Sub-Planckian Scale and Limits for f(R) Models
Abstract
:1. Introduction
- ,
- ,
- ,
- ,
- –
- the requirement of model stability, i.e., and ;
- –
- the quick growth of the space size. It must exceed the size of the visible universe, cm; and
- –
- extremely small space expansion at the present time.
2. Basic Equations
3. The Dependence of the Universe Expansion on the Lagrangian Parameters
3.1. R—Gravity
3.2. R2—Gravity
3.3. R3—Gravity
3.4. R4—Gravity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Firouzjahi, H.; Sarangi, S.; Tye, S.H.H. Spontaneous Creation of Inflationary Universes and the Cosmic Landscape. J. High Energy Phys. 2004, 2004, 060. [Google Scholar] [CrossRef] [Green Version]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Barrow, J.D.; Cotsakis, S. Inflation and the conformal structure of higher-order gravity theories. Phys. Lett. B 1988, 214, 515–518. [Google Scholar] [CrossRef]
- Woodard, R.P. The Theorem of Ostrogradsky. arXiv 2015, arXiv:1506.02210. [Google Scholar]
- Paul, B. Removing the Ostrogradski ghost from degenerate gravity theories. Phys. Rev. D 2017, 96, 044035. [Google Scholar] [CrossRef] [Green Version]
- Fabris, J.C.; Popov, A.A.; Rubin, S.G. Multidimensional gravity with higher derivatives and inflation. Phys. Lett. B 2020, 806, 135458. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K.; Paul, T. From a bounce to the dark energy era with F(R) gravity. Class. Quantum Gravity 2020, 37, 235005. [Google Scholar] [CrossRef]
- Rubin, S.G.; Popov, A.; Petriakova, P.M. Gravity with Higher Derivatives in D-Dimensions. Universe 2020, 6, 187. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Saez-Chillon Gomez, D.; Sharov, G.S. Testing logarithmic corrections on R2-exponential gravity by observational data. arXiv 2018, arXiv:1807.02163. [Google Scholar] [CrossRef] [Green Version]
- Tsujikawa, S. Observational signatures of f(R) dark energy models that satisfy cosmological and local gravity constraints. Phys. Rev. D. 2008, 77, 023507. [Google Scholar] [CrossRef] [Green Version]
- Cen, J.Y.; Chien, S.Y.; Geng, C.Q.; Lee, C.C. Cosmological evolutions in Tsujikawa model of f(R) Gravity. Phys. Dark Univ. 2019, 26, 100375. [Google Scholar] [CrossRef] [Green Version]
- Starobinsky, A.A. Disappearing cosmological constant in f(R) gravity. Sov. J. Exp. Ther. Phys. Lett. 2007, 86, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Unifying inflation with early and late-time dark energy in F(R) gravity. Phys. Dark Univ. 2020, 29, 100602. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Geometric inflation and dark energy with axion F (R) gravity. Phys. Rev. D. 2020, 101, 044009. [Google Scholar] [CrossRef] [Green Version]
- Oikonomou, V.K. Rescaled Einstein-Hilbert Gravity from f(R) Gravity: Inflation, Dark Energy and the Swampland Criteria. arXiv 2020, arXiv:2012.01312. [Google Scholar]
- Oikonomou, V.K. Unifying of Inflation with Early and Late Dark Energy Epochs in Axion F(R) Gravity. arXiv 2020, arXiv:2012.00586. [Google Scholar]
- Lyakhova, Y.; Popov, A.A.; Rubin, S.G. Classical evolution of subspaces. Eur. Phys. J. 2018, C78, 764. [Google Scholar] [CrossRef]
- Iorio, L. Calculation of the Uncertainties in the Planetary Precessions with the Recent EPM2017 Ephemerides and their Use in Fundamental Physics and Beyond. Astron. J. 2019, 157, 220. [Google Scholar] [CrossRef] [Green Version]
- Cembranos, J.A.R. Dark Matter from R2 Gravity. Phys. Rev. Lett. 2009, 102, 141301. [Google Scholar] [CrossRef] [Green Version]
- Berti, E.; Barausse, E.; Cardoso, V.; Gualtieri, L.; Pani, P.; Sperhake, U.; Zilhao, M. Testing general relativity with present and future astrophysical observations. Class. Quantum Gravity 2015, 32, 243001. [Google Scholar] [CrossRef]
- Joyce, A.; Jain, B.; Khoury, J.; Trodden, M. Beyond the cosmological standard model. Phys. Rep. 2015, 568, 1–98. [Google Scholar] [CrossRef] [Green Version]
- Koyama, K. Cosmological tests of modified gravity. Rep. Prog. Phys. 2016, 79, 046902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freire, P.C.C.; Wex, N.; Esposito-Farèse, G.; Verbiest, J.P.; Bailes, M.; Jacoby, B.A.; Janssen, G.H. The relativistic pulsar-white dwarf binary PSR J1738+0333 - II. The most stringent test of scalar-tensor gravity. Mon. Not. R. A Stron. Soc. 2012, 423, 3328–3343. [Google Scholar] [CrossRef]
- Planck Collaboration; Ade, P.A.R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Munshi, D. Planck 2015 results. XIV. Dark energy and modified gravity. Astron. Astrophys. 2016, 594, A14. [Google Scholar] [CrossRef] [Green Version]
- Yunes, N.; Siemens, X. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays. Living Rev. Relativ. 2013, 16, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Planck Collaboration; Aghanim, N.; Akrami, Y.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Roudier, G. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef] [Green Version]
- Gorbunov, D.S.; Panin, A.G. Scalaron the mighty: Producing dark matter and baryon asymmetry at reheating. Phys. Lett. B 2011, 700, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Cheong, D.Y.; Lee, H.M.; Park, S.C. Beyond the Starobinsky model for inflation. Phys. Lett. B 2020, 805, 135453. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petriakova, P.; Popov, A.; Rubin, S. Sub-Planckian Scale and Limits for f(R) Models. Symmetry 2021, 13, 313. https://doi.org/10.3390/sym13020313
Petriakova P, Popov A, Rubin S. Sub-Planckian Scale and Limits for f(R) Models. Symmetry. 2021; 13(2):313. https://doi.org/10.3390/sym13020313
Chicago/Turabian StylePetriakova, Polina, Arkady Popov, and Sergey Rubin. 2021. "Sub-Planckian Scale and Limits for f(R) Models" Symmetry 13, no. 2: 313. https://doi.org/10.3390/sym13020313
APA StylePetriakova, P., Popov, A., & Rubin, S. (2021). Sub-Planckian Scale and Limits for f(R) Models. Symmetry, 13(2), 313. https://doi.org/10.3390/sym13020313