Connecting in the Dirac Equation the Clifford Algebra of Lorentz Invariance with the Lie Algebra of SU(N) Gauge Symmetry
Abstract
:1. Introduction
2. The Standard Dirac Equation in the Weyl Basis
3. Connecting Symmetry with the Dirac Equation
4. The Symmetry as Explicit Example
5. The Extended Dirac Equation Involving
6. The Unitary Transformation for Symmetry
7. Partial Unification of Symmetries
8. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, C.N.; Mills, R.L. Conservation of Isotopic Spin and Isotopic Gauge Invariance. Phys. Rev. 1954, 96, 191. [Google Scholar] [CrossRef]
- Kaku, M. Quantum Field Theory, a Modern Introduction; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; Addison-Wesley Publishing Company: Reading, MA, USA, 1995. [Google Scholar]
- Schwartz, M.D. Quantum Field Theory and the Standard Model; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Coleman, S.; Mandula, J. All Possible Symmetries of the S Matrix. Phys. Rev. 1967, 159, 1251. [Google Scholar] [CrossRef]
- Dirac, P.A.M. Relativistic wave equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1936, 155, 886. [Google Scholar]
- Wigner, E. On Unitary Representations of the Inhomogeneous Lorentz Group. Ann. Math. Second. Ser. 1939, 40, 149. [Google Scholar] [CrossRef]
- Bargman, V.; Wigner, E. Group theoretical discussion of relativistic wave equations. Proc. Natl. Acad. Sci. USA 1948, 34, 211. [Google Scholar] [CrossRef] [Green Version]
- Joos, H. Zur Darstellungstheorie der inhomogenen Lorentzgruppe als Grundlage quantenmechanischer Kinematik. Fortschritte Der Phys. 1962, 10, 65. [Google Scholar] [CrossRef]
- Pauli, W. Zur Quantenmechanik des magnetischen Elektrons. Z. Phys. 1927, 43, 601. [Google Scholar] [CrossRef]
- Marsch, E.; Narita, Y. Fermion unification model based on the intrinsic SU(8) symmetry of a generalized Dirac equation. Front. Phys. 2015, 3, 82. [Google Scholar] [CrossRef] [Green Version]
- Marsch, E.; Narita, Y. Fundamental Fermion Interactions via Vector Bosons of Unified SU(2)xSU(4) Gauge Fields. Front. Phys. 2016, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Marsch, E. Fermion Colour and Flavour Originating from Multiple Representations of the Lorentz Group and Clifford Algebra. Phys. Sci. Int. J. 2019, 23, 1–13. [Google Scholar] [CrossRef]
- Marsch, E.; Narita, Y. Dirac equation based on the vector representation of the Lorentz group. Eur. Phys. J. Plus 2020, 135, 782. [Google Scholar] [CrossRef]
- Georgi, H.; Glashow, S.L. Unity of All Elementary Particle Forces. Phys. Rev. Lett. 1974, 32, 438. [Google Scholar] [CrossRef] [Green Version]
- Fritzsch, H.; Minkowski, P. Unified interactions of leptons and hadrons. Ann. Phys. 1975, 93, 193. [Google Scholar] [CrossRef]
- Fritzsch, H. Quantenfeldtheorie—Wie Man Beschreibt, Was Die Welt im Innersten Zusammenhält; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marsch, E.; Narita, Y. Connecting in the Dirac Equation the Clifford Algebra of Lorentz Invariance with the Lie Algebra of SU(N) Gauge Symmetry. Symmetry 2021, 13, 475. https://doi.org/10.3390/sym13030475
Marsch E, Narita Y. Connecting in the Dirac Equation the Clifford Algebra of Lorentz Invariance with the Lie Algebra of SU(N) Gauge Symmetry. Symmetry. 2021; 13(3):475. https://doi.org/10.3390/sym13030475
Chicago/Turabian StyleMarsch, Eckart, and Yasuhito Narita. 2021. "Connecting in the Dirac Equation the Clifford Algebra of Lorentz Invariance with the Lie Algebra of SU(N) Gauge Symmetry" Symmetry 13, no. 3: 475. https://doi.org/10.3390/sym13030475
APA StyleMarsch, E., & Narita, Y. (2021). Connecting in the Dirac Equation the Clifford Algebra of Lorentz Invariance with the Lie Algebra of SU(N) Gauge Symmetry. Symmetry, 13(3), 475. https://doi.org/10.3390/sym13030475