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Abstract: Two distinct operational procedures are proposed for diagnosis and tracking of heart
disease evolution (in particular atrial fibrillations). The first procedure, based on the application of
non-linear dynamic methods (strange attractors, skewness, kurtosis, histograms, Lyapunov exponent,
etc.) analyzes the electrical activity of the heart (electrocardiogram signals). The second procedure,
based on multifractalization through Markovian and non-Markovian-type stochasticizations in the
framework of the scale relativity theory, reconstructs any type of EKG signal by means of harmonic
mappings from the usual space to the hyperbolic one. These mappings mime various scale transitions
by differential geometries, in Riemann spaces with symmetries of SL(2R)-type. Then, the two
operational procedures are not mutually exclusive, but rather become complementary, through their
finality, which is gaining valuable information concerning fibrillation crises. As such, the author’s
proposed method could be used for developing new models for medical diagnosis and evolution
tracking of heart diseases (patterns dynamics, signal reconstruction, etc.).

Keywords: non-linear dynamics analysis; scale relativity; fractality; Markovian and non-Markovian
stochastic processes; atrial fibrillation

1. Introduction

Since the development of the first cardiac cell model [1], several nonlinear models of
electrophysiological dynamics were proposed [2]. To investigate the electrical behavior
of the heart, the models encourage the use of the specific methods of nonlinear dynam-
ics, applied to the heart rhythm behavior evidenced through electrocardiogram (EKG)
analysis [3–5]. Thus, for the evaluation of heart-rate variability, many time series analysis
methods were applied to EKG: autocorrelation function, power spectrum, fractal dimen-
sions, Hurst exponent, Lyapunov exponent, reconstructed phase-space analysis, bifurcation
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analysis, detrended fluctuation analysis, recurrence plot, sample entropy, approximate
entropy, Kolmogorov–Sinai entropy, etc. [6–9]. Standards for the quantification of heart
rate variability were proposed by the Task Force of the European Society of Cardiology
and North American Society of Pacing Electrophysiology [10]. The nonlinear dynamics
analysis of EKG can provide important information also for other physiological processes,
such as those specific for brain functioning and behavior [11,12]. However, despite the im-
portant information obtained on many aspects of cardiology through nonlinear dynamics
time series analysis, the implementation of therapy predictions based on this analysis into
clinical practice is far from being consistent [7].

Taking the previous aspect into account, the authors propose a different approach on
the topic of EKG signals analysis (particularly referring to the subject of atrial fibrillations).
The first procedure is based on applications of nonlinear dynamic methods in EKG signals
analysis, while the second one is based on the reconstruction of EKG signals. The second
procedure is fundamental to the reasonable hypothesis that the cardiovascular system [13]
can be assimilated, both functionally and structurally, to a multifractal object. Then, the
dynamics which govern such an object can be described using the scale relativity theory,
under its various models (be it scale relativity in Nottale sense or multifractal theory of
motion). In such a context, through miming, with the help of harmonic mappings from
the usual space to the hyperbolic one, various scale transitions which imply symmetries of
SL(2R)-type are highlighted. The two operational procedures which will be discussed in
this paper could facilitate the implementation of such methods into clinical practice.

2. Analysis of Atrial Fibrillation by Applying Non-Linear Dynamics Methods

The analyzed electrocardiograms were downloaded from the PhysioNet database
(PhysioNet). This allows all researchers to access a free collection of physiological signals
(PhysioBank), recorded from a wide range of patients, as well as specialized software for
viewing and analyzing them. It is supported by the National Institute of General Medical
Science (NIGMS) and the National Institute of Biomedical Imaging and Bioengineering
(NIBIB), and free access is made in accordance with ODC Public Domain Dedication and
License v1.0. Existing resources are made available to stimulate current research in the
domain of studying complex biomedical and physiological signals. The signal we analyzed
has the following traits (10-h recording time, sampling time of 4 ms, sampling rate of
250 recordings/s. a total of 9,205,760 points, amplitude between −0.6 mV and 0.9 mV).

In Figure 1, the analysis of the 1/R-R interval, corresponding to a cardiac cycle,
highlights these three crises, two atrial fibrillations and one flutter fibrillations is presented.
The analysis contains all of EKG fragments (5 s duration) corresponding to pre-crisis, first
AFIB (AFIB 1), AFL, second AFIB (AFIB 2), and post-crisis, respectively.
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In Appendix A, details about the EKG signal fragments, referring to Figure 1, can be
consulted.

In pre-crisis and post-crisis, the signals are normal. In the first AFIB, heart rate
increases slowly, then it shows a rapid increase in AFL, slowly decreasing afterwards in the
second AFIB. The first step in implementing a non-linear analysis concerns the number am
amplitude several oscillation frequencies, which are known to be used for spotting various
chaos transition scenarios. In Figure 2 we present the Fouriér specters for amplitudes
of signals from Figure 1. The sudden appearance of AFIB crisis 1 (Figure 2b) leads to
non-monotonous distribution of main oscillation frequencies and we see their number
reduced from approximately 10 (pre-crisis) to 5 in the AFL (Figure 2c). The AFIB crisis 2
(Figure 2d) showcases all the signature of a chaotic signal with a quasi-infinite number of
oscillations of similar amplitudes.
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seen that a significant change is seen in the shape and structure of the attractor. For pre-
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Figure 2. Fourier specters for amplitudes of empirical signals. (a) Original main oscillation frequencies. (b) Sudden
appearance of AFIB crisis 1. (c) The main oscillation frequencies after AFIB crisis 1. (d) The signature of a chaotic signal
with a quasi-infinite number of oscillations of similar amplitudes.

Figure 3 shows the systems dynamics attractors in the phase space reconstructed
through the delay time method, determined using the auto-correlation function. It can
be seen that a significant change is seen in the shape and structure of the attractor. For
pre-crisis signals we observe 7 main regions which are not clearly defined, result induced
by the abundance of frequencies around the main ones identified from FFT analysis. The
AFB crisis 1 and AFL attractors are similar to a twisted Lorenz-type attractor with a strong
center for high frequencies, thus offering a first identifiable feature in attractor analysis.
Finally, we observe that in AFIB crisis 2 no distinguishable feature can be seen, with only
abundance oscillation modes.
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Results of Signal Analysis

We must highlight the clear difference between the geometry of attractors correspond-
ing to the two atrial crises (AFIB 1 and 2), and also the differences between pre-crisis
and post-crisis. This suggests a defibrillator was used to restore normal heart rhythm.
Further histogram analysis of signals from Figure 1, presented in Figure 4, shows that, in
the beginning, during the pre-crisis period, the pulse is stable around 60 bpm. It tends
to increase during the first atrial fibrillation crisis, with a maximum of around 110 bpm.
During flutter fibrillation, the pulse has values between 100–130 bpm. The histogram
corresponding to the second atrial fibrillation has an approximately Gaussian distribution,
with a maximum at 60–80 bpm. During post-crisis the pulse stabilizes, reaching 60 bpm.

The statistical analysis extended for all signals is summarized in Table 1. Pulse average
during the normal functioning of the heart is approximately 57 bpm. It increases up to
over 69 bpm during AFIB 1, over 81 bpm during AFIB 2, and over 108 bpm during flutter.
Regarding variation, a 40-time increase can be observed at the onset of AFIB 1, when
compared to the normal functioning of the heart. The skewness and kurtosis values are
in accordance with pulse rate distributions from histograms in Figure 4. The Lyapunov
exponent has positive values, close to zero for normal heart rhythm, and with values
over one order of magnitude higher in the case of fibrillation crises, highlighting a chaotic
behavior for cardiac muscle dynamics. Nonlinear dynamics is nowadays widely employed
in the study of biological phenomena. Taking into account that abnormal heart rhythms
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display chaotic behaviors, in our opinion, the specific attractor dynamics can constitute a
method for evaluating various cardiac afflictions. By implementing mathematical proce-
dures specific to nonlinear dynamics: constructing strange attractors, skewness, kurtosis,
histograms, Lyapunov exponent, etc., a new method for evaluating atrial fibrillations
was devised. This analysis as is presented in Figure 3, shows that their dynamics reflect
abnormal heart rhythms following the evolution of the EKG signals. The skewness and
kurtosis values are in accordance with pulse rate distributions from histograms of the
analyzed signals. The Lyapunov exponent has positive values, close to zero for normal
heart rhythm, and with values over one order of magnitude higher in the case of fibrillation
crises, highlighting a chaotic behavior for cardiac muscle dynamics. In this conjecture, the
dynamics of strange attractors generated in the phase space reflect abnormal heart rhythms.
The presented results show that by applying nonlinear dynamics methods for analyzing
the heart electrical activity we can obtain valuable information regarding fibrillation crises.
Our method could be used for developing new models for medical diagnosis and evolution
tracking of heart diseases, based on specific patterns.
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Table 1. Statistical values associated with heart rate variations (1/R-R interval).

Signal
1/R-R Interval

Median
(bpm)

Variance
Geometric
Standard
Deviation

Skewness Kurtosis
Largest

Lyapunov
Exponent

Pre-crisis 56.3909 16.858 1.0673 4.4938 37.6779 0.013981

AFIB 1 53.3807 718.649 1.4309 0.7814 −1.098 0.211145

AFL 115.3846 17.9911 1.2105 −0.0359 0.462 0.082811

AFIB 2 76.9231 391.197 1.2662 0.7047 0.0456 0.138646

Post-crisis 56.6037 22.871 1.0684 8.2509 82.8455 0.014529

3. The Reconstruction of EKG Signals through Scale Relativity Theory

Common models used to describe biological structure dynamics are based on a combi-
nation of basic theories derived especially from physics and computer simulations [14–19].
As such, the description of biological structure dynamics implies both computational simu-
lations based on specific algorithms [17,20,21], as well as developments on usual theories
of biophysics, concerning various classes of models. One class of models was developed
on spaces with integer dimensions, i.e., a differentiable class of models (differentiable
biophysical models) [14–16]. Another class of models has been developed on spaces with
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non-integer dimensions and has been explicitly written through fractional derivatives, i.e.,
a non-differentiable class of models (fractal or multifractal biophysical models) [20,21].

On the same considerations, linked with the previously mentioned models, a new class
of biophysical models has arisen, based on Scale Relativity Theory, either in the monofractal
dynamics as in the case of Nottale [22], or in the multifractal dynamics as in the case of
the multifractal theory of motion [23]. Both in the context of [22], as well as in the one
of [23], supposing that any biological structure dynamics are assimilated both structurally
and functionally to a multifractal object, said dynamics can be described through motions
of the biological system’s structural units, dependent on the chosen scale resolution, on
continuous and non-differentiable curves (multifractal curves). Since for a large temporal
scale resolution with respect to the inverse of the highest Lyapunov exponent [24,25], the
deterministic trajectories of any structural units belonging to the biological system can be
replaced by a collection of potential (“virtual”) trajectories, the concept of definite trajectory
can be substituted by the one of probability density.

With all of the above considerations taken into account, in the description of the
dynamics of any biological structure, the multifractality expressed through stochasticity
becomes operational. Therefore, when describing such dynamics, it will be necessary to use
multifractal functions (functions that are both time-space coordinates and scale resolution
dependent) [22,23].

In the present section, it is shown that, by applying scale relativity theory, in its various
forms, it is possible to reconstruct any type of EKG signal by means of harmonic mappings
from the usual space to the hyperbolic one.

3.1. Dynamics through Markovian and Non-Markovian Fractalization Types at Various
Scale Resolutions

Assuming that any biological system can be assimilated to a multifractal object, its
dynamics in the multifractal Theory of Motion are described through continuous but
non-differentiable curves (multifractal curves). Such an assumption has important conse-
quences [22,23]:

(i) The lengths of multifractal curves tend to infinity when the scale resolution δt tends to
zero (according to the Lebesgue Theorem [22]). Therefore, the space of such dynamics
becomes a multifractal in the Mandelbrot sense [26].

(ii) During the zoom operation of δt, any dynamics are related to the behaviors of a set of
functions through the substitution principle δt ≡ dt.

(iii) Any dynamics are described by multifractal functions. Then, two derivatives can
be defined:

dQ+
dt = lim

∆t→0

Q(t,t+∆t)−Q(t,∆t)
∆t ,

dQ−
dt = lim

∆t→0

Q(t,∆t)−Q(t−∆t,∆t)
∆t .

(1)

The sign “+” specifies the forward dynamics. The sign “−” specifies the back-
ward ones.

(iv) The differential of the spatial coordinate has the form:

d±Xi(t, dt) = d±xi(t) + d±ξ(t, dt) (2)

The differentiable part d±xi(t) does not depend on the scale resolution, while the
non-differentiable part d±ξ(t, dt) is scale resolution dependent.

(v) The quantities d±ξ(t, dt) satisfy the relation:

d±ξ i(t, dt) = λi
±(dt)[

2
f (α) ]−1, f (α) = f [α(DF)] (3)

where λi
±(dt) are constant coefficients associated to differential-non-differential transi-

tion, f [α(DF)] is the singularity spectrum of order α, α is the singularity index and DF
is the fractal dimension of the “motion curves.” There are many modes of defining the



Symmetry 2021, 13, 456 7 of 19

fractal dimension. Thus, several fractal dimensions may be employed, but the fractal
dimension in the sense of Hausdorff–Besikovitch [26] or the fractal dimension in the
sense of Kolmogorov, are the most commonly used ones. In the case of many models,
selecting one of these definitions and operating it in the context of any biological
system dynamics implies that the value of the fractal dimension must be constant and
arbitrary for the entirety of the dynamical analysis: for example, it is regularly found
that DF < 2 for correlative processes in the dynamics of any biological system, DF > 2
for non-correlative processes. In the description of biological system dynamics we
operate with f [α(DF)] (i.e., simultaneously operating with several fractal dimensions,
on multifractal manifolds, as in the multifractal theory of motion) instead of operating
with DF (i.e., with a single fractal dimension, on monofractal manifolds, as in the case
of Nottale’s model). This leads to a series of advantages [13], such as the possibility to
identify the areas of biological system dynamics that are characterized by a certain
fractal dimension (for example, cell dynamics from either normal or tumoral tissues)
or to identify the number of areas in the biological system dynamics for which the
fractal dimensions are situated in an interval of values (for example, cell dynamics
from tissue with various metastasis degrees). Finally, one of the biggest advantages
of the method is the ability to identify classes of universality in the biological system
dynamics, even when regular or strange attractors have various aspects (for example,
the diagnosis of diseases from regular or strange attractor dynamics, as shown here).

(vi) The differential time reflection invariance is recovered by means of the operator:

d̂
dt

=
1
2

(
d+ + d−

dt

)
− i

2

(
d+ − d−

dt

)
. (4)

In such context, applying this operator to Xi, yields the complex velocity:

V̂i =
d̂Xi

dt
= Vi

D −Vi
F (5)

with

Vi
D =

1
2

d+Xi + d−Xi

dt
, Vi

F =
1
2

d+Xi − d−Xi

dt
, i = 1, 2, 3. (6)

In this relation the differential velocity Vi
D is scale resolution independent, while the

non–differentiable one Vi
F is scale resolution dependent.

(vii) Since the multi-fractalization describing biological structures dynamics implies stochas-
ticization, the whole statistic “arsenal” (averages, variances, covariances, etc.) are
operational. Thus, for example, let us select the subsequent functionality:〈

d±Xi
〉
≡ d±xi, (7)

with 〈
d±ξ i

〉
= 0. (8)

(viii) The biological structures dynamics, with previous functionality, can be described
through the scale covariant derivative given by the operator

d̂
dt

= ∂t + V̂i∂i + Dlk∂l∂k, (9)

where
Dlp =

1
4
(dt)

2
f(α)
−1
(

dlp + i d
lp
)

, i =
√
−1 (10)

dlp = λl
+λ

p
+ − λl

−λ
p
− (11)

d
lp
= λl

+λ
p
+ − λl

−λ
p
− (12)
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∂t =
∂

∂t
, ∂l =

∂

∂Xl , ∂l∂p =
∂

∂Xl
∂

∂Xp , l, p = 1, 2, 3 (13)

Now, accepting the scale covariant principle in the describing of any biological
structure dynamics, the conservation law of the specific momentum (i.e., geodesic
equations on a multifractal manifold) takes the form:

d̂V̂
i

dt
= ∂tV̂

i
+ V̂l

∂iV̂
i
+

1
4
(dt)[

2
f(α)

]−1Dlp∂l∂pV̂i
= 0 (14)

The explicit form of Dlp depends on the type of multi-fractalization used. It can
be admitted that the multi-fractalization process can take place through various
stochastic processes. Stochastic dynamics can be Markovian (thus, memoryless)
biological processes. This is the case of scale relativity theory in Nottale’s sense,
referring to biological dynamics on monofractal manifolds (with fractal dimension
DF = 2). For non-Markovian biological processes, memory-like qualities are expected.
Since biological processes usually display some sort of memory-related traits, it is
then necessary to operate with mathematical procedures vastly different than the
ones previously mentioned. In this case, wherein it is possible to generalize many of
the previous results [21,23], the following constraints are admitted:

1
4
(dt)[

2
f(α)

]−1dlp = αδlp,
1
4
(dt)[

2
f(α)

]−1d
lp
= βδlp (15)

where α and β are two constant coefficients associated to the differential-nondifferential
scale transition, and δlp is Kronecker’s pseudotensor. In such context, the conserva-
tion laws on multifractal and Euclidian manifolds are given in Appendix B, while in
Appendix C nonlinear behaviors at non-differentiable scale are presented.

3.2. Dynamics Generated by Differential Geometry of Riemann Type in Scale Space

The constraints in Equation (15), through which multi-fractalization by means of
stochasticization of non-Markovian type is explained, imply the determination of eigen-

values of two 3× 3 matrices (let them be dlp and d
lp

), which formally lead to the cubic
equation in binomial form:

a0x3 + 3a1x2 + 3a2x + a3 = 0 (16)

where the coefficients ai are real (with i = 0, 1, 2, 3).
Now, it is possible to associate a Riemann space to the family of cubics in Equation

(16), as it will be seen. The basis of approach is the fact that the simple transitive group
with real parameters [27]:

xk ↔
axk + b
cxk + d

, a, b, c ε R

where xk are the roots of the cubic in Equation (16), in the form:

x1 =
h + h∗·k

1 + k
, x2 =

h + ε·h∗·k
1 + ε·k , x3 =

h + ε2·h∗·k
1 + ε2·k (17)

with h, h*—the roots of Hessian(
a0a2 − a2

1

)
x2 + (a0a3 − a1a2)x +

(
a1a3 − a2

2

)
= 0 (18)

and ε ≡ (−1 + i
√

3)/2 the cubic root of unity (i≡
√

(−1)), induces a simply transitive group
for the quantities h, h* and k, whose action is:

h↔ ah + b
ch + d

, h∗ ↔ ah∗ + b
ch∗ + d

, k↔ ch∗ + d
ch + d

·k (19)
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The structure of this group is typical of a SL(2, R) one, which we take in the stan-
dard form

[B1, B2] = B1, [B2, B3] = B3, [B3, B1] = −2B2 (20)

where Bk are the infinitesimal generators of the group. Because the group is simply
transitive, these generators can be found as the components of the Cartan frame [28,29]
from the relation

d( f ) = ∑ ∂ f
∂xk dxk

=
[
ω1
(

h2 ∂
∂h + h∗2 ∂

∂h∗

+(h− h∗)k ∂
∂k

)
+ 2ω2

(
h ∂

∂h + h∗ ∂
∂h

)
+ω3

(
∂

∂h + ∂
∂h∗

)]
( f )

(21)

where ωk are the components of the Cartan coframe to be found from the system

dh = ω1h2 + 2ω2h + ω3

dh∗ = ω1h∗2 + 2ω2h∗ + ω3

dk = ω1k(h− h∗)

Thus, both the infinitesimal generators and the coframe are obtained, by identifying
the right hand side of Equation (21) with the standard dot product of SL(2, R) algebra:

ω1B3 + ω3B1 − 2ω2B2

so that
B1 = ∂

∂h + ∂
∂h∗ ,

B2 = h ∂
∂h + h∗ ∂

∂h∗
B3 = h2 ∂

∂h + h∗2 ∂
∂h∗ + (h− h∗)k ∂

∂k

(22)

and
ω1 = dk

(h−h∗)k , 2ω2 = dh−dh∗
h−h∗ −

h+h∗
h−h∗

dk
k

ω3 = hdh∗−h∗dh
h−h∗ + hh∗

h−h∗
dk
k

In real terms,
h = u + iv, k = eiφ

these last equations can be written as

B1 = ∂
∂u , B2 = u ∂

∂u + v ∂
∂v , B3 =

(
u2 − v2) ∂

∂u + 2uv ∂
∂v + 2v ∂

∂φ

ω1 = ∂φ
2v , ω2 = dv

v −
u
v ∂φ, ω3 = u2+v2

2v ∂φ + vdu−udv
v

(23)

Mention should be made that it is also possible to work with the absolute invariant
differentials [27]

ω1 =
dh

(h− h∗)k
, ω2 = −i

(
dk
k
− dh + dh∗

h− h∗

)
, ω3 = − kdh∗

h− h∗
(24)

or, in real terms, exhibiting a three-dimensional Lorentz structure of this space

Ω1 ≡ ω2 = dφ + du
v

Ω2 = cos φ du
v + sin φ dv

v
Ω3 = − sin φ du

v + cos φ dv
v

(25)

This representation highlights the connection with the Poincaré depiction of the
Lobachevsky plane. Indeed, the metric here is

ds2 = −(Ω1)
2
+ (Ω2)

2
+ (Ω3)

2
= −

(
dφ +

du
v

)2
+

(du)2 + (dv)2

v2 (26)
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Let it be noted that, when Ω1 = 0, (26) is reduced to the Poincaré metric. Through
this restriction, φ becomes the angle of parallelism of the hyperbolic plane, i.e., the connec-
tion [30,31].

Taking into account the previous aspects, important correlations with the geometry of
Lobachevsky can be established, by the meaning of the condition Ω1 = 0 for any family of
cubic equations of type in Equation (16). It turns out that it expresses the so-called apolar
transport of cubics [27]. This transport is defined by the condition that any root of the
“transported” cubic is in a harmonic relation with any root of the “original” cubic, with
respect to the other two remaining roots of the original cubic:

y1 − xj

y1 − xk
:

xi − xj

xi − xk
= −1; i 6= j 6= k 6= i (27)

In all positive permutations of the indices I, j, k and for every l. Therefore, each new
root (y1) and each of the corresponding old ones (xi), are in harmonic range with respect to
the other two old roots (xi, xk). Then it can be proved that the conditions from Equation
(27) boil down to the vanishing of the bilinear invariant of the two cubics, analogous to the
bilinear invariant of the quadratics:

a3b0 − 3a2b1 + 3a1b2 − a0b3 (28)

Here am denote the coefficients of the original cubic, while bm denotes the coefficients
of the transported cubic. Obviously, this invariant is analogous to the one from the case
of two quadratics, whose vanishing expresses the fact that their roots are in harmonic
sequence. The geometry related to this invariant is a century old [32], and Dan Barbilian
seemed particularly fond of it [33], for he elaborated for a long while on its different
aspects, especially related to the geometry of the triangle. As the triangle comes nowadays
in relation with the construction of skyrmions from instantons [34], from a point of view
closely related to its geometry, it is therefore worth considering this connection, which
turns out to be strictly related to the physics of continua. Let it be noted that, in discrete
spaces (i.e., network space), phenomena of such triangles can also be observed [35].

Now, if the two cubics are infinitesimally close, then the condition of their transport
by involution reduces to

a3da0 − 3a2da1 + 3a1da2 − a0da3 = 0 (29)

Using here the relation
a0 = 1 + k3

a1 = −
(
h + h∗·k3)

a2 = h2 + h∗2·k3

a3 = −
(
h3 + h∗3·k3) (30)

for the coefficients, the condition of apolar transport of the cubics amounts to

− (h− h∗)3k3
(

dk
k
− dh + dh∗

h− h∗

)
= 0 (31)

As the cubics are asumed to have distinct roots, this condition is satisfied if, and only
if, the differential form Ω1 is null. Therefore, the parallel transport of the hyperbolic plane
actually represents the apolar transport of the cubics.

Now, accepting the contraint in Equation (31), the metric in Equation (26) becomes
reducible to one belonging to the hyperbolic space:

ds2 = − dhdh∗

(h− h∗)2 =
(du)2 + (dv)2

v2 (32)
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Then, according to [23,27], harmonic mappings from the usual space to the hyperbolic
plane can be described through the stationary values of the Lagrangean:

L = −4
∇h∇h(
h− h

)2 (33)

specific to the variational problems:

δ
∫

Ldv = 0 (34)

where ∇ corresponds to the gradient and dv corresponds to the infinitesimal volume. In
such a context, the field equations result:(

h− h
)
∇(∇h) = 2(∇h)2 (35)

Of course, along with Equation (35), the field equations for the complex conjugate h
are also satisfied.

The solution of Equation (35) has the form:

h = i
cosh χ− sinhχe−iΩ

cosh χ + sinhχe−iΩ
(36)

This relation will be used in what follows, for the reconstruction of any type of
EKG signal, which appears in the dynamics concerning atrial fibrillation. A comparative
presentation of the reconstructed EKG and empirical signals is shown in Figure 5. It is
important to note here that the fractal model, as per its generalist scope cannot emulate
the shape of the EKG signal. However, at its core, the model considers two oscillations
with different oscillations. The modulation of the signal is done by changing the fractality
degree. The increase of the fractalization degree and thus of the maximum scale for the
harmonic mapping of the system leads to the increase in frequency depicting well the
increase see in AFIB crisis 1. Further the slight modulation of the signal coupled with
a decrease in the oscillation amplitude similar to the AFL crisis part where we do see
an uncorrelated modulation of the high-frequency oscillations. The AFIB crisis 2 is seen
reflected by the model with a high frequency and a chaos-like behavior. The fluctuation
in the amplitude of the signal is also captured by the model. It is important to note there
that multifractal system built here, although it reaches a quasi-chaotic regime, it does not
remain in that state. The subsequent change in fractality degree will lead to a sudden
transition into the regular oscillatory regime as seen for ω = 6 (equivalent to a pre-crisis
state), this feature is also seen empirically in Figure 1 where we see sudden transitions into
crisis and post-crisis states.
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Figure 5. Comparative representation of multifractal simulated signals and EKG empirical data. 
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4. Conclusions

The main conclusions of this paper are the following:

(i) Diagnostics and evolution of atrial fibrillation by applying non-linear dynamics
method skewness and kurtosis values are in accordance with pulse rate distribu-
tions from the histograms of the analyzed ECG signal. The Lyapunov exponent has
positive values, close to zero for normal heart rhythm, and with values over one
order of magnitude higher in the case of fibrillation crises, highlighting a chaotic
behavior for cardiac muscle dynamics. Additionally, in the case of atrial flutter, a
pattern of alternating 2:1, 3:1, 4:1, and 5:1 conduction ratio can be observed. Some
abnormal heart rhythms were analyzed through strange attractors dynamics in the
reconstructed phase space. For each stage of a crisis, a specific strange attractor was
associated, proving that the specific attractors dynamics can constitute a valid method
for evaluating various cardiac afflictions. The obtained results encourage us to further
pursue this line of research.

(ii) Based on multi-fractalization through Markovian and non-Markovian-type stochas-
ticizations in the framework of the scale relativity theory, any type of EKG signal
can be reconstructed by means of harmonic mappings from the usual space to the
hyperbolic one. These mappings mime various scale transitions by differential geome-
tries, with parallel transport of direction in Levi–Civita sense, in Riemann-type spaces.
The aforementioned spaces are associated to families of cubics, with symmetries of
SL(2R)-type (i.e., invariances with respect to SL(2R)-type transformations).

(iii) Then, the two operational procedures are not mutually exclusive, but rather become
complementary, through their finality regarding the obtainment of valuable infor-
mation concerning fibrillation crises. As such, the author’s proposed method could
be used for developing new models for medical diagnosis and evolution tracking of
heart diseases (both through attractors dynamics and signal reconstruction).
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agreed to the published version of the manuscript. Furthermore, all the authors have the same
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Appendix A. A Breakdown of ECG Fragments

The graphical representations of ECG fragments (5 s duration) corresponding to pre-
crisis, first AFIB (AFIB1), AFL, second AFIB (AFIB 2) and post-crisis, respectively, are
shown in Figure A1.
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Appendix B. Dynamics on Multifractal and Euclidean and Multifractal Manifolds

Let us reconsider the geodesic Equation (14).
Thus, (14) with the restriction (15) yield:

∂tV̂
i
+ V̂l

∂iV̂
i
+ (α+ iβ)∂l∂

lV̂i
= 0 (A1)

After (A1), the separation of biological system dynamics on various scale resolutions,
i.e., the separation of the complex velocity field in real and imaginary components, implies
either a conservation law for the specific momentum at differentiable scale resolutions:(

∂t + Vl
D∂l + α∂l∂

l
)

Vi
D =

[
Vl

F∂l − β∂l∂
l
]
Vi

F (A2)

or a conservation law for the specific momentum at non-differentiable scale resolutions:(
∂t + Vl

D∂l + α∂l∂
l
)

Vi
F =

[
Vl

F∂l − β∂l∂
l
]
Vi

D (A3)
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Thus, according to (A1)–(A3) it results that any geodetic motion on multifractal
manifolds (i.e non-constrained free motions on multifractal manifolds—see (A1) can be
correlated with two non-geodetic motions on Euclidian manifolds (i.e., two constrained
motions on Euclidian manifolds—(A2) see and (A3)). More precisely, (A2) operates on
Euclidean manifolds at differentiable scale resolution, constraints dictated by specific
multifractal force:

f i
D =

(
V l

F∂l − β∂l∂
l
)

Vi
F (A4)

while (A3) operates on Euclidean manifolds at non-differentiable scale resolution, con-
straints dictated by specific multifractal force:

f i
F = −

(
V l

F∂l − β∂l∂
l
)

Vi
D (A5)

Moreover, by subtracting (A2) and (A3), the conservation law of the relative specific
momentum associated to differentiable-non-differentiable scale transition takes the form:[

∂t + Vl
∂i + (α+ β)∂l∂

l
]
Vi

= 2
(

Vl
F∂l − β∂l∂

l
)

Vi
F (A6)

where
Vl

= Vl
D −Vl

F (A7)

is the relative velocity field. The previous relation (A6) also specifies non—geodetic mo-
tions on Euclidean manifolds (i.e., constrained motions on Euclidean manifolds, constraints
dictated by the same specific multifractal force (A4). Let it be noted that, if the multifractal-
ization in the dynamics of any biological system, is achieved through stochasticization of
Markovian type, (4) becomes:

α = 0,
1
4
(dt)[

2
f(α)

]−1d
lp
= βδlp

Then, (A1), (A2), (A3) and (A6) become:

∂tV̂
i
+ V̂l

∂iV̂
i
+ iβ∂l∂

lV̂i
= 0

at global scale resolution, (
∂t + Vl

D∂l

)
Vi

D =
(

Vl
F∂l − β∂l∂

l
)

Vi
F

at differentiable scale resolution(
∂t + Vl

D∂l

)
Vi

F =
(

Vl
F∂l − β∂l∂

l
)

Vi
D

at non-differentiable scale resolution,(
∂t + Vl

∂i + β∂l∂
l
)

Vi
= 2

(
Vl

F∂l − β∂l∂
l
)

Vi
F

at differentiable-non-differentiable scale transition.

Appendix C. Nonlinear—Type Behaviors at Non-Differentiable Scale Resolution

Now, according with the self-similarity property of the movement curves (through
which also dynamics on Euclidian manifolds should be geodetic or free), the supplementary
constraint:

fi = 2
(

Vl
F∂l − β∂l∂

l
)

Vi
F ≡ 0 (A8)

correlated with the constant value of the density states at non-differentiable scale resolution:

∂iVi
F = 0 (A9)
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will function as an intrinsic property of any biological system (it does not manifest at
differentiable scale). The differential Equations (A8) and (A9) are constituted as stationary
Navier-Stokes type systems at non-differentiable scale resolution. This system of differ-
ential equations in dimensionless plane coordinates, with adequate initial and boundary
conditions admits the solution (i.e., the multifractal velocity field at non-differentiable scale
resolution) [25]:

U =
1.5

(νξ)
1
3

sec h2

[
0.5η

(νξ)
2
3

]
(A10a)

V =
1.9

(νξ)
1
3

{
η

(νξ)
2
3

sec h2

[
0.5η

(νξ)
2
3

]
− tan h

[
0.5η

(νξ)
2
3

]}
(A10b)

where ξ and η are nondimensional spatial coordinates, U and V are the nondimensional
components of the velocity field along the Oξ and Oη axes, and ν is the multifractality
degree. Then, the multifractal vortex field at non-differentiable scale resolution is obtained:

Ω = (∂ηU− ∂ξV) = 0.57η
(νξ)2 +

0.63ξ

(νξ)
4
3

tan h
[

0.5η

(νξ)
2
3

]
+ 1.9η

(νξ)2 sec h2
[

0.5η

(νξ)
2
3

]
−

− 0.57η
(νξ)2 tan h2

[
0.5η

(νξ)
2
3

]
−
[

1.5
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Therefore, the multifractal soliton (A10a), the multifractal soliton-kink (A10b) and the
multifractal minimal vortex (A11), are responsible in the management of both turbulences
and pattern generation, at non-differentiable scale resolutions. Although they are non-
manifested at differentiable scale resolution, these can become manifest at the same scale
through the scale transitions, which will be highlighted in what follows.

In Figures A2–A4, the dimensionless multifractal velocity fields and the vortex which
they compose, along with their dependency on the multifractality degree, are presented.
In Figure A2a–c in 3D is represented the velocity component (U) on the Oξ for three
fractalization degrees (0.5, 1 and 1.5). For a low fractality degree it is noticed a very
directional flow mainly across the Oξwith little spatial expansion. The enhancement of the
fractality in the system leads to a decrease of the velocity and a strong lateral expansion. It is
important to note that the main expansion direction does not change, only the contributions
on the Oη direction. The fractalization degree of the system on this velocity component
acts as a fractal-like dispersion phenomenon.

In Figure A3a–c in 3D is represented the velocity component (V) on the Oη for three
fractalization degrees (0.5, 1 and 1.5). Let it be noted that this component of the velocity
is not influenced by the fractalization degree when investigating the absolute value of
the velocity, thus remaining quasi constant. There is however a strong influence on the
direction of the component. For low fractality degree there is a small angle with respect to
the Oξ axis. Higher values of fractalization degree induce a change in the expansion angle
transitioning towards higher angles. The fractalization degree of the system on this velocity
component works towards the uniformization of the V component as the distribution tends
to reach the maximum expansion velocity available for the system.
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In Figure A4a–c in 3D is represented the vortex component for three fractalization de-
grees (0.5, 1 and 1.5). The presence of the vortex is of major importance when investigating
the flow of biological fluids. As the fractality degree is increased we notice a decrease in
the amplitude of a about 40% of the vortex and a spatial expansion. The vortex expansion
means that for particular values of the fractality degree the biological fluid flow can have
non-linear features throughout the fluid not only at the walls.
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