The Inclined Factors of Magnetic Field and Shrinking Sheet in Casson Fluid Flow, Heat and Mass Transfer
Abstract
:1. Introduction
2. Methodology
2.1. Problem Formulation
2.2. Method of Solution
2.3. Stability Analysis
2.4. Method of Solution for Stability Analysis
3. Results and Discussion
3.1. Verification of Numerical Accuracy
3.2. Selection of a Physically Reliable Solution
3.3. Variation in the Profiles of Velocity, Temperature, and Concentration
3.4. Variation in the Skin Friction Coefficient, Local Nusselt Number, and Local Sherwood Number
4. Conclusions
- (a)
- The impact of the shrinking parameter is to increase the temperature and concentration distributions, together with the skin friction coefficient.
- (b)
- The influence of Soret and Dufour is to decrease the local Nusselt number and local Sherwood number.
- (c)
- The impact of the mixed convection parameter is to enhance the instantaneous Casson fluid velocity profile and all the physical parameters.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Turner, J.S. Double-diffusive phenomena. Annu. Rev. Fluid Mech. 1974, 6, 37–54. [Google Scholar] [CrossRef]
- Schmitt, R.W. Double diffusion in oceanography. Annu. Rev. Fluid Mech. 1994, 26, 255–285. [Google Scholar] [CrossRef]
- Huppert, H.E.; Sparks, R.S.J. Double-diffusive convection due to crystallization in magmas. Annu. Rev. Earth Planet. Sci. 1984, 12, 11–37. [Google Scholar] [CrossRef]
- Ostrach, S. Natural convection with combined driving forces. PhysicoChem. Hydrodyn. 1980, 1, 233–247. [Google Scholar]
- Viskanta, R.; Viskanta, R.; Bergman, T.L.; Incropera, F.P. Double-diffusive natural convection. In Natural Convection, Fundamentals and Applications; Kakac, S., Aung, W., Viskanta, R., Eds.; Hemisphere Pub. Corp.: Washington, DC, USA, 1985; pp. 1075–1099. [Google Scholar]
- Bég, O.A.; Bakier, A.Y.; Prasad, V.R. Numerical study of free convection magnetohydrodynamic heat and mass transfer from a stretching surface to a saturated porous medium with Soret and Dufour effects. Comput. Mater. Sci. 2009, 46, 57–65. [Google Scholar] [CrossRef]
- Srinivasacharya, D.; RamReddy, C. Soret and Dufour effects on mixed convection from an exponentially stretching surface. Int. J. Nonlinear Sci. 2011, 12, 60–68. [Google Scholar]
- Sreenivasulu, P.; Reddy, N.B. Thermo-diffusion and diffusion-thermo effects on MHD boundary layer flow past an exponential stretching sheet with thermal radiation and viscous dissipation. Adv. Appl. Sci. Res. 2012, 3, 3890–3901. [Google Scholar]
- Hayat, T.; Muhammad, T.; Shehzad, S.A.; Alsaedi, A. Soret and Dufour effects in three-dimensional flow over an exponentially stretching surface with porous medium, chemical reaction and heat source/sink. Int. J. Numer. Method Heat Fluid Flow 2015, 25, 762–781. [Google Scholar] [CrossRef]
- Isa, S.S.P.M.; Arifin, N.M.; Farooq, U. Effect of Soret and Dufour numbers on double diffusive mixed convection boundary layer flow induced by a shrinking sheet. J. Phys. Conf. Ser. 2019, 1298, 012024. [Google Scholar] [CrossRef]
- Azmi, H.A.; Isa, S.S.P.M.; Arifin, N.A. The boundary layer flow, heat and mass transfer beyond an exponentially stretching/shrinking inclined sheet. CFD Lett. 2020, 12, 98–107. [Google Scholar] [CrossRef]
- Roşca, N.C.; Roşca, A.V.; Pop, I. Lie group symmetry method for MHD double-diffusive convection from a permeable vertical stretching/shrinking sheet. Comput. Math. Appl. 2016, 71, 1679–1693. [Google Scholar] [CrossRef]
- Sharada, K.; Shankar, B. MHD mixed convection flow of a Casson fluid over an exponentially stretching surface with the effects of soret, dufour, thermal radiation and chemical reaction. WJM 2015, 5, 165. [Google Scholar] [CrossRef] [Green Version]
- Gireesha, B.J.; Archana, M.; Prasannakumara, B.C.; Gorla, R.S.R.; Makinde, O.D. MHD three dimensional double diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a stretching surface. Int. J. Numer. Methods Heat Fluid Flow 2017, 27, 2858–2878. [Google Scholar] [CrossRef]
- Kumar, K.G.; Ramesh, G.K.; Gireesha, B.J. Numerical solutions of double-diffusive natural convection flow of MHD Casson fluid over a stretching vertical surface with thermal radiation. JNAAM 2017, 2, 6–14. [Google Scholar]
- Pal, D.; Roy, N. Lie group transformation on MHD double-diffusion convection of a Casson nanofluid over a vertical stretching/shrinking surface with thermal radiation and chemical reaction. Int. J. Appl. Comput. Math. 2018, 4, 13. [Google Scholar] [CrossRef]
- Ullah, I.; Khan, I.; Shafie, S. Soret and Dufour effects on unsteady mixed convection slip flow of Casson fluid over a nonlinearly stretching sheet with convective boundary condition. Sci. Rep. 2017, 7, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Das, M.; Mahanta, G.; Shaw, S.; Parida, S.B. Unsteady MHD chemically reactive double-diffusive Casson fluid past a flat plate in porous medium with heat and mass transfer. Heat Transf. Asian Res. 2019, 48, 1761–1777. [Google Scholar] [CrossRef] [Green Version]
- Prasad, D.V.K.; Chaitanya, G.S.K.; Raju, R.S. Double diffusive effects on mixed convection Casson fluid flow past a wavy inclined plate in presence of Darcian porous medium. Results Eng. 2019, 3, 100019. [Google Scholar] [CrossRef]
- Manjappa, A.; Jayanna, G.B.; Chandrappa, P.B. Triple diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a horizontal plate. Arch. Thermodyn. 2019, 40, 49–69. [Google Scholar] [CrossRef]
- Alizadeh, R.; Gomari, S.R.; Alizadeh, A.; Karimi, N.; Li, L.K.B. Combined heat and mass transfer and thermodynamic irreversibilities in the stagnation-point flow of Casson rheological fluid over a cylinder with catalytic reactions and inside a porous medium under local thermal nonequilibrium. Comput. Math. Appl. 2019, 81, 786–810. [Google Scholar] [CrossRef]
- Rafique, K.; Anwar, M.I.; Misiran, M.; Khan, I.; Alharbi, S.O.; Thounthong, P.; Nisar, K.S. Keller-box analysis of Buongiorno model with Brownian and thermophoretic diffusion for Casson nanofluid over an inclined surface. Symmetry 2019, 11, 1370. [Google Scholar] [CrossRef] [Green Version]
- Lund, L.A.; Omar, Z.; Raza, J.; Khan, I.; Sherif, E.M. Effects of Stefan blowing and slip conditions on unsteady MHD Casson nanofluid flow over an unsteady shrinking sheet: Dual solutions. Symmetry 2020, 12, 487. [Google Scholar] [CrossRef] [Green Version]
- Lund, L.A.; Omar, Z.; Khan, I.; Baleanu, D.; Nisar, K.S. Convective effect on magnetohydrodynamic (MHD) stagnation point flow of Casson fluid over a vertical exponentially stretching/shrinking surface: Triple solutions. Symmetry 2020, 12, 1238. [Google Scholar] [CrossRef]
- Bhattacharyya, K.; Layek, G.C.; Seth, G.S. Soret and Dufour effects on convective heat and mass transfer in stagnation-point flow towards a shrinking surface. Phys. Scr. 2014, 89, 095203. [Google Scholar] [CrossRef]
- Khan, N.A.; Sultan, F. On the double diffusive convection flow of Eyring-Powell fluid due to cone through a porous medium with Soret and Dufour effects. AIP Adv. 2015, 5, 057140. [Google Scholar] [CrossRef]
- Kefayati, G. Soret and Dufour effects on double diffusive mixed convection of Newtonian and shear-thinning fluids in a two sided lid-driven cavity. Eng. Comput. 2016, 33, 2117–2148. [Google Scholar] [CrossRef]
- Lagra, A.; Bourich, M.; Hasnaoui, M.; Amahmid, A.; Er-Raki, M. Analytical and Numerical Study of Soret and Dufour Effects on Double Diffusive Convection in a Shallow Horizontal Binary Fluid Layer Submitted to Uniform Fluxes of Heat and Mass. Math. Probl. Eng. 2018, 2018, 7946078. [Google Scholar] [CrossRef] [Green Version]
- Kasmani, R.M.; Sivasankaran, S.; Bhuvaneswari, M.; Alshomrani, A.S.; Siri, Z. Soret and Dufour effects on doubly diffusive convection of nanofluid over a wedge in the presence of thermal radiation and suction. Sci. Iran. B 2019, 26, 2817–2826. [Google Scholar] [CrossRef] [Green Version]
- Dzulkifli, N.F.; Bachok, N.; Pop, I.; Yacob, N.A.; Arifin, N.M.; Rosali, H. Stability of Partial slip, Soret and Dufour effects on unsteady boundary layer flow and heat transfer in Copper-water nanofluid over a stretching/shrinking sheet. J. Phys. Conf. Ser. 2017, 890, 012031. [Google Scholar] [CrossRef] [Green Version]
- Dzulkifli, N.F.; Bachok, N.; Pop, I.; Yacob, N.A.; Arifin, N.M.; Rosali, H. Soret and Dufour effects on unsteady boundary layer flow and heat transfer of nanofluid over a stretching/shrinking sheet: A stability analysis. J. Chem. Eng. Process Technol. 2017, 8, 1000336. [Google Scholar] [CrossRef]
- Najib, N.; Bachok, N.; Arifin, N.M.; Ali, F.M. Stability analysis of stagnation-point flow in a nanofluid over a stretching/shrinking sheet with second-order slip, soret and dufour effects: A revised model. Appl. Sci. 2018, 8, 642. [Google Scholar] [CrossRef] [Green Version]
- Hayat, T.; Shafiq, A.; Alsaedi, A.; Asghar, S. Effect of inclined magnetic field in flow of third grade fluid with variable thermal conductivity. AIP Adv. 2015, 5, 087108. [Google Scholar] [CrossRef] [Green Version]
- Weidman, P.D.; Kubitschek, D.G.; Davis, A.M.J. The effect of transpiration on self-similar boundary layer flow over moving surfaces. Int. J. Eng. Sci. 2006, 44, 730–737. [Google Scholar] [CrossRef]
- Harris, S.D.; Ingham, D.B.; Pop, I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transp. Porous Media 2009, 77, 267–285. [Google Scholar] [CrossRef]
- Magyari, E.; Keller, B. Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. J. Phys. D Appl. Phys. 1999, 32, 577. [Google Scholar] [CrossRef]
- Yasin, M.H.M.; Ishak, A.; Pop, I. MHD stagnation-point flow and heat transfer with effects of viscous dissipation, Joule heating and partial velocity slip. Sci. Rep. 2015, 5, 17848. [Google Scholar] [CrossRef] [Green Version]
- Abbas, Z.; Sheikh, M.; Pop, I. Stagnation-point flow of a hydromagnetic viscous fluid over stretching/shrinking sheet with generalized slip condition in the presence of homogeneous–heterogeneous reactions. J. Taiwan Inst. Chem. Eng. 2015, 55, 69–75. [Google Scholar] [CrossRef]
- Yahaya, R.I.; Arifin, N.M.; Isa, S.S.P.M. Stability analysis on magnetohydrodynamic flow of casson fluid over a shrinking sheet with homogeneous-heterogeneous reactions. Entropy 2018, 20, 652. [Google Scholar] [CrossRef] [Green Version]
S | λ | Magyari and Keller [36] | Srinivasacharya and RamReddy [7] | Present |
---|---|---|---|---|
0 | 1.69550 | — | — | −0.77398 |
1 | −0.59434 | −0.59438 | −0.59466 | |
0.97609 | — | — | −0.58804 | |
2 | 0.06350 | — | — | −1.02075 |
−0.5 | −0.79220 | |||
−0.77869 | −0.49097 |
Ri | N | Solutions | |
---|---|---|---|
First Solution | Second Solution | ||
−0.01 | 0.500 | 0.08814 | −0.08963 |
0.501 | 0.08498 | −0.08636 | |
0.502 | 0.08170 | −0.08297 | |
−0.01002 | 0.500 | 0.08394 | −0.08529 |
0.501 | 0.08060 | −0.08185 | |
0.502 | 0.07712 | −0.07826 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parvin, S.; Mohamed Isa, S.S.P.; Arifin, N.M.; Md Ali, F. The Inclined Factors of Magnetic Field and Shrinking Sheet in Casson Fluid Flow, Heat and Mass Transfer. Symmetry 2021, 13, 373. https://doi.org/10.3390/sym13030373
Parvin S, Mohamed Isa SSP, Arifin NM, Md Ali F. The Inclined Factors of Magnetic Field and Shrinking Sheet in Casson Fluid Flow, Heat and Mass Transfer. Symmetry. 2021; 13(3):373. https://doi.org/10.3390/sym13030373
Chicago/Turabian StyleParvin, Shahanaz, Siti Suzilliana Putri Mohamed Isa, Norihan Md Arifin, and Fadzilah Md Ali. 2021. "The Inclined Factors of Magnetic Field and Shrinking Sheet in Casson Fluid Flow, Heat and Mass Transfer" Symmetry 13, no. 3: 373. https://doi.org/10.3390/sym13030373
APA StyleParvin, S., Mohamed Isa, S. S. P., Arifin, N. M., & Md Ali, F. (2021). The Inclined Factors of Magnetic Field and Shrinking Sheet in Casson Fluid Flow, Heat and Mass Transfer. Symmetry, 13(3), 373. https://doi.org/10.3390/sym13030373