposition 5, we get a new solution of (5),

ũ = 4 ∗ q = ũ1e23 + u2e14,

where

ũ1 = 3q′1 + 2q2 + q2
1,

ũ2 = (q1)
(3)
x + q′′2 + q′3 + q4 + 2q1q3 − q2

2 − q′1q2 + q1q′2 + q1q′′1 .

We use Theorem 12, and the formula for π̃, and a direct computation to see that

γ̃(x, t) =


1 0 0 0
−x −1 0 0
1
2 x2 x 1 0

−( 1
6 x3 + t) − 1

2 x2 −x −1




ξ1
ξ2
ξ3
ξ4


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is a solution of the third Lagrangian curve flow of C-type onM4, where

ξ1 =
1
y1

cosh2(x + t) + (1 +
y2

y3
) cos2(x− t)− y2

2y3
sin(2(x− t))− 1,

ξ2 = −1
4
(cosh(2(x + t)) + (1 +

y2

y3
) sin(2(x− t))− 2

y2

y3
sin2(x− t)),

ξ3 =
1
2
(

1
y1

cosh2(x + t)− (1 +
y2

y3
) cos2(x− t) +

1
2

y2

y3
sin(2(x− t))),

ξ4 = −1
4
(cosh(2(x + t))− (1 +

y2

y3
) sin(2(x− t)) + 2

y2

y3
sin2(x− t)).

Next we give a Permutability formula for DTs of the Ĉ(1)
n flows. The following Lemma

follows from Lemma 4.

Lemma 5. Let α1, α2 be distinct real constants, π1, π2 projections of R2n satisfying (48), and τ1, τ2
projections defined by{

Im(τ1) = kα2,π2(α1)Im(π1), Ker(τ1) = kα2,π2(−α1)Ker(π1),
Im(τ2) = kα1,π1(α2)Im(π2), Ker(τ2) = kα1,π1(−α2)Ker(π2).

Then τ1, τ2 satisfy (48) and

kα2,τ2 kα1,π1 = kα1,τ1 kα2,π2 .

It follows from Lemma 5 and Theorems 8 and 9 that we have

Theorem 13 (Permutability Formula for the Ĉ(1)
n -flows).

Let F(x, t, λ) be the frame of the solution q of the (2j− 1)-th Ĉ(1)
n -flow (14) with F(0, 0, λ) =

I2n, αi, πi, τi for i = 1, 2 as in Lemma 5. Then we have the following:

(1) Let Ṽi = F(x, t, αi)
−1(Imπi), and W̃i = F(x, t,−αi)

−1(Kerπi), π̃i the projection onto Ṽi
along W̃i for i = 1, 2. Then

q1 := kα1,π1 • q = q + 2α1[e1,2n, π̃1],

q2 := kα2,π2 • q = q + 2α2[e1,2n, π̃2].

(2) kα2,τ2 • (kα1,π1 • q) = kα1,τ1 • (kα2,π2 • q).
(3) Let τ̃1(x, t), τ̃2(x, t) be the projections defined by

Im(τ̃1) = kα2,π̃2(α1)Im(π̃1), Ker(τ̃1) = kα2,π̃2(−α1)Ker(π̃1),

Im(τ̃2) = kα1,π̃1(α2)Im(π̃2), Ker(τ̃2) = kα1,π̃1(−α2)Ker(π̃2).

Then we have

q12 := kα2,τ2 • (kα1,π1 • q) = kα1,τ1 • (kα2,π2 • q)

= q1 + 2α2[e1,2n, τ̃2] = q2 + 2α1[e1,2n, τ̃1].

In particular, q12 can be obtained algebraically from π̃1 and π̃2.

The Permutability Theorem 13 gives an algebraic formula for constructing k-solitons
and their frames from k 1-solitons for the Ĉ(1)

n -flow. If F̃ is a frame of the k-soliton solution
q̃ of Ĉ(1)

n -flow, then γ̃ = F̃(x, t, 0)e1 is a k-soliton solution of the Lagrangian curve flow of
C-type and its Lagrangian curvature ũ is a k-soliton of the Ĉ(1)

n -KdV flow.
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6. Darboux Transforms for the Â(2)
2n−1-Hierarchy

In this section, we construct Darboux transformations for the Â(2)
2n−1, Â(2)

2n−1-KdV,
and the Lagrangian curve flows of A type. We also give a Permutability formula for these
Darboux transforms.

Let (Â(2)
2n−1)+ denote the group of holomorphic maps f : C→ SL(2n+ 1,C) satisfying

the reality condition (7), i.e.,

f (λ̄) = f (λ), f (−λ)tSn f (λ) = Sn, (59)

and RÂ(2)
2n−1 the group of rational maps f : C → SL(2n + 1,C) satisfying (7) with

f (∞) = I. Then the Lie algebras of (Â(2)
2n−1)+ and RÂ(2)

2n−1 are subalgebras of (Â(2)
2n−1)+ and

(Â(2)
2n−1)− respectively.

Please note that the second condition of (59) is equivalent to

f−1(λ) = f (−λ)s,

where As = S−1
n AtSn.

Please note that the restriction of the symplectic form w to a linear subspace V of R2n

is non-degenerate if and only if R2n = V ⊕V⊥.

Lemma 6. Let π be a projection. Then Ker(π) = (Im(π))⊥ if and only if

π = πs. (60)

Lemma 7. Let π be a projection of R2n satisfying (60), and α ∈ R\{0}. Then kα,π defined by (50)
is in RÂ(2)

2n−1.

Lemma 8. Let α ∈ R \ 0, π a projection satisfying (60), and f : C→ GL(2n,C) a meromorphic
map, holomorphic at λ = α and λ = −α, and satisfying (59). Let Ṽ = f (α)−1(V), where
V = Imπ. Then

(1) Ṽ⊥ = f (−α)−1(V⊥),
(2) assume that Ṽ ∩ Ṽ⊥ = 0, let π̃ be the projection onto Ṽ along Ṽ⊥, then

f̃ = kα,π f k−1
α,π̃

is holomorphic at λ = α,−α and satisfies (59).

Proof. Set V = Imπ. If Y ∈ Ṽ⊥, then

0 = ω( f (α)−1V, Y) = ω( f (−α)sV, Y) = ω(V, f (−α)Y).

Hence f−1(−α)Y ∈ V⊥, which implies that f−1(−α)(Ṽ⊥) ⊂ V⊥. Since they have the
same dimension, f−1(−α)(Ṽ⊥) = V⊥. This proves (1).

By (51), we have

f̃ (λ) = (I +
2α

λ− α
(I− π)) f (λ)(I− 2α

λ + α
(I− π̃)).

Please note that f̃ has a simple pole at λ = α and λ = −α. The residue of f̃ at λ = α
is 2α(I− π) f (α)π̃, which is zero because Im( f (α)π̃) = f (α)(Ṽ) = V and Ker(I− π) = V.
The residue of f̃ at λ = −α is −2απ f (−α)(I− π̃), which is zero because π f (−α)Ṽ⊥ =
πV⊥ = 0. Hence f̃ is holomorphic at λ = α,−α. Since both f and kα,π satisfies (59), f̃
satisfies (59).
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Using Lemma 8, Theorem 7 and a proof similar to the proof of Theorem 9, we obtain
the following:

Theorem 14 (DT for the Â(2)
2n−1-hierarchy).

Let c ∈ Sp(2n) be a constant, and F(x, t, λ) be the frame of a solution q of the (2j− 1)-th
Â(2)

2n−1-flow (31) with F(0, 0, λ) = c, and π a projection satisfying (60). Given α ∈ R\{0}, let

Ṽ(x, t) = F(x, t, α)−1(V), where V = Imπ.

Then

(1) there exists an open neighborhood O of (0, 0) in R2 such that R2n = Ṽ(x, t)⊕ Ṽ(x, t)⊥ for
all (x, t) ∈ R2,

(2) let π̃(x, t) be the projection onto Ṽ(x, t) along Ṽ⊥(x, t), then

q̃ = q + α[e1,2n−1 + e2,2n, π̃] (61)

is a solution of (31) defined on O and

F̃(x, t, λ) = kα,π(λ)F(x, t, λ)k−1
α,π̃(x,t)(λ)

is a frame of q̃.

In particular, if F satisfies F(0, 0, λ) = I2n, then we have

kα,π • q = q + α[e1,2n−1 + e2,2n, π̃]. (62)

Theorem 14 can be reformulated as follows:

Theorem 15. Let q be a solution of (31), λ ∈ R \ 0, and Bq,λ the following linear system

Bq,λ

{
yx = −(βλ + b + q)y,
yt = −(Q2j−1(q, λ))+y,

(63)

where β = 1
2 (e1,2n−1 + e2,2n). Then we have the following:

(1) (63) is solvable.
(2) Let {v1, . . . , v2n} be a basis of R2n such that w(vi, vn+j) = 0 for all 1 ≤ i, j ≤ n. Let yi

be the solution of Dq,α with initial data yi(0, 0) = vi, and yn+i the solution of Dq,−α

with yn+i(0, 0) = vn+i for 1 ≤ i ≤ n. Let Ṽ1(x, t) be the span of y1(x, t), . . . , yn(x, t),
and Ṽ2(x, t) the span of yn+1(x, t), . . . , y2n(x, t). Then

(a) Ṽ2(x, t) = Ṽ1(x, t)⊥ for all (x, t) ∈ R2 and i = 1, 2,
(b) there is an open subset O of (0, 0) such that Ṽ1(x, t) ∩ Ṽ2(x, t) = 0,
(c) q̃ defined by (61) is a solution of (31) defined on O, where π̃ is the projection onto

Ṽ1(x, t) along Ṽ2(x, t).

Bäcklund transformations for the Â(2)
2n−1-flows are obtained in the similar way as for

the Ĉ(1)
n -flows.
As a consequence of Proposition 9 and Theorem 14, we obtain the following:

Theorem 16 (DT for Â(2)
2n−1-KdV (33)).

Let E be a frame of a solution u of (34), 4 : R2 → N+
n a solution of 4t4−1 = ξ j(u),

and q = 4−1 ∗ u, where ξ j(u) is defined by (33). Let π be a projection satisfying (60), and kα,π

defined by (50), and Ṽ(x, t) = 4−1(x, t)E−1(x, t, α)(Imπ). Then

(1) there exists an open subset containing (0, 0) such that R2n = Ṽ(x, t)⊕ Ṽ⊥(x, t),
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(2) let π̃(x, t) denote the projection onto Ṽ(x, t) along Ṽ(x, t)⊥, q̃ defined by (61), and 4̃ :
R2 → N+

n such that 4̃ ∗ q̃ is Vn-valued. Then ũ = 4̃ ∗ q̃ is a new solution of (34) and

Ẽ = kα,πE4k−1
α,π̃4̃

−1

is a frame of ũ.

Theorems 14 and 6 (iii) give the following:

Theorem 17 (DT for Lagrangian curve flows of A-type).
Let γ be a solution of the Lagrangian curve flow (40) of A-type, and g(·, t), u(·, t) the

Lagrangian frame and Lagrangian curvature along γ(·, t). Let E be the frame of the solution u
of (31) satisfying E(0, 0, λ) = g(0, 0). Let4, α, π, π̃ be as in Theorem 16. Then

γ̃ = (2π − I)g4(2π̃ − I)e1

is a new solution of (40) and its Lagrangian curvature ũ is a solution of (31).

Example 12. 1-soliton solutions of A-type
Please note that u = 0 is the trivial solution of the third Â(2)

2n−1-flow with frame F(x, t, λ) =

exp(xJB(λ) + tJ3
B(λ)). By Theorem 6 (iii),

γ(x, t) = F(x, t, 0)e1 = exp(bx + b3t)e1

is the Lagrangian curve flow (39) with zero Lagrangian curvature and

g(x, t) = exp(bx + b3t)

as its Lagrangian frame.
Please note that the linear system Bq,λ given by (63) for q = 0 is

B0,λ

{
yx = −JBy,
yt = −J3

By.

Since
J2n
B = λJB, (J3

B)
2n = λ3 J3

B,

the solution of B0,λ for any given initial data can be written down explicitly. Hence Theorem 15
gives an algorithm to compute explicit formula for 1-solitons q̃ and its frame for the third Â(2)

2n−1-
flow. Theorem 17 gives the corresponding 1-soliton solution γ̃ of the third Lagrangian curve flow of
A-type and the Lagrangian curvature ũ of γ̃ is a 1-soliton solution of the third Â(2)

2n−1-KdV flow.

Next we give the Permutability formula. First it follows from Lemma 8 that we have
the following:

Lemma 9. Let α1, α2 ∈ R\{0} such that |α1| 6= |α2|, and πi projections of R2n satisfying
Kerπi = (Imπi)

⊥. Then Ṽ1 = kα2,π2(α1)(Imπ1) and Ṽ2 = kα1,π1(α2)(Imπ2) are non-
degenerate, and

kα1,τ1 kα2,π2 = kα2,τ2 kα1,π1 ,

where τi is the projection onto Ṽi along Ṽ⊥i for i = 1, 2.

Similarly, Lemma 9, Theorems 8 and 14 give the following:

Theorem 18. [Permutability for DTs of the Â(2)
2n−1-flow]
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Let αi, πi, τi be as in Lemma 9 for i = 1, 2. Let F be the frame of a solution q of the (2j− 1)-th
Â(2)

2n−1-flow with F(0, 0, λ) = I, Ṽi(x, t) = F(x, t, αi)
−1(Imπi), and π̃i(x, t) the projection onto

Ṽi(x, t) along Ṽi(x, t)⊥. Let W̃1 = kα2,π̃2(α1)(Imπ̃1), W̃2 = kα1,π̃1(α2)(Imπ̃2), and τ̃i be the
projection onto,W̃i along W̃⊥i . Then we have

qi := kαi ,πi • q = q + αi[β, π̃], i = 1, 2,

kα1,τ1 • (kα2,π2 • q) = kα2,τ2 • (kα1,π1 • q),

q12 := kα1,τ1 • (kα2,π2 • q) = q1 + α2[β, τ̃2] = q2 + α1[β, τ̃1],

where β = e1,2n−1 + e2,2n.

The Permutability Theorem 18 gives an algebraic formula to construct k-solitons of
the (2j − 1)-th Â(2)

2n−1-flow and their frames from k 1-solitons of the (2j − 1)-th Â(2)
2n−1-

flow. If F̃ is a frame of the k-soliton solution q̃ of Â(2)
2n−1-flow, then γ̃ = F̃(x, t, 0)e1 is a

k-soliton solution of the Lagrangian curve flow of A-type and its Lagrangian curvature ũ is
a k-soliton of the Â(2)

2n−1-KdV flow.

7. Scaling Transforms

In this section, we construct scaling transforms and give relations between DTs and
scaling transforms for the Ĉ(1)

n -flows and Â(2)
2n−1-flows.

Theorem 19. Let αi, πi, τi as in Lemma 5 (9 resp.), and F(x, t, λ) the frame of the solution q of the
(2j− 1)-th Ĉ(1)

n -flow (14) (Â(2)
2n−1-flow (31) resp.) with F(0, 0, λ) = I2n+1. Let r ∈ R \ {0}, and

Γ(r) = diag(1, r, . . . , r2n−1). (64)

Then

(1) (r � q)(x, t) = rΓ(r)−1q(rx, r2j−1t)Γ(r) is a solution of the (2j − 1)-th Ĉ(1)
n -flow (the

Â(2)
2n−1-flow resp.),

(2) for the Ĉ(1)
n case,

(r� F)(x, t, λ) := Γ(r)−1F(rx, r2j−1t, r−2nλ)Γ(r)

is the frame of the solution r� q of the Ĉ(1)
n -flow (14),

(3) for the Â(2)
2n−1-case,

(r� F)(x, t, λ) := Γ(r)−1F(rx, r2j−1t, r−(2n−1)λ)Γ(r)

is the frame of the solution r� q of the Â(2)
2n−1-flow (31).

Proof. First we prove the Theorem for the Ĉ(1)
n -flows. Set F̂(x, t, λ) = Γ(r)−1F(rx, r2j−1t,

r−2nλ). Please note that

rΓ(r)−1(e1,2nr−2nλ + b)Γ(r) = e1,2nλ + b = J(λ). (65)

Since F is a frame of q, F−1Fx = J + q. direct computation implies that

F̂−1 F̂x = J + rq(rx, r2j−1t, r−2nλ).

Let P(x, t, λ) = P(q(x, t), λ) be the solution of (10). So Px + [J + q, P] = 0. Set

P̂(x, t, λ) = rΓ(r)−1P(q(rx, r2j−1t), r−2nλ)Γ(r).
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We use (65) and a direct computation to see that

P̂x + [J + r� q, P̂] = 0.

This shows that P̂ = P(r� q, λ). A direct computation implies that

F̂−1 F̂t = Γ(r)−1(r2j−1P2j−1(rx, r2j−1t, r−2nλ)+Γ(r))

= Γ(r)−1(rP(rx, r2j−1t, r−2nλ))
2j−1
+ Γ(r) = (P̂2j−1)+

= (P2j−1(r� q, λ))+.

It follows from Proposition 4 that r� q is a solution of (14) and F̂ is a frame of r� q.
This proves (1) and (2) for the Ĉ(1)

n -hierarchy.
Similar proof gives (1) and (3) for the Â(2)

2n−1-hierarchy.

It follows from Theorem 19 (2) and Theorem 6 (iii) that we have the following:

Corollary 4. Let c ∈ R \ 0, and γ a solution of the (2j− 1)-th Lagrangian curve flow of C-type
or A-type. Then

(c� γ)(x, t) := Γ(c)γ(cx, ct)

is again a solution, where Γ(c) is defined by (64).

In particular, let γ̃ be the solution of the third Lagrangian curve flow on M4 con-
structed in Example 11. Then c� γ̃ is also a solution for all c ∈ R \ 0.

Corollary 5. Let u = ∑n
i=1 uien+1−i,n+i be a solution of the (2j − 1)-th Ĉ(1)

n -KdV flow (22)

(Â(2)
2n−1-KdV flow (34) resp.), r ∈ R\{0}, Γ(r) as in (7). Then we have the following:

(1) r� u = ∑n
i=1 r2iui(rx, r2j−1t)en+1−i,n−i is a solution of the (2j− 1)-th Ĉ(1)

n -KdV flow (22)

(Â(2)
2n−1-KdV flow (34) resp.).

(2) If E(x, t, λ) is a frame of the solution u of (22), then

(r� E)(x, t, λ) := Γ(r)−1E(rx, r2j−1t, r−2nλ)Γ(r)

is a frame of r� u.
(3) If E(x, t, λ) is a frame of the solution u of (34), then

(r� E)(x, t, λ) := Γ(r)−1E(rx, r2j−1t, r−(2n−1)λ)Γ(r)

is a frame of r� u.

Corollary 6. r � u defines an action of the multiplicative group R+ on the space of solutions
of (22) ((34) resp.).

Next we give a relation between the scaling transforms and Darboux transforms.
First we need a Lemma.

Lemma 10. Let r ∈ R \ 0, Γ(r) defined by (64), and As = S−1
n AtSn as before. Then

(1) Γ(r)s = r2n+1Γ(r)−1,
(2) let π be a projection of R2n, and π̂ = Γ(r)πΓ(r)−1, then

(a) if πs = π, then π̂s = π̂,
(b) if πs = I− π, then π̂s = I− π̂.

Proof. It is clear that Γ(r)SnΓ(r) = r2n+1Sn, which gives (1). (2) follows from (1).
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It follows from Lemma 10, the formulas for r� q in Theorem 19 and (55), (62) that we
have the following.

Theorem 20. Let r, α ∈ R \ 0, Γ(r) as in (64), π a projection of R2n, and π̂ = Γ(r)πΓ(r)−1.

(1) If q is a solution of the (2j− 1)-th Ĉ(1)
n -flow (14) and π satisfies πs = I− π, then

kr−2n ,π̂ • q = r−1 � (k1,π • (r� q)).

(2) If q is a solution of the (2j− 1)-th Â(2)
2n−1-flow (31) and π satisfies πs = π, then

kr−(2n−1),π̂ • q = r−1 � (k1,π • (r� q)).

8. Bi-Hamiltonian Structure

The existence of a bi-Hamiltonian structure and using it to generate the hierarchy are
two of the well-known properties for soliton hierarchies (cf. [11,55,56]). In this section,
we use the linear operator Pu defined in Definition 4 to write down the bi-Hamiltonian
structure for the Ĉ(1)

n -KdV and Â(2)
2n−1-KdV. The pull back of this bi-Hamiltonian structure

toM2n via the Lagrangian curvature map Ψ gives the bi-Hamiltonian structure for the
Lagrangian curve flows of C and A-type.

Let
〈ξ, η〉 =

∮
tr(ξη)dx

denote the standard L2 inner product on C∞(S1, sl(2n,R)).
The bi-Hamiltonian structure on C∞(S1,B+n ) for the Ĉ(1)

n and Â(2)
2n−1 hierarchies given

in [11] is

{F1, F2}∧1 (q) = 〈[β,∇F1(q)],∇F2(q)〉, (66)

{F1, F2}∧2 (q) = 〈[∂x + b + q,∇F1(q)],∇F2(q)〉, (67)

where

β =

{
e1,2n, for Ĉ(1)

n ,
1
2 (e1,2n−1 + e2,2n), for Â(2)

2n−1.
(68)

Using the same proof as in [49], we see that the bi-Hamiltonian structure is invariant
under the gauge action of the group C∞(S1, N+

n ), i.e., if F1, F2 are invariant under the gauge
action, then {F1, F2}∧i is also invariant for i = 1, 2. Since C∞(S1, Vn) is the orbit space of
this gauge action, we can identify functionals F on C∞(S1, Vn) with invariant functionals F̂
on C∞(S1,B+n ), where

F̂(4 ∗ u) = F(u).

Hence

{F1, F2}i(u) = {F̂1, F̂2}∧i (u)

are Poisson structures on C∞(S1, Vn) for i = 1, 2.
Given a functional F : C∞(S1, Vn) → R, let ∇F(u) be the unique map from S1 →

Vt
n satisfying

dFu(v) = 〈∇F(u), v〉 =
∮

tr(∇F(u)v)dx

for all v ∈ C∞(S1, Vn).
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Again we use the same proof as in [49,50] to write { , }i in terms of the linear opera-
tor Pu:

{F1, F2}1(u) = 〈[β, Pu(∇F1(u))], Pu(∇F2(u))〉,
{F1, F2}2(u) = 〈[∂x + b + u, Pu(∇F1(u))], Pu(∇F2(u))〉,

where β is given by (68) These give a bi-Hamiltonian structure for the Ĉ(1)
n -KdV flows.

The first bracket is always zero and { , }2 is a Poisson structure for the Â(2)
2n−1-hierarchy.

There is a standard way (cf. [56]) to generate a sequence of compatible invariant Poisson
structures { , }∧j , j ≥ 1 on C∞(S1,B+n ). It can be checked that the induced structure

{ , }2i+1 on C∞(S1, Vn) is always zero for the Â(2)
2n−1-KdV hierarchy, but { , }2i are non-trivial

Poisson structure. So ({ , }2, { , }4) gives a bi-Hamiltonian structure for the Â(2)
2n−1-KdV

flows. Since the formulas are tedious and do not give us useful information, we omit the
discussion of { , }4 for the Â(2)

2n−1-KdV hierarchy.
Since [∂x + b+u, Pu(∇F1(u))] is in C∞(S1, Vn) and π0(Pu(∇F2(u)) = ∇F2(u), we have

{F1, F2}2(u) = 〈[∂x + b + u, Pu(∇F1(u))],∇F2(u)〉.

So the Hamiltonian flow for a functional F with respect to { , }2 is

ut = [∂x + b + u, Pu(∇F(u))].

The following results can be proved by a similar computation as in [49] for the Â(1)
n -

KdV hierarchy:

Theorem 21. Set

F2j−1(u) = −
∮

tr(P2j−1,−1(u)e1,2n)dx,

H2j−1(u) = −
1
2

∮
tr(Q2j−1,−1(u)(e1,2n+1 + e2,2n))dx.

Then we have

∇F2j−1(u) = π0(P2j−1,0(u)), ∇H2j−1(u) = π0(Q2j−1,0(u)),

where π0 is the projection onto Vt
n defined by (44). Moreover, we also have:

(i) The Hamiltonian equation for F2j−1 (H2j−1 resp.) with respect to { , }2 is the (2j− 1)-th

Ĉ(1)
n -KdV (Â(2)

2n−1-KdV resp.) flow for j ≥ 1.

(ii) The Hamiltonian equation for F2(n+j)−1 with respect to { , }1 is the (2j− 1)-th Ĉ(1)
n -KdV

flow for j > n.

Remark 3. The bi-Hamiltonian structure on C∞(S1, V1) for the Ĉ(1)
1 -KdV hierarchy is the stan-

dard bi-Hamiltonian structure for the KdV hierarchy (cf. [52]).

Example 13. Bi-Hamiltonian structure for the Ĉ(1)
2 -KdV hierarchy
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Let u = u1e23 + u2e14, ξ = ξ1e32 + ξ2e41, η = η1e32 + η2e41, C = (Cij) = Pu(ξ),
and D = (Dij) = Pu(η). We use Example 9 to write down the following Hamiltonian structures:

{F1, F2}1(u) = 〈[e14, C], D〉

=
∮
(3ξ ′′′2 + 4ξ ′1 − u1ξ ′2)η2 + 4ξ ′2η1 + u1ξ2η′2dx,

=
∮
(3ξ ′′′2 + 4ξ ′1 − 2u1ξ ′2 − u′1ξ2)η2 + 4ξ ′2η1dx,

{F1, F2}2(u) = 〈[∂x + b + u, C], D〉

=
∮
(C′14 − 2u2C11)η2 + (C′23 + 2C13 + u1ξ ′1)η1dx,

where Cij’s are written in terms of ξ1 and ξ2 as in Example 9.

Example 14. Conservation laws for the Ĉ(1)
n -KdV hierarchy

Let
f2j−1(u) = tr(P2j−1,−1(u)e1,2n)

denote the density of F2j−1.

(1) For n = 2, we have

f1 = u1, f3 = u2 +
1
8

u2
1, f5 = − 1

32
u3

1 + u1u2 −
3

32
u1u′′1 .

(2) For general n, the first two densities of conservation laws are

f1 = u1, f3 = u2 +
2n− 3

4n
u2

1.

Example 15. Conservation laws for the Â(2)
2n−1-KdV hierarchy

Let
h2j−1(u) =

1
2

tr(Q2j−1,−1(u)(e1,2n+1 + e2,2n)).

(1) For n = 2, we have

h1 = u1, h3 = u2, h5 =
1
3
(

2
3

u1(u1)xx − 4u1u2 −
4
9

u3
1).

(2) For general n, the first two densities of conservation laws are

h1 = u1, h3 = u2 +
n− 2

2n− 1
u2

1.

Example 16. Hamiltonian flows for F3 and H3
A simple computation implies that ∇F3(u) = 1

4 u1e32 + e41, where u = u1e23 + u2e14.
We use notations and formulas as in Example 9 to compute Pu(∇F3(u)) and obtain

C11 = −3
8

u′1, C13 = −3
8
(u1)

(3)
x + u′2,

C14 = −3
8
(u1)

(4)
x + (u2)xx +

3
8

u1(u1)xx −
3
4

u1u2,

C23 = −1
2
(u1)xx + u2 +

1
4

u2
1.

The Hamiltonian flow of F3 with respect to { , }2 is

ut = [∂x + b + u, Pu(∇F3(u))]. (69)
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We use the formula for Pu(∇F3(u)) to compute directly and see that (69) is the following
system for u1, u2, {

(u1)t = C′23 + 2C13 +
1
4 u1u′1,

(u2)t = C′14 − 2u2C11.

Substitute Cij into the above equation to see that it is (5).
Similarly, we use the same notations and formulas as in Example 9 to compute Pu(∇H3(u)).

Here ∇H3(u) = e32. We see thatbe

C11 = 0, C13 = u′2, C14 = u′′2 − u1u2, C23 = u2.

So the Hamiltonian flow for H3 with respect to { , }2 written in terms of u1, u2 is (6).

Remark 4. We use the pullback { , }∧i of the Poisson structures { , }i on C∞(S1, Vn) by the
Lagrangian curvature map Ψ for i = 1, 2, to get a bi-Hamiltonian structure onM2n. In other
words, given a functional Fi on C∞(S1, Vn), let

F̂ = F ◦Ψ :M2n → R

be functionals onM2n. Then

{F̂, Ĝ}∧i (γ) = {F, G}i(Ψ(γ)), i = 1, 2

are the pullback bi-Hamiltonian onM2n. As a consequence of Theorem 21, we have the following:

(1) The Lagrangian curve flow (39) and (40) are Hamiltonian flows for the Hamiltonians

F̂2j−1 := F2j−1 ◦Ψ, Ĥ2j−1(u) := H2j−1 ◦Ψ

with respect to { , }∧2 respectively.
(2) The Lagrangian curve flows of C-type (A-type resp.) are commuting Hamiltonian flows

onM2n.

9. Review and Open Problems

In this section, we give an outline of the construction of Ĝ(1)-KdV hierarchy (cf. [11,53]),
explain the key steps needed in constructing curve flows whose differential invariants
satisfy the Ĝ(1)-KdV, and give some open problems.

Let G be a non-compact, real simple Lie group, G its Lie algebra, and

Ĝ(1) = L(G) = {∑
i≤n0

ξiλ
i | n0 an integer, ξi ∈ G}.

Let
Ĝ(1)+ = {∑

i≥0
ξiλ

i ∈ L(G)}, Ĝ(1)− = {∑
i<0

ξiλ
i ∈ L(G)}.

Then (Ĝ(1)+ , Ĝ(1)− ) is a splitting of Ĝ(1).
Let {α1, . . . , αn} be a simple root system of G, and B+,B−,N+ the Borel subalgebras of

G of non-negative roots, non-positive roots, and positive roots respectively. Let B+, B−, N+

be connected subgroups of G with Lie algebras B+,B−,N+ respectively. Let

J = βλ + b, (70)

where b = −∑n
i=1 αi and β is the highest root.
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The construction of Ĉ(1)
n -hierarchy in Section 3 works for Ĝ(1) except that the generat-

ing function P(q, λ) in Proposition 2 should satisfy{
[∂x + b + q, S(q, λ)] = 0,
m(S(q, λ)) = 0,

(71)

where m is the minimal polynomial of J defined by (70).
Assume that there is a sequence of increasing positive integers {nj | j ≥ 1} such that

Jnj lies in Ĝ(1)+ for all j ≥ 1. Write

Snj(q, λ) = ∑
i

Snj ,i(q)λ
i.

Then the nj-th flow in the Ĝ(1)-hierarchy is

qt = [∂x + b + q, Snj ,0(q)] (72)

for q : R2 → B+.
Using the same kind of proofs for the Ĉ(1)

n -hierarchy, we obtain the following proper-
ties of the Ĝ(1)-hierarchy:

(i) The existence of a Lax pair, [∂x + J + q, ∂t + (Snj(q, λ))+] = 0 for (72).
(ii) The Ĝ(1)-flows are invariant under the gauge action of C∞(R, N+) on C∞(R,B+).
(iii) If we find a linear subspace V of G such that C∞(R, V) is a cross-section of the

gauge action of C∞(R, N+) on C∞(R,B+). Then we can push down the Ĝ(1)-flows to
the cross-section C∞(R, V) along gauge orbits and obtain a Ĝ(1)-KdV hierarchy on
C∞(R, V). Moreover, there exists a polynomial differentials ξ j(u) such that the nj-th
flow in the Ĝ(1)-KdV hierarchy is

ut = [∂x + b + u, Snj ,0(u)− ξ j(u)]. (73)

The Ĝ(1)-KdV hierarchies constructed from two different cross- sections are not the
same but are gauge equivalent.

(iv) The bi-Hamiltonian structure ({ , }∧1 , { , }∧2 ) on C∞(R,B+) is given by (66), (67).
(v) The Poisson structures { , }∧1 and { , }∧2 are invariant under the gauge group action.

So there is an induced bi-Hamiltonian structure on C∞(S1, V) for the Ĝ(1)-KdV hierar-
chy, which will be denoted by ({ , }1, { , }2).

(vi) Fnj(q) = −
∮
(Snj ,−1(q)β)dx is the Hamiltonian for the nj-th flow with respect to { , }∧2 .

Although properties (i)–(vi) can be proved in a unified way for any Ĝ(1), the following
results need to be proved case by case depending on G:

(1) Find a linear subspace V such that C∞(R, V) is a cross-section of the gauge action of
C∞(R, N+) on C∞(R,B+).

(2) Suppose G is a subalgebra of gl(n) and C∞(R, V) is a cross-section of the gauge action.
We consider the following class of curves in Rn:

M = {ge1 | g ∈ C∞(R, G) satisfying g−1gx = b + u,

for some u ∈ C∞(R, V)}.

Find geometric properties of curves inM that characterize γ ∈ M (so g is the moving
frame and u is the differential invariant of γ under the group G). For example, for
the Ĉ(1)

n case, it is easy to see that if γ ∈ M, then γ is Lagrangian (see Definition 1).
Conversely, if γ is Lagrangian then g ∈ M.

(3) Identify the tangent space ofM at γ.
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(4) Show that
γt = gSnj ,0(u)e1 (74)

is a flow onM, i.e., the right hand side is tangent toM.
(5) Show that if γ(x, t) is a solution of (74), then the differential invariants u(·, t) satisfies

the Ĝ(1)-KdV flow (73). This also gives a natural interpretation of the Ĝ(1)-KdV.
(6) Write down the formula for the induced bi-Hamiltonian structure for the Ĝ(1)-KdV hierarchy.
(7) We pull back the bi-Hamiltonian structure on C∞(S1, V) toM via the curvature map

Ψ :M→ C∞(S1, V) defined by Ψ(γ) = u the differential invariant of γ. Then soliton
properties of Ĝ(1)-KdV can be also pulled back to the curve flows (74) onM.

(8) Prove an analogue of Theorem 5, i.e., if C : R → G satisfies [∂x + b + u, C] ∈
C∞(R, V), then

(a) C is determined by Ce1,
(b) C is determined by the projection of C onto Vt, where u ∈ C∞(R, V).

We need this result to give a precise description of the tangent space ofM at γ and to
write down the formula for the induced bi-Hamiltonian structure on C∞(R, V) for
the Ĝ(1)-KdV hierarchy.

(9) To construct Darboux transforms, we need to find rational maps g : R → GC sat-
isfies g(λ̄) = g(λ) with minimal number of poles and work out the factorization
formula explicitly.

Let σ be an involution of G, and K, P the 1,−1 eigenspaces of σ. The Ĝ(2)-hierarchy is
constructed from the splitting (Ĝ(2)+ , Ĝ(2)− ) of Ĝ(2), where

Ĝ(2) = {ξ(λ) = ∑
i

ξiλ
i | ξ(λ̄) = ξ(λ), σ(ξ(−λ)) = ξ(λ)},

Ĝ(2)+ = Ĝ(2) ∩ Ĝ(1)+ , Ĝ(2)− = Ĝ(2) ∩ Ĝ(1)− .

Assume that there is a simple root system of G so that β ∈ P and b ∈ K. Then
C∞(R,K ∩ B+) is invariant under the Ĝ(1)-hierarchy. The Ĝ(2)-hierarchy is the restriction
of the Ĝ(1)-hierarchy to C∞(R,K ∩ B+). Most properties of the Ĝ(1)-hierarchy hold for the
Ĝ(2)-hierarchy except the bi- Hamiltonian structure { , }∧1 is zero on C∞(S1,K ∩ B+). To
obtain the other Poisson structure, we need to review briefly a general method to construct
a sequence of compatible Poisson structures from a bi-Hamiltonian structure: Let Ξi denote
the Poisson operator for { , }∧i on C∞(R,B+), i.e., (Ξi)q : C∞(S1,B−) → C∞(S1,B+) is
defined by

{F1, F2}∧i (q) = 〈(Ξ1)q(∇F1(q)),∇F2(q)〉

for i = 1, 2. It is known (cf. [55,56]) that

{F1, F2}∧j (q) = 〈(Ξj)q(∇F1(q)),∇F2(q)〉

is again a Poisson structure and are compatible, where

Ξj := Ξ2(Ξ−1
1 Ξ2)

j−2.

It can be checked that Ξ2i+1 = 0 on C∞(S1,K ∩ B+), and Ξ2i is a Poisson structure
for the Ĝ(2)-hierarchy for all i ≥ 1. So ({ , }∧2 , { , }∧4 ) is a bi-Hamiltonian structure for
the Ĝ(2)-hierarchy and it induces a bi-Hamiltonian structure ({ , }2, { , }4) for the Ĝ(2)-
KdV hierarchy.

Finally we give a list of open problems:

� Find integrable curve flows on R2n,1 whose differential invariants satisfy the

B̂(1)
n -KdV flows.

� Find integrable curve flows on Rk,2n−k whose differential invariants satisfy the

D̂(1)
n -KdV flows.
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� Find integrable curve flows on R2n whose differential invariants satisfy the

D̂(2)
n -KdV flows.

� Find integrable curve flows on R8 whose differential invariants satisfy the

D̂(3)
4 -KdV flows.

� Find integrable curve flows on R7 whose differential invariants satisfy the

Ĝ(1)
2 -KdV flows.

� Calini and Ivey constructed finite gap solutions for the VFE in [57]. It would be
interesting to construct finite-gap solutions for central affine curve flows, isotropic
curve flows, and Lagrangian curve flows.

� The Gauss-Codazzi equations of submanifolds occurring in soliton theory are often
given by the first level flows of the soliton hierarchy, i.e., the commuting flows gener-
ated by degree one (in λ) elements in the vacuum sequence. It would be interesting to
see whether the flows of the Ĝ(1)-KdV hierarchy generated by degree one elements
in the vacuum sequence also arise as the Gauss-Codazzi equations for some class
of submanifolds.
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