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Abstract: An inertial algorithm for solving Hammerstein equations is presented. This algorithm is
obtained as a consequence of a new inertial algorithm proposed and studied for solving nonlinear
equations involving operators that are m-accretive. Some strong convergence theorems are proved
in real Banach spaces that are uniformly smooth. Furthermore, comparisons of the numerical
performance of our algorithms with the numerical performance of some recent important algorithms
are presented.
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1. Introduction

An algorithm of inertial-type is an iterative procedure in which subsequent terms
are obtained using the preceding two terms. Inertial-type algorithm was proposed by
Polyak [1]. Consider the dynamical system:

u
′′
(t) + γu

′
(t) +∇ f (u(t)) = 0, (1)

where γ > 0 and f : Rn → R is differentiable. The system (1) is discretized such that,
having the terms zn−1 and zn, the next term zn+1, can be determined using

zn+1 − 2zn + zn−1

h2 + γ
zn − zn−1

h
+∇ f (zn) = 0, n ≥ 1, (2)

where h is the step size. Equation (2) yields the following iterative algorithm:

zn+1 = zn + β(zn − zn−1)− α∇ f (zn), n ≥ 1, (3)

where β = 1− γh, α = h2 and β(zn − zn−1) is called the inertial extrapolation term, which
is intended to speed up the convergence of the sequence generated by Equation (3). Our
interest in this paper is to propose inertial algorithms for solving nonlinear equations
involving accretive operators. Accretive operators were introduced during the late 1960s
by Browder [2] and Kato [3]. A motivation for the study of accretive maps is the fact that
they appear in evolution equations in Banach spaces. Accretive operators appear also in
partial differential equations. For example, consider the equation:

∂ f
∂t (t, u) − 4 f (t, u) = g( f (t, u)), t ≥ 0, u ∈ Ω,
f (t, u) = 0, t ≥ 0, u ∈ ∂Ω,
f (0, u) = f0(u), f0 ∈ L2(Ω),

(4)
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where Ω ⊂ Rn is smooth and open. Setting v(t) = f (t, .), where

v : [0, ∞) −→ L2(Ω)

is given by v(t)(u) = f (t, u) and setting h(ϕ)(u) = g(ϕ(u)), where

h : L2(Ω) −→ L2(Ω),

we see that Equation (4) reduces to the evolution equation:{
v′(t) + Av(t) = h(v(t)), t ≥ 0,
v(0) = f0,

where A := −4 is accretive.
In real Hilbert spaces, the concepts of accretivity and monotonicity coincide. However,

as has been noted by Hezewinkel, Series Editor of Mathematics and Its Applications, Kluwer
Academic Publishers,

“ It is probably impossible to overestimate the importance of the inner product
for the study of problems and phenomena which take place in a Hilbert space.
However, many, and probably most, mathematical objects and models do not
live in Hilbert spaces” (Cioranescu [4], viii).

Since monotone operators have been studied extensively in Hilbert spaces, we shall
concentrate our study of accretive operators on real Banach spaces. Let A : E → 2E be
a set-valued accretive operator on a real Banach space E. The Cauchy Problem for the
following evolution inclusion:

0 ∈ du
dt

+ Au, u(0) = x, x ∈ D(A) (5)

has been of interest to many authors (see, e.g., [5,6]).
A map u : R+ → E is a solution of (5) if on any bounded subinterval of R+, it is

absolutely continuous and in addition, it is differentiable a.e. on R+ with u(0) = x, and
satisfies the inclusion (5) a.e. on R+.

With this understanding of a solution of (5), it is known that (5) has at most one
solution (see e.g., Cioranescu [4], Proposition 4.2, p. 210). At equilibrium state du

dt ≡ 0, thus,
we deduce the following from (5):

0 ∈ Au, (6)

whose solutions correspond to the equilibrium points of the dynamical system given in (5).
Consequently, a problem of interest in the study of accretive operators is:

find u ∈ D(A) ⊂ E with 0 ∈ Au. (7)

The inclusion (7) has been considered in real Hilbert spaces and more general real
Banach spaces by many authors. The well-known proximal point algorithm (PPA) of
Martinet [7] has been employed for finding solutions of problem (7) involving maximal
monotone operators in Hilbert spaces and the algorithm is given by:

(PPA)

{
x1 ∈ H
xn+1 = JA

λn
xn + en, n ≥ 1,

(8)

where JA
λn

=
(

I + 1
λn

A
)−1, I is the identity mapping on H, λn > 0 is a regularizing

parameter and en is an error vector. The algorithm (8) has been studied extensively by
Rockafellar [8] who proved weak convergence of the sequence generated by (8) to a solution
of (7). Since then, several modifications and alternatives of the PPA have been proposed by
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many authors to guarantee strong convergence to a solution of the inclusion problem (7)
(see, e.g., [9,10] for the progress over the years).

Motivated by the use of the resolvent operator in algorithms for solving equations
involving monotone operators, some authors have introduced the resolvent operator in
iterative algorithms for solving equations involving m-accretive operators. The following
theorems are two of the most general results now known for approximating solutions of (7)
in more general real Banach spaces.

Theorem 1 (Xu, [11]). Let E be a reflexive Banach space that has a weakly continuous duality
map J with gauge ϕ and let A be an m-accretive operator on X such that C = D(A) is convex.
Assume (i) lim αn = 0 and ∑ αn = ∞ (ii) lim λn = ∞. Given u, x1 ∈ C, let {xn} be the sequence
generated by

xn+1 = αnu + (1− αn)JA
λn

xn, n ≥ 1. (9)

Then, the sequence {xn} converges strongly to a zero of A.

Theorem 2 (Qin and Su, [12]). Let E be a uniformly smooth real Banach space and A be an
m-accretive operator in E such that A−1(0) 6= ∅. Given a point u ∈ C and given {αn} in (0, 1)
and {βn} in [0, 1], suppose {αn}, {βn} and {λn} satisfy the conditions:

(i) lim αn = 0 and ∑ αn = ∞;
(ii) lim λn ≥ ε, ∀n and βn ∈ [0, a), for some ε > 0 and a ∈ (0, 1);
(iii) ∑ |αn−1 − αn| < ∞, ∑ |βn−1 − βn| < ∞ and ∑ |λn−1 − λn| < ∞.

Let {xn} be the composite process defined by{
yn = βnxn + (1− βn)JA

λn
xn,

xn+1 = αnu + (1− αn)yn.
(10)

Then, the sequence {xn} converges strongly to a zero of A.

Remark 1.
1. Examples of spaces that possess the weak sequential continuity of the duality mapping are lp

spaces, 1 < p < ∞. However, for p 6= 2, Lp spaces, 1 < p < ∞, do not possess this property.
2. The recurrence relation of Theorem 1 contains the resolvent operator JA

λn
and the recurrence

relation of Theorem 2 as well contains this resolvent operator.

In line with this, the following question posed by Chidume [13] is of interest:

“Can an iteration process be developed which will not involve the computation
of JA

λn
xn at each step of the iteration process and which will guarantee strong

convergence to a solution of 0 ∈ Au?”

A partial answer in the affirmative to this question was given by Chidume and
Djitte [14]. They introduced a resolvent free iterative algorithm in real Banach spaces
that are 2-uniformly smooth and proved a strong convergence theorem for the class of m-
accretive operators which are bounded. Hence, the following question became of interest:

Question 1. Can the requirement that the operator A be bounded imposed in the theorem
of Chidume and Djitte [14] be dispensed with?

Recently, Chidume et al. [9] gave a positive answer to Question 1. They first proved a
new and important result concerning accretive operators which is of independent interest:
every accretive operator A on a real normed space with 0 ∈ int(D(A)) is quasi-bounded.
Combining this result with an incessive construction in some real Banach space E, they
were able to dispense with the boundedness requirement on A in the Theorem of Chidume
and Djitte [14]. Below is their theorem:
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Theorem 3 (Chidume, et al., [9]). Let E be a uniformly smooth real Banach space let A : E→ 2E

be a set-valued m-accretive mapping such that the inclusion 0 ∈ Au has a solution. For arbitrary
u1 ∈ E, define inductively a sequence {un} by

un+1 = (1− αnβn)un − αnψn, ψn ∈ Aun, n ≥ 1, (11)

where {αn} and {βn} are sequences in (0, 1) satisfying the following conditions:

(i) lim
n→∞

βn = 0, {βn} is decreasing,

(ii) ∑∞
n=1 αnβn = ∞, ∑∞

n=1 ρE(αn M0) < ∞, for some constant M0 > 0,

(iii) lim
n→∞

(
βn−1−βn

βn

)
αn βn

= 0. Assume that there exists a constant γ0 > 0 such that ρE(αn)
αn
≤ γ0βn,

then, {un} converges strongly to a solution of (7).

The objective of this paper is to introduce an inertial algorithm for solving Hammer-
stein equations involving accretive operators in certain Banach spaces. To do this, we first
introduce a new inertial algorithm for solving nonlinear equations involving m-accretive
operators and prove strong convergence theorems in real Banach spaces that are uniformly
smooth. Finally, comparisons of the numerical performance of our algorithms with the
performance of some recent important algorithms are presented.

2. Preliminaries

We shall make use of the lemmas below in the proof of our main results.

Lemma 1 (Xu and Roach, [15]). Let E be a uniformly smooth real Banach space. Then, there exist
constants D and C such that for all x, y ∈ E, j(x) ∈ J(x), the following inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x)〉+ D max
{
‖x‖+ ‖y‖, 1

2
C
}

ρE(‖y‖),

where ρE denotes the modulus of smoothness of E.

Lemma 2 (see e.g., Chidume, [16]). Let E be a normed real linear space. Then, the following
inequality holds:

‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, ∀ j(x + y) ∈ J(x + y), ∀ x, y ∈ E.

Lemma 3 (Xu, [17]). Let {an} be a sequence of non-negative real numbers satisfying the following
relation:

an+1 ≤ (1− σn)an + σnbn + cn, n ≥ 1,

where {σn}, {bn} and {cn} satisfy the conditions:

(i) {σn} ⊂ [0, 1],
∞

∑
n=1

σn = ∞; (ii) lim sup
n→∞

bn ≤ 0; (iii) cn ≥ 0,
∞

∑
n=1

cn < ∞.

Then, lim
n→∞

an = 0.

Lemma 4 (Reich, [18]). Let E be a uniformly smooth real Banach space, and let A : E → 2E be
m-accretive. Let Jtx := (I + tA)−1x, t > 0 be the resolvent of A, and assume that A−1(0) is not
empty. Then, for each x ∈ E, lim

t→∞
Jtx exists and belongs to A−1(0).

Lemma 5 (Fitzpatrick, Hess and Kato, [19]). Let E be a real reflexive Banach space, A : D(A) ⊂
E→ E be an accretive mapping. Then, A is locally bounded at any interior point of D(A).

Lemma 6 (Chidume et al., [9]). Let E be a smooth and reflexive real Banach space and A : E→ 2E

be an accretive map with 0 ∈ intD(A) (intD(A) means interior of the domain of A). Then, given
M > 0, there exists a constant C > 0 such that:
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(i) (y, v) ∈ G(A) (G(A) means the graph of A);
(ii) 〈v, j(x)− j(x− y)〉 ≤ M(2‖x‖+ ‖y‖);
(iii) ‖y‖ ≤ M, ‖x‖ ≤ M implies ‖v‖ ≤ C.

3. Main Results

The following assumptions on our control sequences, {λn}, {βn} and {θn} are central
in what follows.

(i) lim
n→∞

θn = 0, {θn} is decreasing;

(ii) ∑ λnθn = ∞;
(iii) βn ≤ λ4

nθnγ0;

(iv) lim
n→∞

θn−1−θn
θn

λnθn
= 0,

(v)
ρE(λn M)

λn M
≤ θ2

nγ0,

for some constants γ0 > 0 and M > 0.

Prototypes. Take λn = (n + 1)−
1
4 , θn = (n + 1)−

1
8 and βn = (n + 1)−

9
8 , n ≥ 1, for Lp

spaces, 2 ≤ p < ∞, and λn = (n + 1)−
1
4 , θn = (n + 1)−

p
8 and βn = (n + 1)−

(8+p)
8 ,

n ≥ 1, for Lp spaces, 1 < p < 2 (see e.g., [16], for estimates of ρE in Lp spaces, 1 < p < ∞).

One can easily verify assumptions (i)–(v) using these prototypes.
The settings for Lemma 7 and Theorem 4 are:

(1) The space E is a real Banach space which is uniformly smooth.
(2) The operator A : E→ 2E is set-valued m-accretive.
(3) The set of zeros of A is nonempty and the control sequences satisfy assumptions

(i)–(v).

Lemma 7. Given z0, z1 ∈ E, define iteratively a sequence {zn} in E by{
wn = zn + βn(zn − zn−1),
zn+1 = wn − λnµn − λnθnwn, µn ∈ Awn, n ≥ 1.

(12)

Then, {zn} is bounded.

Proof. Given z∗ in the set of solutions of the inclusion 0 ∈ Az, and z1 ∈ E, there ex-
ists r ≥ 2||z∗|| such that z1 ∈ B(z∗, r

2 ) := {z ∈ E : ‖z − z∗‖ ≤ r
2}. Now, define the

following constants:

M0 := sup{‖µ + θw‖ : w ∈ B, 0 < θ < 1, µ ∈ Aw}+ 1,

M1 := sup
{

D max
{
‖w− z∗‖+ λM0,

C
2

}
: w ∈ B, λ ∈ (0, 1)

}
,

M :=max{M0, M1}, γ0 :=
1
2

min
{

1,
r2

4M2

}
,

where C and D are the constants appearing in Lemma 1 (see [9] for a proof that these sups
are well-defined).

Claim: {zn} ⊂ B.
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We prove this claim by induction. Observe that z1 ∈ B, by construction. Now, assume
zn ∈ B, for some n ≥ 1. Then, using the relation (12), Lemmas 1 and 2, definition of wn and
the fact that z∗ is a solution, we compute as follows:

||zn+1 − z∗||2 = ||wn − z∗ − λn(µn + θnwn)||2

≤ ||wn − z∗||2 − 2λn〈µn + θnwn, j(wn − z∗)〉

+ D max
{
||wn − z∗||+ λn||µn + θnwn||,

C
2

}
ρE(λn||µn + θnwn||)

≤ ||wn − z∗||2 − 2λn〈µn, j(wn − z∗)〉 − 2λnθn〈wn, j(wn − z∗)〉
+ MρE(λn M0)

≤ ||wn − z∗||2 − 2λnθn〈wn − z∗, j(wn − z∗)〉 − 2λnθn〈z∗, j(wn − z∗)〉
+ MρE(λn M)

≤ (1− λnθn)||wn − z∗||2 + λnθn||z∗||2 +
MρE(λn M)

λn M
λn M.

||zn+1 − z∗||2 ≤ (1− λnθn)||zn − z∗||2 + 2Mβn + λnθn||z∗||2 +
MρE(λn M)

λn
λn

≤ (1− λnθn)r2 + 2Mλnθnγ0 +
λnθnr2

4
+ M2λnθnγ0

≤ r2 − λnθnr2

4
. (13)

Thus, by induction, {zn} ⊆ B. Hence, {zn} and {wn} are bounded.

Based on the setting above, we now give our main theorem.

Theorem 4. Given z0, z1 ∈ E, define iteratively a sequence {zn} in E by{
wn = zn + βn(zn − zn−1),
zn+1 = wn − λnµn − λnθnwn, µn ∈ Awn, n ≥ 1.

(14)

Then {zn} converges strongly to a solution of the inclusion 0 ∈ Az.

Proof. The proof basically follows as in the proof of Theorem 3.2 of [13]. However, for
completeness, we sketch the details. Set yn := Jtn z1, where z1 is an arbitrary fixed vector in
E, tn = θ−1

n , ∀ n ≥ 1 in Lemma 4 and observe that with {tn}, the sequence {yn} satisfies
the following conditions:

θn(yn − z1) + vn = 0, vn ∈ Ayn ∀ n ≥ 1, and yn → y∗ ∈ A−10. (15)

We now prove that ||zn+1 − yn|| → 0, as n→ ∞. Using Lemma 1, we get

||zn+1 − yn||2 = ||wn − yn − λn(µn + θnwn)||2

≤ ||wn − yn||2 − 2λn〈µn + θnwn, j(wn − yn)〉 + MρE(λn M1)

≤ ||wn − yn||2 − 2λn〈µn − vn, j(wn − yn)〉 − 2λnθn||wn − yn||2

− 2λn〈vn + θnyn, j(wn − yn)〉 + MρE(λn M)

≤ (1− λnθn)||wn − yn||2 + MρE(λn M)

≤ (1− λnθn)||zn − yn||2 + 2Mβn + MρE(λn M). (16)

Estimating ||yn−1 − yn|| and ||zn − yn||2 (see Theorem 3.2 of [13]), we get
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||yn−1 − yn|| ≤
(

θn−1 − θn

θn

)
||yn−1 − z1||. (17)

||zn − yn||2 ≤ ||zn − yn−1||2 + 2||yn−1 − yn||||zn − yn||. (18)

From inequalities (16)–(18), we have that

||zn+1 − yn||2 ≤ (1− λnθn)||zn − yn−1||2 + M(θn−1 − θn)θ
−1
n + MρE(λn M) + 2Mβn

= (1− λnθn)||zn − yn−1||2 + M(λnθn)δn + M
ρE(λn M)

λn
λn + 2Mβn,

≤ (1− λnθn)||zn − yn−1||2 + λnθn M(δn + θnγ0) + Mλ4
nθnγ0,

where σn := λnθn, δn :=

(
θn−1−θn

θn

)
λnθn

, an := ||zn − yn−1||2, bn := M(δn + θnγ0) and
cn := Mλ4

nθnγ0. Hence, by Lemma 3, it follows that lim
n→∞
||zn − yn−1|| = 0. Using

Equation (15), we conclude that lim
n→∞

zn = y∗. This proof is complete.

4. Approximating Solutions of Hammerstein Equations

Definition 1. Let Ω be a bounded subset of Rn. Let k : Ω×Ω → R and f : Ω×R → R be
real-valued functions that are measurable. An integral equation of the form

u(x) +
∫

Ω
k(x, y) f (y, u(y))dy = w(x), (19)

where u and w are real-valued functions defined on Ω and are measurable is said to be of
Hammerstein-type.

A motivation for the study of Hammerstein-type integral equations arise from their
connection with differential equations, in particular, elliptic boundary value problems see,
e.g., [20,21] for concentrate examples.

Let K be defined by K(v) :=
∫

Ω
κ(x, y)v(y)dy; x ∈ Ω, and let F be defined by

Fu(y) := f (y, u), then, Equation (19) can put in the form

u + KFu = 0. (20)

Equation (20) is called a Hammerstein equation. See, for example, Refs. [22–25]
concerning existence and uniqueness results for the Hammerstein Equation (20) involving
monotone mappings. Recently, Chidume et al. [10] established existence result for (20)
involving accretive maps and concerning approximation of solutions of the Hammerstein
Equation (20), see, e.g., [22,26–32] and the references therein.

Now, we use Theorem 4 to approximate solutions of Equation (20). The lemma below
will play a crucial role in the proof of Theorem 5.

Lemma 8 (Chidume and Zegeye [33]). For q > 1, let E be a q-uniformly smooth real Banach
space and let F : E → E be a continuous α-strongly accretive mapping and K : E → E be a
continuous β-strongly accretive mapping such that α >

dq−1
q and β > 1

q , for some dq > 1. Then,
A : E× E→ E× E be defined by A[u, v] := [Fu− v, Kv + u], is continuous γ-strongly accretive,
where γ = min{α− dq−1

q , β− 1
q}.

Remark 2. We remark that a zero ([u∗, v∗]) of this A in Lemma 8 solves (20) with v∗ = Fu∗.

The setting for Theorem 5

(1) The space X is a real Banach spaces that is q-uniformly smooth, q > 1.
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(2) The operators F and K are as defined in Lemma 8.
(3) The set of solutions of (20) is nonempty and the control sequences satisfy assumptions

(i)–(v) above.

Theorem 5. For arbitrary (u0, v0), (u1, v1) ∈ X × X, define the sequences {un} and {vn} in
X, by 

cn = un + βn(un − un−1),
dn = vn + βn(vn − vn−1),
un+1 = cn − λn(Fcn − dn)− λnθncn, n ≥ 1,
vn+1 = dn − λn(Kdn + cn)− λnθndn, n ≥ 1.

(21)

Then the sequences {un} and {vn} generated by (21) converge strongly to u∗ and v∗, respec-
tively, where u∗ is a solution of (20), with v∗ = Fu∗.

Proof. Clearly, E := X × X is uniformly smooth, by Lemma 8, A := [Fu− v, Kv + u] is
m-accretive. Therefore, the conclusion follows from Theorems 4 and Remark 2.

Remark 3. For the purpose of numerical illustration, we shall compare our Algorithm (21) with
Algorithm (22) of Chidume et al. [10]. We give the theorem for completeness.

Theorem 6 (Chidume et al. [10]). Let E be a uniformly convex real Banach space and and
F, K : E→ E be m-accretive maps. For (u1, v1) ∈ E× E, define the sequences {un} and {vn} in
E, respectively by{

un+1 = un − λn(Fun − vn)− λnθn(un − u1), n ≥ 1,
vn+1 = vn − λn(Kvn + un)− λnθn(vn − v1), n ≥ 1,

(22)

where λn and θn are sequences in (0,1). Suppose the equation u + KFu = 0 has a solution. Then,
the sequences {un} and {vn} converge strongly to u∗ and v∗, respectively, where u∗ is a solution
of (20) with v∗ = Fu∗.

5. Numerical Experiments

In this section, we give comparisons of the numerical performance of our algorithms
with the performance of some recent important algorithms.

Example 1. (Zeros of m-accretive operator in L3([0, 1]), see Table 1 and Figures 1 and 2)

In Theorems 1, 2 and 4, set E = L3([0, 1]). Let A : E→ E be defined by

(Au)(t) := u(t).

Clearly, A is m-accretive and the function u(t) = 0, ∀ t ∈ [0, 1] is in the solutions set.
In Theorem 4, take λn = 1

(n+1)
1
2

, θn = 1

(n+1)
1
4

, βn = 1
(n+1)2 , n = 1, 2, · · · , as parameters.

Also, in Theorem 1, we take αn = 1
n+1 and λn = n, and in Theorem 2, we take αn = 1

n+1 ,
βn = 1

4 and λn = 5. Obviously, these parameters satisfy the assumptions of the theorems,
respectively. Using a tolerance of 10−6 and setting maximum number of iterations n = 10,
we get the following:
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Table 1. Numerical experiment for Example 1 (for zeros of m-accretive map).

Algorithm (9) Algorithm (10) Algorithm (14)

IP n ‖un+1‖ T (s) IP n ‖un+1‖ T (s) IP n ‖un+1‖ T (s)

u1(t) = sin t 10 0.0501 0.029 u1(t) = sin t 10 0.0602 1.431 u0(t) = t 10 3.0630 × 10−6 17.252
u1(t) = sin t

u1(t) = t2 + 1 10 0.0501 0.020 u1(t) = t2 + 1 10 0.0602 0.040 u0(t) = t 10 8.887 × 10−6 12.308
u1(t) = t2 + 1

u1(t) =
1

2t+cos t
10 0.0501 0.024 u1(t) =

1
2t+cos t

10 0.0602 0.062 u0(t) = t 10 3.942 × 10−6 19.140

u1(t) =
1

2t+cos t

0 2 4 6 8 10
n

0.00

0.05

0.10
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(a) Graph of some iterates of Algorithms (9) and (14) with u1(t) = sin(t).
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(b) Graph of some iterates of Algorithms (9) and (14) with u1(t) = t2 + 1.

Figure 1. Graph of some iterates of Algorithms (9) and (14).
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(a) Graph of some iterates of Algorithms (10) and (14) with u1(t) = sin(t).
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(b) Graph of some iterates of Algorithms (10) and (14) with u1(t) = t2 + 1.

Figure 2. Graph of some iterates of Algorithms (10) and (14).

Example 2. (Solutions of Hammerstein equation in L3([0, 1]), see Table 2 and Figure 3)

In Theorems 5 and 6, set E = L3([0, 1]). Set F, K : E→ E

Fu(t) = tu(t), Kv(t) = v(t).

Clearly, K and F are m-accretive and u∗ = (0, 0)T is in the solutions set. In Theorem 6,
we take λn = θn = 1

(n+1)
1
2

, and in Theorem 5, we take αn = 1

(n+1)
1
2

, θn = 1

(n+1)
1
4

, βn =

1
(n+1)2 , n = 1, 2, · · · , as our control sequences and fixed u0 = (−2, 1)T and v0 = (1, 1)T .
Obviously, these sequences satisfy the assumptions of the theorems respectively. Using a
tolerance of 10−6 and setting maximum number of iterations n = 10, we get the follow-
ing iterates:
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Table 2. Numerical experiment for Example 2 (For Hammerstein equation).

Algorithm (22) Algorithm (21)

IP n ‖un+1‖ T (s) IP n ‖un+1‖ T (s)

u1(t) = t sin t 10 0.2841 0.711 u1(t) = t sin t 10 0.0121 759.29
v1(t) = cos t

u1(t) = t− 4 10 0.8277 1.564 u1(t) = t− 4 10 0.0317 646.93
v1(t) = 2

u1(t) = −4 10 0.9526 0.637 u1(t) = −4 10 0.1455 21.39
v1(t) = et + 2t
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n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

||u
n
+
1||

Algorithm 22
Algorithm 21

(a) Graph of some iterates of Algorithms (21) and (22) with u1(t) = t sin t,
v1(t) = cos t.
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(b) Graph of some iterates of Algorithms (21) and (22) with u1(t) = t− 4,
v1(t) = 2.

Figure 3. Graph of some iterates of Algorithms (21) and (22).

6. Conclusions

An inertial algorithm for approximating solutions of nonlinear Hammerstein equa-
tions is presented. This algorithm is obtained as a consequence of a new inertial algorithm
proposed and studied for approximating zeros of m-accretive operators in uniformly
smooth real Banach spaces. Strong convergence theorems are proved. Finally, using test
examples, comparisons of the numerical performance of our algorithms with the perfor-
mance of the algorithms of Theorems 6, 9 and 10 are presented. From the experiments
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(see Tables 1 and 2 and Figures 1–3) our proposed method appears to be competitive and
promising.
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