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Abstract: In general, the present value (PV) concept is ambiguous. Therefore, behavioural factors
may influence on the PV evaluation. The main aim of our paper is to propose some method of
soft computing PV evaluated under the impact of behavioural factors. The starting point for our
discussion is the notion of the Behavioural PV (BPV) defined as an imprecisely real-valued function
of distinguished variables which can be evaluated using objective financial knowledge or subjective
behavioural premises. In our paper, a BPV is supplemented with a forecast of the asset price closest
to changes. Such BPV is called the oriented BPV (O-BPV). We propose to evaluate an O-BPV by
oriented fuzzy numbers which are more useful for portfolio analysis than fuzzy numbers. This fact
determines the significance of the research described in this article. O-BPV may be applied as input
signal for systems supporting invest-making. We consider here six cases of O-BPV: overvalued asset
with the prediction of a rise in its price, overvalued asset with the prediction of a fall in its price,
undervalued asset with the prediction of a rise in its price, undervalued asset with the prediction of a
fall in its price, fully valued asset with the prediction of a rise in its rice and fully valued asset with the
prediction of a fall in its rice. All our considerations are illustrated by numerical examples. Presented
examples show the way in which we transform superposition of objective market knowledge and
subjective investment opinion into simple return rate.

Keywords: behavioural finance; imprecision; oriented fuzzy number; oriented present value; ori-
ented return

1. Introduction

The starting point for evaluating any financial asset is its present value (PV), defined
as a current equivalent of a cash payable in a fixed moment of the future [1]. It results in
the fact that the PV of a future cash flows may be an imprecise value. For this reason, the
reliable PV evaluation requires the use of soft computing a commonly accepted model of
an imprecise value is a fuzzy number (FN) [2]. The natural consequence of this approach
is estimating PV with FNs. Therefore, fuzzy PV may be defined as a discounted fuzzy
prediction of a future cash flow value [3].

The concept of using FNs in financial arithmetic comes from Buckley [4]. The Ward’s
definition [3] was generalized in [5] to the case of imprecisely assessed postponement.
Sheen [6] expanded the Ward’s definition to the case of fuzzy interest rate. The problems
connected to calculating fuzzy PV were considered in [4,7–9]. Huang [10] expanded the
Ward’s definition to the case of future cash flow described by a fuzzy variable. A more
general definition of fuzzy PV was proposed by Tsao [11], who assumed that future cash
flow can be treated as a fuzzy probabilistic set. Calzi [12] has formulated an axiomatic
definition of fuzzy PV. All those authors depicted PV as a discount of an imprecisely
evaluated future cash flow. A different approach was introduced in [13], where the fuzzy
PV is determined as imprecise approximation of the current quoted price of an evaluated
asset. Some applications of fuzzy PV were considered in [12–18]. FNs are also used in
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quantitative finance for modelling imprecision of financial data. In most of the papers
regarding imprecision in finance, it is assumed a priori that the return rate from a security
is a FN [19–29]. Yet, this assumption is connected, in most cases, to uncertain or unclear or
incomplete information available to the investor. Then, authors apply mostly possibility
theory [30,31] and credibility theory [32]. Kahraman et al. [33] introduced a research in
which both cash flows and return rates are evaluated by trapezoidal FNs. Limiting them
to the case of trapezoidal FNs stems from the fact that arithmetic for trapezoidal FNs
is significantly simpler than arithmetic for any FNs. More information on this topic is
presented in competent monographies [34,35].

Ordered FNs are defined by Kosiński et al. [36], who in this way introduced a FN
additionally equipped with an orientation. For formal reasons [37], the Kosiński’s theory
was revised in [38]. If ordered FN is linked to the revised theory, then it is called Ori-
ented FN (OFN) [39–42]. Ordered FNs are applied in decision-making, economics and
finance [42–63].

In [1,64], the behavioural PV (BPV) was defined as fair price approximation deter-
mined under impact of behavioural factors. Then, BPV is imprecisely estimated by FN.
In [65], the BPV is supplemented with a qualitative prediction of the price trend. This sub-
jective prediction is implemented in a BPV model as an orientation of FN. The existence of
such forecasts is proved by the observed balance between the supply and demand reported
by investors in financial markets. In this way, the BPV was replaced by oriented BPV
(O-BPV) described by an ordered FN. This approach makes portfolio analysis difficult [57].
These difficulties arise from the fact that the sum of the FNs may, in fact, not be an ordered
FN.

For this reason, in this paper we present a revised approach to O-BPV. Our main goal
is to describe O-BPV by means of OFNs. In the future, this approach will facilitate portfolio
analysis because of OFNs are more useful for portfolio analysis than FNs. Therefore, we
intend to apply O-BPV for management of portfolio risk of imprecision determined by some
behavioural factors. Such possibilities of future applications determine the significance of
the studies described in this work.

In [65], the O-BPV is determined with use ordered FNs. Moreover, its membership
function was described by a logically complicated system of identities. This also caused
very difficult application of the proposed O-BPV model. Therefore, we will try to simplify
the identities describing the O-BPV membership function.

This paper is organised as follows. Behavioural aspects of PV definition are presented
in Section 2. Section 3 contains basic information of OFNs. In Section 4, we explain the
notion of oriented fuzzy PV. BPV is generally defined in Section 5. An interval representa-
tion of BPV is described in Section 6. Fuzzy representation of BPV is discussed in Section 7.
The concept of O-BPV is introduced in Section 8. Some examples of O-BPV applications
are presented in Section 9. There, O-BPV is used for determining return rate. Section 10
contains final conclusions.

2. Behavioural Essence of Present Value

Any PV is used for discounting the money value. This is the basic tool of financial
arithmetic. The starting point for the financial arithmetic development was the interest
theory. Development of the financial arithmetic theory has resulted in axioms formulated
by Peccati, who has defined PV as an additive function of the payment value [66]. This
theory is developed in recent years [67].

Among other things, it has been proved that any PV fulfils the conditions of Peccati’s
definition if and only if it is a linear discount [66], meaning that this PV can be represented
by the product of the payment value and the discounting factor defined as a nonincreasing
function of the payment time. On the basis of the interest theory, assuming constant interest
rate, we meet only with exponential discount factors. It has been shown that any compound
discount is represented by an exponential discounting factor.
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On the other hand, many different kinds of discounting factors were described during
the study on a behavioural aspects of dynamic money evaluation. The first mathematical
model of behavioural finance was introduced by Ramsey [68], who explained the rela-
tionship between the marginal product of capital value, the subjective discount rate and
the real interest rate. Samuelson [69] introduced an exponential model of the subjective
discount factor. This model was adjusted in [70].

The Samuelson’s model [69] assumes that the subjective discount rate is constant over
time. This assumption is one of the many criticised problems of the exponential model.
The exponential discount model has “anomalies” related to the behavioural effect that
subjective discount rate varies in time [71–74]. Dynamically inconsistent time preferences
with this effect are described in [75,76].

Imperfections of the exponential discounting were found, causing the creation of
new discounting models and approaches. The hyperbolic discounting was introduced
by Mazur [77] who generalised some particular function applied in [78,79]. Some kinds
of discount hyperbolic models are discussed in [73,80]. In [81], we can find arithmetic
discounting. This discounting describes bill discounting method specified by financial law.
The hyperbolic discounting was generalised to hyperboloid one in [72]. Quasi-hyperbolic
discounting [82] is used by economists hoping to preserve as much of the exponential
model as possible. In the discrete time version this discounting method was introduced
in [83]. The quasi-hyperbolic discounting can also be used for the case of continuous
time [84]. Moreover, as an alternative to the percentage decrement for delayed payments
may be used a fixed cost model to exponential discounting [84]. Some authors [82,85–92]
consider it to be important to extend the hyperbolic function by the behavioural exponents.
Very frequently, those models are only some modifications of hyperbolic or exponential
discounting.

Hyperbolic models are also criticised (see, for example, in [75,76,92]). Read [92] pro-
posed his model as such exponential discounting that the discount factor occurs within
the given time window. Arguing with Weber–Fechner Law [93], Roelofsma [89] proposed
his model as an exponential discounting where the exponent is directly proportional to
logarithm of time. Ebert and Prelec [90] defined their Constant Sensitivity discounting
factor as the Cobb–Douglas function. The Constant Relative Decreasing Impatience dis-
count factor is defined as the constant relative risk aversion function [94]. In an analogous
way, Constant Absolute Decreasing Impatience discount factor is defined as a constant
absolute risk aversion function [94]. In [81], a discount factor is defined by means of
the assumption that its marginal change follows the Stevens’ power law [95,96] which
says that “a psychologically effective variable is a power function of its physical cause”.
Multi-threaded results of studies on the discounting factors were competently discussed
in [80]. Moreover, in [97–99] the discount factor is defined for such discounting under
continuous capitalisation which is determined by a constant Arrow-Pratt’s measure of
absolute risk-aversion. The axiomatic theory of discount factors was introduced in [100]
and developed in [101]. Rotschedla et al. [102] present such a discounting model that the
discounted value is given as a hedonic price dependent on fundamentals. Let us note that
PV defined in this way does not meet the axiomatic conditions determined by Peccati for
PV.

The variety of discount approaches described above justifies our approach to PV as an
ambiguous value.

Let us summarise the PV studies described above. We see that the impact of be-
havioural premises differentiates the discounting factors used to determine PV. Moreover,
Peccati [66] has shown that any PV may be defined by a discounting factor. It means that
Peccati’s definition of PV depends on behavioural premises which are always subjective.
On the other side, financial arithmetic requires an objective PV definition. Therefore, any PV
is defined as a current equivalent of a cash flow [1]. There financial flow utility is set by the
multicriteria comparison consisting of temporal preference [103] and wealth preferences.
This definition of PV is more general than the Peccati’s definition. The PV determined by
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Rotschedla et al. [102] fulfil the conditions of a generalised PV. Generalised PV is defined
without a discounting factor. Therefore, a generalised PV definition is independent of a
priori given behavioural phenomena. For this reason, the notion of generalised PV is a
valid tool to study the behavioural impact on a discount.

The research domain of behavioural finance is the paradoxes and anomalies in fi-
nancial markets, which are difficult to explain based on neoclassical economic theory.
Behavioural analysis of financial markets points to the psychological aspect of an invest-
ment as the reason for this state of affairs. At present, an extensive bibliography is already
devoted to the results of those studies. The consequence of this intensive research is aiming
to obtain such formal models which explain behavioural mechanisms of the financial
market. Here, we can distinguish a few approaches to this topic.

The most typical behavioural finance model is a formal prospect theory [104,105]. In
this theory, a subjective transformation of the objective probability is distinguished as a
behavioural basis for investment decisions.

Barberis et al. [106] develop the prospect theory. They additionally point out imprecise
estimation of PV, as a result of the subjective approach to security valuation.

Daniel et al. [107] show the diversified responses of individual investors to received
information as the reason for the disclosure of the market paradoxes. Assumed lack of the
strong effectiveness of the financial market is one of characteristics of this theory.

Hong and Stein [108] describe the investment activity, as the game amongst investors
applying fundamental analysis and investors applying technical analysis. This interaction
of two rational theories produces such market phenomena, which are paradoxes from a
point of view of the economic theory. PV behavioural aspects are enclosed here in the
choice of a cognitive strategy.

Behavioural experiments [75,109–111] present the regularities of subjective discount-
ing. There it is show that

• the receivables are discounted by a higher discount rate than liabilities and
• smaller amounts are discounted by a lower discount rate than large amounts.

The above behavioural paradoxes may be explained by means of the prospect theory
in its final version. Kahneman and Tversky [112] say that any evaluation depends on risk
aversion and on loss aversion. The loos aversion implies that the accelerated consump-
tion is less desirable than the delayed one [73,113]. From economical point of view, any
receivable may be considered as delated consumption. In analogous way, any liability
can be interpreted as accelerated consumption. It explains why we discount liabilities
less than receivable. Unfortunately, this explanation is not sufficient for determining such
discounting functions which differentiate the receivable discount and liability discount.
Behavioural analysis of financial markets points to the psychological aspect of investors’
activities as the reason for this state of affairs. The behavioural impact on PV has been
confirmed by experiments [81,88,113–115].

In the general case, each of Peccati’s models of PV [66] is inconsistent with the results
of behavioural experiments which explain the financial practice. The subject of behavioural
finance research is the phenomena which are paradoxes, inter alia, from the viewpoint
of the interest theory. This intensive research consequence is prospecting for such formal
models which explain the observed paradoxes.

In recent years, the concept of financial flow utility has played an important role in the
behavioural finance research. This problem is discussed, for example, in [73,80,81,116–121].
PV is defined there as the financial flow utility. As we see, the behavioural approach to
PV is similar to the neoclassical one. All PV models mentioned in this paragraph meet the
conditions of a generalised PV definition [1]. In this definition, the financial flow utility
is defined in a such way that the receivable utility is positive and the liabilities utility is
negative. Therefore, generalised PV may be applied for evaluation of behavioural asym-
metry between receivable discount and liability discount described in [73,75,109–111,113].
Note that the notion of the negative utility was introduced only by Rabin [122]. All above
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references prove that many researchers accept the view that the behavioural factors have
an impact on evaluating PV.

In [13,64], the BPV was defined as fair price approximation determined under impact
of behavioural factors. Such an approach is in line with the approach proposed later by
Rotschedla et al. [102]. It causes that any PV estimation is in fact an imprecise number.
Because FN is a commonly accepted model of an imprecise number, BPV should be
described by an FN.

3. Oriented Fuzzy Numbers—Basic Facts

The symbol F (R) denotes the family of all fuzzy subsets in the real line R. Any
fuzzy subset A ∈ F (R) is described by its membership function µA ∈ [0, 1]R, as the set of
ordered pairs

A = {(x, µA(x)); x ∈ R}. (1)

Among other things, this fuzzy subset Amay be characterised by its support closure
[A]0+ given in a following way:

[A]0+ = lim
α→0+

{x ∈ R : µA(x) ≥ α}. (2)

FN is usually defined as a fuzzy subset of the real line R. The most general definition
of FN is given as follows.

Definition 1. [2] The fuzzy number (FN) is such a fuzzy subset L ∈ F (R) with bounded support
closure [L]0+ that it is represented by its upper semi-continuous membership function µL ∈ [0; 1]R

satisfying the conditions
∃x∈R µL(x) = 1, (3)

∀(x,y,z)∈R3 x ≤ y ≤ z⇒ µL(y) ≥ min{µL(x); µL(z)}. (4)

The set of all FN we denote by the symbol F.

Theorem 1. [123,124] For any FN L there exists such a non-decreasing sequence (a, b, c, d) ⊂ R
thatL(a, b, c, d, LL, RL) = L ∈ F (R) is determined by its membership function µL(x|a, b, c, d, LL,
RL) ∈ [0, 1]R described by the identity

µL(x|a, b, c, d, LL, RL) =


0, x /∈ [a, d],

LL(x), x ∈ [a, b[ ,
1, x ∈ [b, c],

RL(x), x ∈ ] c, d],

(5)

where the left reference function LL ∈ [0, 1[ [a,b[ and the right reference function RL ∈ [0, 1[ ]c,d] are
upper semi-continuous monotonic ones meeting the condition

[L]0+ = [a, d]. (6)

The FN L(a, a, a, a, LL, RL) = a represents the real number a ∈ R. Therefore, we can
say R ⊂ F.

Any function G : R ⊃ A→ R may be considered as an unary operator on real num-
bers. Using the Zadeh’s extension principle, we can extend this operator to the fuzzy
case. Let us write this extended operator as the function G̃ : F ⊃ D→ F described by the
equation

K(e, f , g, h, LK, RK) = G̃(L(a, b, c, d, LL, RL)), (7)

where

• FN L(a, b, c, d, LL, RL) is represented by its membership function

µL(x) = µL(x|a, b, c, d, LL, RL), (8)



Symmetry 2021, 13, 468 6 of 22

• FN K(e, f , g, h, LK, RK) is represented by its membership function

µK(x) = µK(x|e, f , g, h, LK, RK). (9)

In line with the Zadeh extension principle, the unary operator (7) is uniquely defined
by its membership function µK ∈ [0, 1]R given by the identity

µK(x) = min{max{µL(y)} : y = G(x)}. (10)

Moreover, the following concepts may be applied for description of the unary operator
(7) in detail.

Definition 2. [124] For any upper semi-continuous non-decreasing function L ∈ [0, 1][u, v], its
cut-function L? ∈ [u, v][0;1] is determined by the identity

L?(α) = min{x ∈ [u, v] : L(x) ≥ α}. (11)

Definition 3. [124] For any upper semi-continuous non-increasing function R ∈ [0, 1][u, v], its
cut-function R? ∈ [0, 1][u, v] is determined by the identity

R?(α) = max{x ∈ [u, v] : R(x) ≥ α}. (12)

Definition 4. [124] For any bounded continuous and non-decreasing function l ∈ [l(0), l(1)][0,1],
its pseudo-inverse lC ∈ [0, 1][l(0), l(1)] is determined by the identity

lC(x) = max{α ∈ [0, 1] : l(α) = x}. (13)

Definition 5. [124] For any bounded continuous and non-increasing function r ∈ [r(0), r(1)][0,1],
its pseudo-inverse rC ∈ [0; 1][r(1), r(0)] is determined by the identity

rC(x) = min{α ∈ [0, 1] : r(α) = x}. (14)

Using the theorems proved by Goetschel and Voxman [124], we can show that if the
unary operator G : R ⊃ A→ R is decreasing, then the unary operator (7) is given by the
identity

L(G(d), G(c), G(b), G(a), LK, RK) = G̃(L(a, b, c, d, LL, RL)), (15)

where
∀α∈[0,1] lK(α) = G(L?

L(α)), (16)

∀α∈[0,1] rK(α) = G(R?
L(α)), (17)

∀y∈[G(d),G(c)[ LK(y) = rCK (y), (18)

∀y∈]G(b),G(a)] RK(y) = lCK (y). (19)

The notion of ordered FN is introduced by Kosiński et al. [36]. An important disad-
vantage of Kosiński’s theory is that there exist such ordered FNs which are not linked to
any membership function [37]. For formal reasons, the Kosiński’s theory is revised in [38].
In revised theory, ordered FN is replaced by oriented FN (OFN) defined as follows.
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Definition 6. [38] For any monotonic sequence (a, b, c, d) ⊂ R, OFN
↔
L(a, b, c, d, SL, EL) =

↔
L is

the pair of orientation
→

a, d = (a, d) and FN described by membership function µL(·|a, b, c, d, SL, EL)

∈ [0, 1]R given by the identity

µL(x|a, b, c, d, SL, EL) =


0, x /∈ [a, d] ≡ [d, a],

SL(x), x ∈ [a, b[ ≡ ] b, a],
1, x ∈ [b, c] ≡ [c, b] ,
EL(x), x ∈ ] c, d] ≡ [d, c[ ,

(20)

where the starting function SL ∈ [0, 1[ [a,b[ and the ending function EL ∈ [0, 1[ ]c,d] are upper
semi-continuous monotonic ones meeting the condition (6).

The identity (20) additionally describes such modified notation of intervals which is
used in the OFN theory. The notation I ≡ Kmeans that “the interval I may be equivalently
replaced by the interval K”.

The symbol K denotes the space of all OFNs. Any OFN describes an imprecise
number with additional information about the location of the approximated number. This

information is given as an orientation of OFN. If a < d, then OFN
↔
L(a, b, c, d, SL, EL) has the

positive orientation
→

a, d. If a > d, then OFN
↔
L(a, b, c, d, SL, EL) has the negative orientation

→
a, d. If a = d, OFN

↔
L(a, a, a, a, SL, EL) = a describes an unoriented number a ∈ R.

Kosiński has defined arithmetic operators on ordered FNs in an intuitive way consis-
tent with the results obtained by Goetschel and Voxman [124]. For OFNs, any arithmetic
operator is defined alike. In this way, any unary operator G : R ⊃ A→ R may be ex-
tended to OFN case. Using the Kosiński’s approach, we define an extended unary operator
↔
G : K ⊃ H→ K as follows:

↔
K(G(a), G(b), G(c), G(d), SK, EK) =

↔
G(L(a, b, c, d, SL, EL)), (21)

where
∀ α ∈ [0, 1] sK(α) = G(S?

L(α)), (22)

∀ α ∈ [0, 1] eK(α) = G(E?
L(α)), (23)

∀ y ∈ [G(a), G(b)[ SK(y) = sCK (y), (24)

∀ y ∈ ]G(c), G(d)] EK(y) = eCK (y). (25)

When we compare the dependencies (15–19) and (21–25), then we notice that for the
case of decreasing unary operator G : R ⊃ A→ R , its extension to OFNs differs from its
extension to FNs. This is an important difference between OFNs and FNs.

In Sections 8 and 9, we restrict our considerations to the case of strictly monotonic
starting and ending functions. Then, for any monotonic unary operator G : R ⊃ A→ R ,
Equation (21) is simpler because then we have

∀ y ∈ [G(a), G(b)[ SK(y) = SL

(
G−1(y)

)
, (26)

∀ y ∈ ]G(c), G(d)] EK(y) = EL

(
G−1(y)

)
. (27)

4. Oriented Fuzzy Present Value

The start point for our considerations is a notion of PV defined as a current equivalent.
In Section 2, we have shown that PV may be imprecise. This observation agrees with
understanding PV as equivalent of future cash flow. The natural consequence of these
conclusions is estimating PV with FNs. Therefore, such PV is called a fuzzy one (F-PV).
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In Section 1, the evolution of F-PV model is described in detail. In general, fuzzy PV is
characterised by a non-decreasing sequence

(
Vs, Vf , P̌, Vl , Ve

)
, where

• P̌ is a quoted price,
• [Vs, Ve] ⊂ R+ is an interval of all possible values of PV,

•
[
Vf , Vl

]
⊂ [Vs, Ve] is an interval of all prices which do not noticeably differ from a

quoted price P̌.

Then F-PV is estimated by FN

P̃V = L
(

Vs, Vf , Vl , Ve , SPV , EPV

)
, (28)

where the reference functions SPV ∈ [0, 1[ [Vs ,Vf [ and EPV ∈ [0, 1[ ]Vl ,Ve ] are the given ones.
Moreover, the F-PV estimation should be supplemented by a forecast of price closest

changes. For example, price closes changes may be predicted with the use of prediction
table presented in [125]. In [126], it is shown that OFN application for a portfolio analysis
is more useful than the analogous application of FN. For these reasons, an imprecise PV
may be evaluated by OFN [42,62]. PV determined in this way is called an oriented one
(O-PV). Any O-PV is characterised by a monotonic sequence

(
Vs, Vf , P̌, Vl , Ve

)
and then

it is estimated as follows:

↔
PV =

↔
L
(

Vs, Vf , Vl , Ve, LPV , RPV

)
. (29)

If we predict a increase in price, then O-PV has positive orientation. If we predict a
fall in price, then O-PV has a negative orientation.

In this paper, O-PV is used for modelling imprecise assessments of PV. After Klir [127],
the imprecision is composed of ambiguity and indistinctness. In the considered case, the
ambiguity is understood as a lack of clear indication of a one value out of many. An
indistinctness is interpreted as a lack of an explicit distinction between values equal to PV
and values different from PV.

5. Behavioural Present Value

Let us consider a fixed asset which is the subject of a trade on a financial market. The
quoted price P̌ of this asset may fluctuate over time. Therefore, we can consider a quotation
trend. If the demand for this asset is equal to its supply, then the quoted price P̌ is equal to
balanced price P0. Then, the asset market is balanced, and it meets the market equilibrium
condition. In general, the balanced price varies with time. Nevertheless, at any point in
time the current value of a balanced price can be determined by the econometric model
contained in the Arbitrage Price Theory [128]. In this way, the balanced price P0 may also
be substantively justified by fundamental factors. Of course, the balanced price may be
computed in a different way. It is important here that the investor accepts the calculated
value P0 as the balanced price.

Fama [129] introduces a well-known notion of a market informational efficiency.
Then, Fama hypothesises that the highly informationally efficient markets do not exist.
In 1980, Grossman and Stiglitz [130] show that information efficiency increases with a
decrease in the cost of acquiring and analysing information. Since then, we have been
observing the intensive development of computerisation, among others in the economic
and financial sphere. This development significantly reduces the cost of processing in-
formation. Therefore, today we can assume that the considered asset market is highly
informationally efficient. This assumption is consistent with a base of the behavioural
finance theory [104,105,112].

Using technical analysis, we assume that the quoted price P̌ converges to the balanced
price P0. If

P̌ < P0 (30)
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then the considered asset is undervalued. For the case

P̌ > P0 (31)

the considered asset is overvalued. We call both of these cases financial disequilibrium
states. For the case of financial equilibrium

P̌ = P0 (32)

the considered asset is fully valued.
The accrued market knowledge is the unique basis for determining the value of

balanced price P0. This value is a synthetic image of knowledge about the state of financial
market. On the highly efficient financial market, each market player determines the same
value P0, which is an objective in this situation. At the same time, all investors observe the
identical value of quoted price P̌. Therefore, this value is an objective in its essence. The
knowledge of both of these values is sufficient for rational investment-making. In case (30),
the rationale suggests buying the considered asset. This transaction is only possible if a sale
offer is proposed. The natural question here is, what were the reasons of the investor selling
undervalued asset. Similarly, for case (31) the rationale suggests selling the considered
financial instrument. This transaction is only possible if a purchase offer is proposed. This
raises the question of what were the reasons for the investor buying the valued asset and
what premises direct investors buying this security. We discuss above only balancing the
demand and supply reported by the investors. Liquidity traders perform their transactions
only when this balance vanishes. This phenomenon is widely observed. The answer to the
above two questions can be only one. An explanation is only the influence of behavioural
factors.

Financial disequilibrium is described by the alternative of inequalities (30) or (31). If
a highly efficient financial market is under the financial disequilibrium, then the market
equilibrium is maintained due to irrational premises. It causes that every transaction is
concluded under the influence of irrational premises. These premises may be behavioural
in nature. Therefore, consideration of behavioural factors helps to clarify the paradox of the
paradox of maintaining market equilibrium in the conditions of financial disequilibrium in
highly efficient market.

The finance theory suggests that PV should be equal to the quoted price P̌. On the
other hand, a balanced price P0 may influence the PV deviation from the observed quoted
price. This deviation depends on the investor receptivity to behavioural factors.

Therefore, PV evaluation is determined, inter alia, under the influence of behavioural
factors. Each behavioural evaluation is subjective. In Section 2, we have shown that
subjective assessment of PV is ambiguous. Each of the valuation alternatives is called
a possible PV (PPV). The behavioural PV (BPV) is defined as a convex set of all PPV.
According to the classical finance theory, the quoted price P̌ is also PPV. For this reason,
BPV is a strong generalisation of PV model proposed by Rotschedla et al. [102]. The BPV
dependence on subjective financial factors means that each investor designates their own
version of BPV. Thus, we will conduct all further considerations for the established single
investor.

6. Interval Representation of Behavioural Present Value

Any convex crisp subset of real numbers is an interval. For this reason, the subject of
our first considerations is BPV represented by an interval.

We begin our considerations on BPV by discussing case (32) of financial equilibrium.
This assumption causes that any PPV is approximation of the quoted price P̌. The consid-
ered PPV domain always depends on a specific investor’s susceptibility to the influence
of behavioural factors. Therefore, each investor subjectively distinguishes the following
values:

• Pmin the minimal PPV expected under the financial equilibrium condition (32),
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• Pmax the maximal PPV expected under the financial equilibrium condition (32).

In general, the investor may not be aware of these values. However, when preparing
any investment decision support system, we can ask the investor about these values.
Therefore, we assume the values Pmin and Pmax are known to us.

In the considered case, each investor must take into account the possibility of changes
in quotations. Then, the range of PPV variability fulfils the condition

0 < Pmin < P0 < Pmax. (33)

Numerical interval [Pmin, Pmax] is the BPV image determined for the case of the finan-
cial equilibrium.

We lead further considerations on BPV for any quoted price P̌. Then BPV should be
dependent on deviation

∆P = P̌− P0. (34)

of the quoted price from the balanced price. For each investor, we determine the following
values:

• Vmin the minimal PPV expected for the quoted price P̌,
• Vmax the maximal PPV expected for the quoted price P̌.

In line with Barberis et al. [106], we assume that both values are dependent on the
sentiment index α ∈]0, 1]. We consider sentiment index as an individual investor’s charac-
teristic. The value α ∈]0, 1] describes the degree of the influence of cognitive conservatism
phenomenon [131]. This phenomenon is a frequent topic of discussion in behavioural
finance. The value 1− α ∈ [0; 1[ informs us about the intensity of the impact of deviation
∆P on the investor’s beliefs.

The investor determines the minimal PPV Vmin as the weighted average of the assumed
minimal PPV Pmin and its current correction Pmin + ∆P. The weight of the minimal PPV
Pmin is equal to the value α of the investor’s sentiment index. In determining the minimal
PPV Vmin, the investor must consider that the minimal PPV is not greater than the quoted
price P̌. We get

Vmin = min
{
(1− α)·(Pmin + ∆P ) + α·Pmin, P̌

}
= min

{
Pmin + (1− α)·∆P, P̌

}
= min

{
Pmin + (1− α)·

(
P̌− P0

)
, P̌
}

.
(35)

The investor determines the maximal PPV Vmax, as the weighted average of the
assumed maximal PPV Pmax and its current correction Pmax + ∆P. The weight of the
maximal PPV Pmax is equal to the value α of the investor’s sentiment index. In determining
the maximal PPV Vmax, the investor must consider that the maximal PPV is not less than
the quoted price P̌. We get

Vmax = max
{
(1− α)·(Pmax + ∆P) + α·Pmax, P̌

}
= max

{
Pmax + (1− α)·∆P, P̌

}
= max

{
Pmax + (1− α)·

(
P̌− P0

)
, P̌
}

.
(36)

We note that in case
P̌ ≤ Pmin − P0

α
+ P0 (37)

the minimal PPV Vmin is equal to the quoted price P̌. Then, the BPV model excludes a
possibility of decline in quotation because of the considered asset is uniquely identified as
undervalued. Furthermore, when

P̌ ≥ Pmax − P0

α
+ P0 (38)

then maximal PPV Vmax is equal to the quoted price P̌. Then, the BPV model excludes a
possibility of rise in quotation because of the considered asset is uniquely identified as
overvalued.
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We see that only in the case of large deviations ∆P, rationale is the only reason to
invest. Range of behavioural reasons’ impact is described by the inequalities

Pmin − P0

α
+ P0 < P̌ <

Pmax − P0

α
+ P0. (39)

Finally, for each investor we can determine a PPV variability range

BPV
(

P̌
)
= [Vmin, Vmax] =


[
P̌, Pmax + (1− α)·∆P

]
f or (37)

[Pmin + (1− α)·∆P, Pmax + (1− α)·∆P] f or (39)[
Pmin + (1− α)·∆P, P̌

]
f or (38)

.

(40)
Analogous results were obtained in [63–65]. In this way, we have set the image of

market information impact on the investor’s beliefs. Determined above range [Vmin, Vmax]
is an interval representation of BPV (I-BPV) depending on the variables below:

• P̌ a quoted price,
• P0 a balanced price,
• Pmin the minimal PPV expected under financial equilibrium condition (32),
• Pmax the maximal PPV expected under financial equilibrium condition (32),
• α a sentiment index.

The assumed PPV range [Pmin, Pmax] and a value of sentiment index α ∈ ]0; 1] are
dependent on the investor’s receptivity to influence of behavioural factors. Thus, each
investor is characterised by different values of these variables. In Section 5, we pointed
out that the quoted price P̌ and the balanced price P0 are objective in nature. Any BPV
model considered in this paper will be characterised by the vector

(
P̌, P0, Pmin, Pmax, α

)
.

Finally, we note that for a given vector
(

P̌, P0, Pmin, Pmax, α
)
, the vector

(
P̌, P0, Vmin, Vmax

)
is uniquely defined. Therefore, we keep our further discussion for a given value of the
second parameters’ vector.

Example 1. For considered asset Y its substantially justified balanced price is P0 = 30$. A
financial analyst assumes that under financial equilibrium condition (32)

• minimal PPV is Pmin = 10$,
• maximal PPV is Pmax = 60$.

An investor observes a quoted price P̌ = 60$. We have ∆P = 30$. Therefore, we see
that the asset Y is overvalued. Because of investor’s cognitive conservatism characterised
by a sentiment index α = 1

3 , using (40) we obtain I-BPV given as the interval BPV(60) =
[30, 80] = [Vmin, Vmax].

7. Fuzzy Representation of Behavioural Present Value

Let a fixed parameter vector vvv =
(

P̌, P0, Vmin, Vmax
)

be given. In the considered
case, the interval BPV

(
P̌
)
= [Vmin, Vmax] of PPV variability is determined explicitly. A

relative distance between any x ∈ R and the quoted price P̌ is determined by function
β(·|vvv) ∈ [0, 1]R given as follows:

β( x|vvv) =



1, x /∈ [Vmin, Vmax],
x−P̌

P̌−Vmin
, x ∈

[
Vmin, P̌[ ,

0, x ∈
[
P̌, P̌

]
,

x−P̌
Vmax−P̌

, x ∈ ] P̌, Vmax
]
.

(41)
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Then, the degree of a similarity [132] to the quoted price P̌ is defined as a function
γ(·|vvv) ∈ [0, 1]R given by the identity

γ( x|vvv) = 1− β( x|vvv). (42)

Using any I-BPV model, we treat all PPV as equally acceptable. Nevertheless, we can
suppose that the investor accepts more PPVs that are closer to the quoted price. This implies
that individual PPVs differ in their degrees of acceptance. We see that I-BPV insufficiently
describes the behavioural effects complexity. This means that it necessary to create a
BPV model describing the variability of an individual PPV acceptance, leading directly to
defining BPV as a fuzzy subset B̃PV(vvv) ∈ F (R) of all PPV. In this way we determine fuzzy
BPV (F-BPV). F-BPV is described by its membership function µBPV(·|vvv) ∈ [0, 1]R assigning
an acceptance degree to each PPV. It means that the value µBPV( x|vvv) is a truth value of the
sentence “the number x ∈ R is accepted as PPV”.

The similarity degree γ(·|vvv) will be considered as the first reference point for de-
termining the F-BPV membership function µBPV(·|vvv). As the second reference point for
determining this membership function, we take a rational forecast of next change in the
quotation. This forecast is based on the following facts:

• if the disequilibrium condition (30) is met, then rationale excludes the decrease in a
quotation;

• if the disequilibrium condition (31) is met, then rationale excludes the increase in a
quotation; and

• if the equilibrium condition (32) is met, then rationale cannot exclude any future
quotation.

Thus, the rational forecast of next quotation change is described by a rationality degree
Θ(·|vvv) ∈ {0, 1}R given as follows:

Θ( x|vvv) =
{

0,
(
x− P̌

)
·δP > 0,

1,
(
x− P̌

)
·δP ≤ 0,

(43)

where

δP =
P̌− P0

P̌
. (44)

For any quoted price P̌, an investor assesses the acceptance degree as a weighted aver-
age of rationality degree and the similarity degree. The weights are appointed regarding to
the assumption that the influence of the rationality degree increases with an increase in
a relative distance |δP| between the quoted and balanced price and with the increase in
a similarity degree γ(·|vvv). Therefore, without the generality loss we can assume that the
weight of a rationality degree is directly proportional to the product γ( x|vvv)·|δP|. Then, the
acceptance degree is given as follows:

µBPV( x|vvv) = 1
1 + γ( x|vvv)·|δP| ·γ( x|vvv) + γ( x|vvv)·|δP|

1 + γ( x|vvv)·|δP| ·Θ( x|vvv) = γ( x|vvv)·(1 + |δP|·Θ( β|vvv))
1 + γ( x|vvv)·|δP| . (45)

It implies that the membership function µBPV(·|vvv) is determined by the identity

µBPV( x|vvv) =


0, x /∈ [Vmin, Vmax],

h( x|vvv). x ∈
[
Vmin, P̌[ ,

1, x ∈
[
P̌, P̌

]
,

k( x|vvv), x ∈ ] P̌, Vmax
]
,

(46)
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where the reference functions h(·|vvv) ∈ [0, 1[ [Vmin ,P̌[ and k(·|vvv) ∈ [0, 1[ ]P̌,Vmax ] are defined by
the identities

h( x|vvv) =


(x−Vmin)(1+δP)

P̌−Vmin+(x−Vmin)·δP
, δP > 0,

x−Vmin
P̌−Vmin−(x−Vmin)·δP

, δP ≤ 0,
(47)

k( x|vvv) =


Vmax −x

Vmax −P̌+(Vmax −x)·δP
, δP > 0,

(Vmax −x)(1−δP)
Vmax −P̌−(Vmax −x)·δP

, δP ≤ 0.
(48)

We observe that both reference functions are strictly monotonic. This fact is very
important for future considerations in Section 9.

In line with Theorem 1, F-BPV is FN

B̃PV(vvv) = L
(
Vmin, P̌, P̌, Vmax, h(·|vvv), k(·|vvv)

)
(49)

which approximates the quoted price P̌. F-BPV is described by its membership function
µBPV determined separately for undervalued assets fulfilling the condition (30), fully
valued assets fulfilling the condition (32), and overvalued assets fulfilling the condition
(31). Figure 1a–c shows a graph of these membership functions.
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Example 2. In Example 1, we have evaluated the asset Y by means of I-BPV. This asset is
represented by the parameters vector vvv = (60$, 30$, 30$, 80$). Now, using (28–30) we evaluate an
asset Y by F-BPV equal to FN

B̃PV(vvv) = L(30, 60, 60, 80, h(·|vvv), k(·|vvv)), (50)

where
h( x|vvv) = 4x− 120

x + 60
for x ∈ [30, 60[ , (51)

k( x|vvv) = 3x− 240
x− 140

for x ∈ ]60, 80]. (52)

In line with (48), the membership function µBPV(·|vvv) ∈ [0, 1]R F-BPV is given in
following way:

µBPV( x|vvv) =


0 , x /∈ [30, 80],

4x−120
x+60 , x ∈ [30, 60[ ,
1, x ∈ [60, 60],

3x−240
x−140 , x ∈ ]60, 80].

(53)

We see that F-BPV is fuzzy extension of PV model proposed by Rotschedla et al. [102].
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8. Behavioural Present Value Represented by Oriented Fuzzy Numbers

Let us give the fixed parameter vector vvv =
(

P̌, P0, Vmin, Vmax
)

representing evaluated
asset. In the previous chapter, we have considered its F-BPV represented by FN (46). The
behavioural nature of investors is discussed in [133]. Among other things, this discussion
shows that investors are also guided by their subjective predictions of quoted price closest
changes. If we take into account these predictions, then we substitute F-BPV by oriented
BPV (O-BPV) given as OFN

↔
BPV =

↔
L
(
Vs, P̌, P̌, Ve, SBPV , EBPV

)
, (54)

where
[Vs, Ve] ∈ {[Vmin, Vmax], [Vmax, Vmin]} (55)

is the interval of all PPV,

SBPV(x) =
{

h( x|vvv) Vs < Ve,
k( x|vvv) Vs > Ve,

(56)

EBPV(x) =
{

k( x|vvv) Vs < Ve,
h( x|vvv) Vs > Ve.

(57)

The membership function µBPV(·|vvv) of OFN
↔

BPV(vvv) is given by the identity (46).
Positive O-BPV orientation predicts a rise in assets price. Then, O-BPV is given by the

formula ↔
BPV(vvv) =

↔
L
(
Vmin, P̌, P̌, Vmax, h(·|vvv), k(·|vvv)

)
. (58)

In this way, we obtain three cases of O-BPV predicting a rise in asset price: for
overvalued assets, for fully valued assets and for undervalued assets. The membership
functions of these O-BPV kinds are presented in Figure 2a–c.
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Negative O-BPV orientation predicts a fall in asset price. Then, O-BPV is given by the
formula ↔

BPV(vvv) =
↔
L
(
Vmax, P̌, P̌, Vmin, k(·|vvv), h(·|vvv)

)
. (59)

In this way, we obtain three cases of O-BPV predicting fall in asset price: for overvalued
assets, for fully valued assets and for undervalued assets. The membership functions of
these OBPV kinds are presented in Figure 3a–c.
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Example 3. Among other things, in Example 1 we show that asset Y is overvalued. In Example 2,
we evaluate asset Y by means of F-BPV (50).

Andrew and Helen are two people whose subjective forecasts of the change of future
prices differ. Contrary to the recommendations of the economic theory, Andrew believes
that Y quotations will increase in the near future. Therefore, he evaluates the asset Y by
O-BPV: ↔

BPV(vvv) =
↔
L(30, 60, 60, 80, h(·|vvv), k(·|vvv)), (60)

where the functions h(·|vvv) and k(·|vvv) are given, respectively, by (51) and (52). The O-BPV
(60) is positively oriented. Its membership function is determined by (53).

In line with the economic theory, Helen is sure that the Y quotations will decrease in
the near future. Therefore, she evaluates the asset Y by O-BPV:

↔
BPV(vvv) =

↔
L(80, 60, 60, 30, k(·|vvv), h(·|vvv)). (61)

The O-BPV (61) is negatively oriented. Its membership function is given by (53).
Moreover, this membership function may be equivalently determined as follows:

µBPV( x|vvv) =


0, x /∈ [80, 30],

3x−240
x−140 , x ∈ [80, 60[ ,
1, x ∈ [60, 60],

4x−120
x+60 , x ∈ ]60, 30].

(62)

Let us note that membership functions (53) and (62) have the same graphs.
Each membership function of F-BPV or O-BPV is represented by a graph called the

shortly BPV graph. The main objective of the presentation in Figures 1–3 is to show the
similarities between BPV graphs dedicated to different kinds of assets related to the same
vector (P0, Pmin, Pmax, α). We see that these graphs are similar. In particular, for considered
case, we have here

• all overvalued assets have identical BPV graphs,
• all fully valued assets have identical BPV graphs,
• all undervalued assets have identical BPV graphs.

Therefore, we can conclude that a BPV graph and a BPV orientation are independent
characteristics of BPV.

If we change vector (P0, Pmin, Pmax, α), then obtained BPV graphs will only differ from
one another in volatility range and its intensity of convexity.



Symmetry 2021, 13, 468 16 of 22

9. Oriented Expected Return Determined by Behavioural Present Value

In this section, we apply O-BPV to determining the return rate similarly as Japanese
candles were used in [42]. We will consider the asset represented parameters vector
vvv =

(
P̌, P0, Vmin, Vmax

)
.

For given due date t > 0, the considered asset is characterised by following values:

• Predicted FV Vt,
• Evaluated PV V0.

The benefits from owning this asset are characterised with use of a simple return rate
rt determined as follows:

rt =
Vt −V0

V0
=

Vt

V0
− 1. (63)

In [42], it is justified in detail that FV is a random variable Ṽt : Ω→ R+ where the
symbol Ω denotes a space of all elementary states ω of the financial market. In a conven-
tional approach to a return rate estimation, an asset PV is equal to quoted price P̌. Then,
the return rate is a random variable given in the following way:

rt(ω) =
Ṽt(ω)− P̌

P̌
. (64)

We define any risk as a possibility of negative effects of taken actions. Uncertainty risk
results from the lack of knowledge about the future conditions of the activities undertaken.
In a financial analysis, an uncertainty risk is usually described by the probability distribu-
tion of return rate (64). The expected value r of this distribution is called expected return
rate. We can assume that expected return rate r exists. The mentioned probability distribu-
tion can always be described by its cumulative distribution function Fr(·|r ) : R→ [0, 1] .
From (64), we immediately get

Ṽt(ω) = P̌·(1 + rt(ω)). (65)

If we take together (63) and (65), then we obtain the following formula describing the
return rate:

rt = rt(V0, ω) =
P̌·(1 + rt(ω))

V0
− 1. (66)

It implies that the expected return rate is given by formula

R(V0) =
∫ +∞

−∞

P̌·(1 + y)
V0

− 1dFr(y|r) =
P̌·(1 + r)

V0
− 1. (67)

In this manner, we determine the expected return rate R : R+ → R as a unary oper-
ator transforming PV. If PV is imprecisely estimated by O-PV, then using the Kosinski’s

approach, we define the expected return rate by an extension
↔
R : K→ K of a unary

operator (67).

We consider now the case of O-PV equal to O-BPV
↔

BPV(vvv) given by (54). Its starting
and ending functions are strictly monotonic. Therefore, the identities (21), (26), (27), and
(67) imply that the expected return rate is given by an equation

↔
L
(

P̌·(1 + r)
Vs

− 1, r, r,
P̌·(1 + r)

Ve
− 1, SR, ER

)
=
↔
R
(↔
L
(
Vs, P̌, P̌, Ve, SBPV , EBPV

))
, (68)

where

∀
r∈[ P̌·(1+r)

Vs −1,r[
: SR(r) = SBPV

(
R−1(r)

)
= SBPV

(
P̌·1 + r

1 + r

)
, (69)

∀
r∈]r, P̌·(1+r)

Ve −1]
: ER(r) = EBPV

(
R−1(r)

)
= EBPV

(
P̌·1 + r

1 + r

)
, (70)
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where the interval [Vs, Ve] is determined by (55). If we compare (69) and (70) with (56) and
(57), then we get

SR(r) =

 h
(

P̌· 1+r
1+r

∣∣∣vvv), Vs < Ve,

k
(

P̌· 1+r
1+r

∣∣∣vvv), Vs > Ve,
(71)

ER(r) =

 k
(

P̌· 1+r
1+r

∣∣∣vvv), Vs < Ve,

h
(

P̌· 1+r
1+r

∣∣∣vvv), Vs > Ve.
(72)

The identities (54) and (68) show that O-BPV and the expected return rate determined
by are it appositively oriented. Therefore, we can say the following.

• If O-BPV describes a subjective belief about rise in quotations, then we can anticipate
a decline in the expected return rate.

• If O-BPV describes a subjective belief about fall in quotations, then we can anticipate
an upturn in the expected return rate.

In finance, both of above facts are well known. This observation proves that the
extension of F-PV model to the case of O-PV model is an appropriate direction for the
development of fuzzy finance theory.

Example 4. The asset Y is overvalued. Despite this, Andrew believes that Y quotations will
increase in the near future. Therefore, he evaluates the asset Y by positively oriented O-BPV (60).
On the other hand, the Y quotations are characterised by an expected quarterly return rate r = 0.02.

If Andrew determines the expected return rate
↔
R with use O-BPV, then he gets

↔
R =

↔
L(1.04, 0.02, 0.02,−0.235, SR, ER) (73)

where
SR(r) =

124.8− 120·r
121.2 + 60·r , (74)

ER(r) =
56.4 + 240·r

201.2 + 140·r . (75)

We see that expected return is negatively oriented. Moreover, Andrew shows that

membership function of the expected return rate
↔
R is given as follows

ρ( r|vvv) = µBPV

(
61.2
1 + r

∣∣∣∣vvv) =


0, r /∈ [1.04, −0.235],

124.8−120·r
121.2+60·r , r ∈ [1.04, 0.02[ ,

1, r ∈ [0.02, 0.02],
56.4+240·r

201.2+140·r , r ∈ ]0.02, −0.235].

(76)

10. Conclusions

Apart from the theory of interest, any PV is an ambiguous value determined under
the influence of, among others, behavioural premises. This view was fully substantiated
by the literature study presented in Section 2. This sufficiently proves the need to use soft
computing techniques for PV evaluation.

For this reason, in Section 5, BPV is generally defined as the set of all real numbers
equal to possible PVs. It is obvious that BPV is an imprecise number. In this paper, we
discuss BPV approximation given as following kinds of imprecision numbers:

• I-BPV approximated by interval numbers in Section 6,
• F-BPV approximated by FNs in Section 7,
• O-BPV approximated by OFNs in Section 8.

Interval numbers are definitely a poorer form of information than FNs. For this
reason, we should always replace I-BPV with F-BPV. This replacement does not require any
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additional data. In [126], it is shown that oriented PV application for a portfolio analysis
is more useful than the analogous application of fuzzy PV. This makes the use of O-BPV
more preferred than the use of F-BPV.

Each of the proposed BPV models is determined by a specific membership function.
We are of the opinion that each of the above-mentioned models can be described by means
of different membership functions. The search for new membership function proposals
may be very fruitful direction for further research.

In [134,135], it is shown that BPV may be valued by intuitionistic FNs [136]. We believe
that other types of imprecise numbers can also be used as BPV models. Looking for such
opportunities is an interesting direction for further research. However, we must remember
that each proposed modelling method for BPV should be carefully justified by serious
financial or behavioural reasons. Proposing new BPV models, researchers should also
remember about the results contained in [137].

Section 9 describes in detail an application of O-BPV for determining return rate. This
result facilitates the use of O-BPV for an analysis of assets with PV estimated by OFN. It is
expedient to further develop the fuzzy finance theory based on OFN. On the other hand,
the O-BPV may be applied in such algorithms based on financial technical analysis which
support invest-making. For example, here we can apply the advice-making algorithms
described in [61,62]. Moreover, we can use O-BPV as input signal to fuzzy or neuro-fuzzy
systems explained in detail in [138]. The assessment of the suitability of BPV to support
decisions is an interesting direction for further research.
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38. Piasecki, K. Revision of the Kosiński’s Theory of Ordered Fuzzy Numbers. Axioms 2018, 7, 16. [CrossRef]
39. Prokopowicz, P. The Directed Inference for the Kosinski’s Fuzzy Number Model. In Proceedings of the Second International

Afro-European Conference for Industrial Advancement, Villejuif, France, 9–11 September 2015.
40. Prokopowicz, P.; Pedrycz, W. The Directed Compatibility Between Ordered Fuzzy Numbers—A Base Tool for a Direction Sensitive

Fuzzy Information Processing. In Advances in Inteligent Systems and Computing; Abraham, A., Wegrzyn-Wolska, K., Hassanien,
A.E., Snasel, V., Alimi, A.M., Eds.; Springer: Cham, Switzerland, 2015; Volume 127, pp. 493–505. [CrossRef]

41. Prokopowicz, P.; Pedrycz, W. The Directed Compatibility between Ordered Fuzzy Numbers–A Base Tool for a Direction Sensitive
Fuzzy Information Processing. In Proceedings of the Artificial Intelligence and Soft Computing ICAISC 2015, Lecture Notes in
Computer Science. Zakopane, Poland, 14–18 June 2015; Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.,
Zurada, J., Eds.; Springer: Cham, Switzeland, 2015; Volume 9119. [CrossRef]

42. Piasecki, K. Relation “Greater Than or Equal to” Between Ordered Fuzzy Numbers. Appl. Syst. Innov. 2019, 2, 26. [CrossRef]
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52. Marszałek, A.; Burczyński, T. Ordered fuzzy candlesticks. In Theory and Applications of Ordered Fuzzy Number; Prokopowicz,
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60. Piasecki, K.; Roszkowska, E.; Łyczkowska-Hanćkowiak, A. Simple Additive Weighting Method Equipped with Fuzzy Ranking of
Evaluated Alternatives. Symmetry 2019, 11, 482. [CrossRef]
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Management of Regions; Jedlička, P., Ed.; Gaudeamus, University of Hradec Kralove: Hradec Králové, Chezh Republic, 2015;
Volume 5.

99. Piasecki, K. Discounting Under Impact of Risk Aversion. SSRN Electron. J. 2015. [CrossRef]
100. Ok, E.A.; Masatlioglu, Y. A Theory of (Relative) Discounting. J. Econ. Theory 2007, 137, 214–245. [CrossRef]
101. Dubra, J. A Theory of Time Preferences Over Risky Outcomes. J. Math. Econ. 2009, 45, 576–588. [CrossRef]
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126. Piasecki, K.; Łyczkowska-Hanćkowiak, A. Oriented Fuzzy Numbers vs. Fuzzy Numbers. Mathematics 2021, 9, 523. [CrossRef]
127. Klir, G.J. Developments in Uncertainty-based Information. Adv. Comput. 1993, 36, 255–332. [CrossRef]
128. Ross, S.A. The Arbitrage Theory of Capital Asset Pricing. J. Econ. Theory 1976, 13, 341–360. [CrossRef]
129. Fama, E.F. Efficient Capital Markets: A Review of Theory and Empirical Work. J. Financ. 1970, 25, 383–417. [CrossRef]
130. Grossman, S.J.; Stiglitz, J.E. On the Impossibility of Informationally Efficient Markets. Am. Econ. Rev. 1980, 70, 393–408.
131. Edwards, W. Conservatism in Human Information Processing. In Formal Representation of Human Judgment; Klienmutz, B., Ed.;

Wiley: New York, NY, USA, 1968; pp. 17–52.
132. Tversky, A. Features of Similarity. Psychol. Rev. 1977, 84, 327–352. [CrossRef]
133. Akerlof, G.A.; Shiller, R.I. Animal Spirits: How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism;

Princeton University Press: Princeton, NJ, USA, 2009.
134. Piasecki, K. On Return Rate Estimated by Intuitionistic Fuzzy Probabilistic Set. In Mathematical Methods in Economics MME

2015; Martincik, D., Ircingova, J., Janecek, P., Eds.; Faculty of Economics, University of West Bohemian: Plzen, Poland, 2015; pp.
641–646.

135. Piasecki, K. The Intuitionistic Fuzzy Investment Recommendations. In Proceedings of the Mathematical Methods in Economics
MME 2016 Conference Proceedings, Liberec, Czech Republic, 6–9 September 2016; Kocourek, A., Vavroušek, M., Eds.; Technical
University of Liberec: Liberec, Czech Republic, 2016; pp. 681–686.

136. Atanassov, K.T. Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 1986, 20, 87–96. [CrossRef]
137. Bustince, H.; Barrenechea, E.; Pagola, M.; Fernandez, J.; Xu, Z.; Bedregal, B.; Montero, J.; Hagras, H.; Herrera, F.; De Baets, B. A

Historical Account of Types of Fuzzy Sets and Their Relationships. IEEE Trans. Fuzzy Syst. 2016, 24, 179–194. [CrossRef]
138. Versaci, M.; Calcagno, S.; Cacciola, M.; Morabito, F.; Palamara, I.; Pellicanò, D. Standard Soft Computing Techniques for

Characterization of Defects in Nondestructive Evaluation. In Ultrasonic Nondestructive Evaluation Systems; Burrascano, P.,
Callegari, S., Montisci, A., Ricci, M., Versaci, M., Eds.; Springer: Cham, Switzeland, 2015.

http://doi.org/10.1037/0096-3445.126.1.54
http://doi.org/10.1006/obhd.1995.1086
http://doi.org/10.2307/1914185
http://doi.org/10.1287/mnsc.34.2.200
http://doi.org/10.1287/mnsc.39.7.806
http://doi.org/10.1037/0278-7393.29.1.66
http://doi.org/10.1023/A:1004943925179
http://doi.org/10.1080/15427560801897758
http://doi.org/10.1509/jmkr.46.4.543
http://doi.org/10.1037/a0017686
http://doi.org/10.2139/ssrn.1416007
http://doi.org/10.2139/ssrn.1718424
http://doi.org/10.1016/S0165-0114(96)00144-3
http://doi.org/10.1016/0165-0114(86)90026-6
http://doi.org/10.3390/math7070623
http://doi.org/10.3390/math9050523
http://doi.org/10.1016/S0065-2458(08)60273-9
http://doi.org/10.1016/0022-0531(76)90046-6
http://doi.org/10.2307/2325486
http://doi.org/10.1037/0033-295X.84.4.327
http://doi.org/10.1016/S0165-0114(86)80034-3
http://doi.org/10.1109/TFUZZ.2015.2451692

	Introduction 
	Behavioural Essence of Present Value 
	Oriented Fuzzy Numbers—Basic Facts 
	Oriented Fuzzy Present Value 
	Behavioural Present Value 
	Interval Representation of Behavioural Present Value 
	Fuzzy Representation of Behavioural Present Value 
	Behavioural Present Value Represented by Oriented Fuzzy Numbers 
	Oriented Expected Return Determined by Behavioural Present Value 
	Conclusions 
	References

