
symmetryS S

Article

Effective Rotor Fault Diagnosis Model Using Multilayer Signal
Analysis and Hybrid Genetic Binary Chicken
Swarm Optimization

Chun-Yao Lee * and Guang-Lin Zhuo

����������
�������

Citation: Lee, C.-Y.; Zhuo, G.-L.

Effective Rotor Fault Diagnosis

Model Using Multilayer Signal

Analysis and Hybrid Genetic Binary

Chicken Swarm Optimization.

Symmetry 2021, 13, 487. https://

doi.org/10.3390/sym13030487

Academic Editor: Nikos Mastorakis

Received: 12 February 2021

Accepted: 9 March 2021

Published: 16 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Electrical Engineering, Chung Yuan Christian University, No. 200, Zhongbei Road,
Zhongli District, Taoyuan City 320, Taiwan; s10528245@cycu.org.tw
* Correspondence: cyl@cycu.edu.tw; Tel.: +886-3-2654827

Abstract: This article proposes an effective rotor fault diagnosis model of an induction motor
(IM) based on local mean decomposition (LMD) and wavelet packet decomposition (WPD)-based
multilayer signal analysis and hybrid genetic binary chicken swarm optimization (HGBCSO) for
feature selection. Based on the multilayer signal analysis, this technique can reduce the dimension
of raw data, extract potential features, and remove background noise. To compare the validity of
the proposed HGBCSO method, three well-known evolutionary algorithms are adopted, including
binary-particle swarm optimization (BPSO), binary-bat algorithm (BBA), and binary-chicken swarm
optimization (BCSO). In addition, the robustness of three classifiers including the decision tree (DT),
support vector machine (SVM), and naive Bayes (NB) was compared to select the best model to detect
the rotor bar fault. The results showed that the proposed HGBCSO algorithm can obtain better global
exploration ability and a lower number of selected features than other evolutionary algorithms that
are adopted in this research. In conclusion, the proposed model can reduce the dimension of raw
data and achieve high robustness.

Keywords: rotor; fault diagnosis; local mean decomposition; wavelet packet decomposition; chicken
swarm optimization; feature selection

1. Introduction

Rotating machines are among the most significant devices in the industry field. Many
rotating machines that break down usually cause an unexpected operation. In the worst
case, rotating machine failures cause tremendous economic losses or serious casualties.
One of the most critical components of rotating machines is the rotor. Rotor bar failure
will cause speed and torque fluctuations and lead to shaft vibration, which leads to the
premature failure of other motor components [1]. Thus, early detection for the rotor fault
can also help prevent other types of fault, like bearing or eccentricity [2]. Considering the
reliability and performance of rotating machines, the authors have conducted in-depth
research and proposed some fault diagnosis models, which have achieved good results.
For example, Brkovic et al. proposed a simpler, faster, and accurate bearing early fault
detection and diagnosis technique based on scatter matrices and quadratic classifiers [3].
Gligorijevic et al. presented a new online condition monitoring technique for early fault
detection and diagnosis to prevent the unexpected faulty operation of bearings [4]. Van et al.
used various bearing fault diagnosis models by improved non-local-mean de-noising and
empirical mode decomposition (EMD) feature extraction and two-stage feature selection [5].
Helmi et al. proposed a model for the fault detection and diagnosis of rolling bearings
structure based on time domain and frequency domain features of the extraction of the
vibration signal and the adaptive neuro-fuzzy interface system network. Their experimental
results enabled the detection of faults in rotating machines and the categories of faults with
high accuracy [6].
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The most widely used techniques for fault detection are motor current signature
analysis (MCSA), vibration signal analysis, and acoustic sound signals analysis [7]. All
these techniques for fault detection have advantages and weaknesses. The MCSA technique
has the advantages of being noninvasive and easy to implement. However, under certain
conditions, its application is not sensitive enough because it has a low signal-to-noise
ratio. Its other disadvantages include its spectral leakage and low-frequency resolution.
The downside of acoustic sound signal analysis is its sensitivity to external noise. The
technique of acoustic emission, which measures the acoustic signals in the ultrasonic range
providing a high signal-to-noise ratio, has the disadvantage of requiring more complex
implementation [8]. Vibration signal analysis has high potential for fault detection as
it is easy to measure and can extract favorable fault features. Because vibration signals
contain noisy, non-linear, and non-stationary components, some time-frequency analysis
such as short-time Fourier transform (STFT), Wigner–Ville distribution (WVD), wavelet
transform (WT), Hilbert-Huang transform (HHT) and empirical mode decomposition
(EMD), have become the most effective techniques in recent years. However, the above
techniques have their own limitations. For example, STFT is limited to a fixed length
of the window [9]. WVD is limited by cross-terms interference for the non-stationary
signals [10]. WT is suitable for non-stationary signal processing with high resolution to
solve the above problems from STFT and WVD [11,12]. However, when analyzing the
practical signal, the pre-defined wavelet-based parameters may not completely guarantee
efficiency for practical signal processing and analysis, which makes WT non-adaptive [13].
For vibration signals, the self-adaptive signal analysis may be more efficient [14]. As
proposed by Huang et al. [15], EMD adaptively decomposes the non-stationary signals
into a set of intrinsic mode functions (IMFs). However, EMD is limited by end effects and
mode mixing [16–18].

Similar principles with EMD, local mean decomposition (LMD) is a self-adaptive
time-frequency domain analysis method first proposed by J. S. Smith in 2005 that has
good results for the analysis of EEG signals [19]. The LMD decomposes the signal into
a set of product functions (PFs), each of which is the product of an envelope signal and
a frequency modulated signal. LMD has many potential properties. First, LMD directly
obtains instantaneous amplitude and instantaneous frequency without Hilbert transform
(HT) [19]. Second, LMD solves the over-/undershoot problem by using the moving av-
eraging method to compute the local mean [20]. Third, the end effects and mode mixing
problem already alleviate or are not obvious in LMD [21,22]. Fourth, compared with EMD,
LMD decomposes the signal into fewer components, and that each component contains
more useful information [22]. However, in the practical fault diagnosis of rotating ma-
chines, the vibration signals acquisitioned from sensors always contain huge noise, which
causes LMD to decompose additional and redundant frequency components. To solve this
problem, the wavelets de-noising technique such as wavelet packet decomposition (WPD)
has obtained good results to implement signal denoising [23–25]. To extract the useful
features from the vibration signal and remove noise, the multilayer signal analysis method
is applied in three steps as follows. First, the LMD decomposes the original signal into a set
of PFs. Then, the PF selection method is used to select effective components. Then, WPD is
used to further extract feature information and denoise. Finally, the statistical features are
extracted from these components.

In order to build a good model prediction, strongly relevant features should be se-
lected and irrelevant, redundant, or noisy features should be eliminated [26]. The feature
selection method is applied to remove uncorrelated features to obtain the optimal feature
subset. In recent decades, evolutionary algorithms such as particle swarm optimization
(PSO), bat algorithm (BA), and chicken swarm optimization (CSO) have been used for
feature selection. However, each algorithm has its own limitations. For example, BA cannot
balance between its exploration and exploitation capability [27]. Both BA and PSO are
suffer from premature convergence and easily fall into the local optimal when computing
high-dimension problems [27,28]. CSO was a new evolutionary algorithm proposed by
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Meng et al. in 2014 [29], which has good ability in terms convergence rate and conver-
gence accuracy. Nevertheless, like PSO and BA, the basic CSO has the same limitation of
premature convergence and easy to fall into local optima [30]. Therefore, the researchers
have proposed many improved CSO, which achieved good results [30–32]. In this research,
combining with basic CSO and genetic algorithm (GA), it is called hybrid genetic binary
chicken swarm optimization (HGBCSO). Based on GA, the crossover operation is an ef-
fective tool to improve the global search ability and population diversity [33]. Moreover,
two positions updating strategies are adopted to improve global exploration abilities. By
using these improvements, HGBCSO can balance exploration and exploitation and avoid
premature convergence.

The solutions present in evolutionary algorithms for feature selection are binary
strings in binary search space [34]. In this research, the above algorithms are applied for
feature selection as binary-PSO (BPSO) [35], binary-BA (BBA) [36,37], and binary-CSO
(BCSO) [38,39].

The last task of the proposed model is to classify the optimal feature subset. In recent
years, neural networks and machine learning algorithms are widely using in the field of
machinery fault diagnosis [40,41]. Compared with neural networks, machine learning
algorithms have the advantages of higher classification performance [42–45]. Therefore,
three machine learning algorithms, including decision tree (DT), support vector machine
(SVM), and naive Bayes (NB) are applied and compared robustness in this research. The
DT-based diagnosis models are natural, which may not need the knowledge for researchers
and can be easily applied to diagnosis models. However, the DT classifier is suffering
from overfitting and low generalization performance which would reduce the diagnosis
performance. The NB-based diagnosis models are easy to achieve fault diagnosis with
multiple states. However, because of the low ability of data fitting, it is difficult to represent
the complicated function relationship. The SVM is a widely used machine learning method
for fault diagnosis. The SVM-based diagnosis models can easily obtain the global optimal
solution and further obtain the high diagnostic accuracy based on the objective solution of
convex quadratic optimization [46]. In conclusion, this article proposes a rotor bar fault
diagnosis model, which uses a multilayer signal analysis to extract fault features, and uses
HGBCSO for feature selection.

In this article, the main points can be summarized as three points:

1. Proposing a multilayer signal analysis method combining two signal processing
methods (LMD and WPD) and PF selection. This technique can reduce the dimension
of original data, descend background noise, and extract potential features.

2. Proposing a feature selection method using the combination with BCSO and GA and
two positions update strategies to enhance global exploration capabilities, improve
population diversity, and prevent premature convergence.

3. Proposing a rotor bar fault diagnosis model based on multilayer signal analysis,
feature selection method, and classification.

2. Multilayer Signal Analysis

To extract potential features and descend background noise from the non-stationary
signal, the feature extraction process can be accomplished as follows. First, vibration
signals are recorded from test motors. Second, the proposed multilayer signal analysis
method is used to analyze test signals. Finally, the potential features which contain rotor
fault signatures are extracted.

2.1. Local Mean Decomposition

LMD can decompose a multi-component signal into a set of PFs. Each PF component
is the product of an envelope signal and a frequency modulated signal. Defining a signal
x(t), x(t) can decompose into a set of PFs by iterating through the following loop:
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Step 1: Find all local extrema ni of the original signal x(t). Calculate the local mean mi
and local envelope ai of two successive extrema ni and ni+1 by

mi =
(n i + ni+1)

2
(1)

ai =
|ni − ni+1|

2
. (2)

Step 2: All the local mean mi and local envelope ai can be extended by using straight lines
extending between successive extrema.

Step 3: Construct local mean function m11(t) and local envelope function a11(t) by smooth-
ing the local mean and local envelope using moving averaging method.

Step 4: Subtracting the local mean function m11(t) from the original signal x(t) to obtain a
residue signal h11(t):

h11(t) = x(t) − m11(t). (3)

Step 5: Then, the frequency modulated signal s11(t) can be obtained from h11(t) and a11(t).
h11(t) can be the amplitude demodulated by dividing it by the envelope function.

Step 6: If s11(t) is a purely frequency modulated signal, then go to Step 7. Otherwise, take
s11(t) as a new signal and repeat Step 1 to 5 until the condition is satisfied.

s11(t) =
h11(t)
a11(t)

. (4)

Step 7: Multiply all the smoothed local envelope functions during iteration to obtain
the envelope signal a1(t) of the first product function PF1. Then, with the envelop
function and the final frequency demodulated, the first product function PF1 will be
generated:

a1(t) = a11(t)a12(t) . . . a1n(t) =
n

∏
q=1

a1q(t) (5)

PF1= a1(t)s1n(t). (6)

Step 8: Then, u1 = x(t) − PF1(t) treated as the smoothed version of the original data
and the procedure is repeated from Step 1 to 7, until ui(t) = ui−1(t) − PFi(t) is a
monotonic function or no more than five oscillations. Finally, x(t) can be denoted as

x(t) =
p

∑
i=1

PFi(t) + up(t) (7)

where p is the number of PFs.

2.2. Product Function Selection

The LMD can decompose a multi-component signal into a set of PFs. However, some
components include more fault information than others. Therefore, the second layer is to
extract those components that contain most of the fault information of the original signal
as a key step in the extraction of features from multiple PF components. Some statistics
have been used to select those effective components. The correlation coefficient (CC) [47] is
used to evaluate the similarity between the component and the original signal.

Kurtosis [25] and root mean square (RMS) [48] are also used for the PF selection.
Kurtosis is a measure of the “tailedness” of signal distribution, or how outlier prone the
signal is. Developing faults can increase the number of outliers. Therefore, the value of the
kurtosis metric increases.
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When the original signal has an early-stage fault, as the weak fault signature is
generally buried in the noise. CCs cannot have good performance for selecting the effective
PFs. RMS are also not sensitive to an early-stage fault [49]. Kurtosis is sensitive to an early-
stage fault. However, Kurtosis could not keep increasing the trend when the fault becomes
more serious [48]. Therefore, a single statistic is not effective to select the PFs, because
the severity levels of the faults strongly affect its effectiveness. Yu et al. [50] proposed a
comprehensive evaluation value (CEV) value for PF selection. The PFs decomposed by
LMD are defined as PF1, PF2, PF3, . . . , PFn. The CEV-defined Qi as for each PF component
is the mean of the three statistic values as follows:

Qi =
3

∑
j=1

Hi,j

∑n
i=1 Hi,j

(8)

where the statistic values including CC, kurtosis, and RMS are defined as Hi,1, Hi,2, and
Hi,3 for the ith PF component decomposed by LMD.

2.3. Wavelet Packet Decomposition

Because the selected PFs based on the CEV value remain at a much high frequency
noise in the PFs, the final layer uses WPD to further analyze and denoise the selected PFs.
WPD is a powerful method for analyzing the time-frequency domain. The main difference
between WPD and discrete wavelet transform (DWT) is that WPD can decompose detail
coefficients and approximate coefficients at the same time. Thus, WPD has good resolution
at both high and low frequencies and is suitable for processing non-stationary signals [51].

In WPD, a wavelet packet function Wn
j,k(t) is defined as follows:

Wn
j,k(t) = 2

j
2 Wn(2jt− k) (9)

where index n is called the modulation parameter or the oscillation parameter, and j and k
are the index scale and translation operations, respectively.

The wavelet packet coefficients of a signal x(t) can be calculated as follows:

Wj,n,k(t) =
∫

x(t)Wn
j,k(t)dt (10)

2.4. Feature Extraction Process

This part is explaining the following step for feature extraction:

Step 1: Record vibration signals from test machines.
Step 2: In the first layer of the multilayer signal analysis, LMD is used to decompose the

vibration signals into a set of PFs. Figure 1a illustrates how the LMD decomposes the
normal IM vibration signal into four PFs.

Step 3: In the second layer of the multilayer signal analysis, PF selection is used to select
the effective components. In this paper, we choose the best two CEV values for the
selected PFs into the final layer. Figure 1b illustrates the PF selection method selecting
the best two PFs.

Step 4: In the third layer of the multilayer signal analysis, WPD is used to further analyze
and denoise the selected PFs. In this paper, two-level WPD is adopted and decompo-
sition construction consists of four wavelet packet coefficients: aa2, da2, ad2, dd2. The
two-level WPD decomposes the selected PFs as shown in Figure 1c.

Step 5: The eight statistical feature parameters are calculated for each wavelet packet coef-
ficient. A total of 64 (2 × 4 × 8) features are extracted from the output decomposition
structure of two selected PFs.
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Figure 1. The graphics of the feature extraction process. (a) LMD decomposes the vibration signal (b) PF selection method
(c) two-level WPD.

Therefore, the potential fault feature dataset includes 64 features. Table 1 shows the
parameters definition of these statistical features.

Table 1. Eight statistical feature definition.

Feature Equation

(1) Max value xmax= max(x(n))
(2) Min value xmin= min(x(n))

(3) Root mean square xrms =

(
∑N

n=1

√
|x(n)|

N

)2

(4) Mean square error xmse =
1
N

N
∑

n=1
(xn − µ)2

(5) Standard deviation xstd =

√
∑N

n=1(x(n) − µ)2

N − 1

(6) Kurtosis xkur =
∑N

n=1(x(n) − µ)4

(N − 1)x4
std

(7) Crest factor xcrest =
xmax√

1
N ∑N

n=1 x2
n

(8) Clearance factor xclear =
xmax(

1
N ∑N

n=1

√
|xn |

)2

Note: x(n) is a signal series for n = 1, 2, . . . , N, where N is the number of data points.

3. Hybrid Genetic Binary Chicken Swarm Optimization for Feature Selection

This section can separate in four parts. The first part is a brief introduction to the basic
BCSO algorithm for feature selection. The second to fourth parts explain each positions
update strategy using the proposed HGBCSO method. The operation of these strategies
combines with BCSO to search for a potential solution.

3.1. Binary Chicken Swarm Optimization

The basic CSO algorithm mimics the hierarchal order and behaviors of searching food
in the chicken swarm. Each chicken is represented by their position in a D-dimensional
space by xi,j(i ∈ [1, . . . , N], j ∈ [1, . . . , D]). The positions update of the equation of a
different type of chickens is as follows:
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1. Rooster’s position update equation:

xt+1
i,j = xt

i,j(1 + Randn(0, σ2)) (11)

σ2 =

{
1

exp( fk− fi
| fi |+ε

)
(12)

where Randn(0, σ 2
)

is a Gaussian distribution with a mean of 0 and standard devia-

tion σ2, ε is a small constant to prevent the denominator being 0. k is a rooster’s index,
which is selected randomly between 1 and the maximum number of roosters except i.
fi and fk are the fitness values of the ith and kth rooster.

2. Hen’s position update equation:

xt+1
i,j = xt

i,j + S1Rand(xt
r1,j − xt

i,j) + S2Rand(xt
r2,j − xt

i,j) (13)

S1 = exp(( fi − fr1)/(abs( fi) + ε)) (14)

S2 = exp(( fr2 − fi)) (15)

Rand is a uniform random number between 0 and 1, r1 is an index of the rooster,
which is in the ith hen’s group-mate, r2 is an index of the chicken in all roosters and
hens, which is randomly chosen from the swarm, and let r1 6= r2.

3. Chick’s position update equation:

xt+1
i,j = xt

i,j + FL(xt
m,j − xt

i,j) (16)

where m is an index of the mother hen corresponding to ith chick, FL is a parameter
in the range [0.4, 1], which keeps the chick to forage for food around its mother.

For feature selection in the BCSO, each chicken represents a solution in the binary
search space (i.e., each feature subset). In contrast to CSO, each chicken is updated by the
binary position of a solution which has values “1” and “0”, which means the corresponding
feature is selected or unselected. The most widely used transfer function to transfer from
the real position to the binary position is the sigmoid function in (17). The binary position
of each chicken bi,j is updated as follows:

sig(xi,j) =
1

1 + e−xi,j
(17)

bi,j =

 1 sig(x i,j

)
≥ 0.5

0 sig(x i,j

)
< 0.5

(18)

3.2. Update the Hen’s Position Based on Levy Flight

The disadvantage of basic CSO and other evolutionary algorithms is premature
convergence. In basic CSO, hens play an important role in the entire group because there
is the largest number of hens. Inspired by this, Liang et al. [30] proposed the levy flight
search strategy into hen’s position update equation. In this method, the short-distance
and occasional long-distance searching appear alternately, such that it enhances the search
performance and avoids the iterations falling into a local optimal. The hen’s position
update equation based on levy flight is as follows:

xt+1
i,j = xt

i,j + S1Rand(xt
r1,j − xt

i,j) + S2RandLevy(λ)⊗(xt
r2,j − xt

i,j) (19)
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where ⊗ is a vector operator representing the point multiplication and the random step
value of a levy flight is taken from the levy distribution, which is shown as follows:

Levy(λ) ∼ u = t−λ(1 < λ < 3) (20)

3.3. Update the Chick’s Position Based on Inertia Weight

Based on CSO, the chicks’ do not update the position by themself, and only follow
their own mother hen, so when their own mother hen falls into the local optimal, the chicks
will also fall into the local optimal. In this research, the linear decreasing inertia weight
is used to update the chick’s position, which can let the chicks update the position by
themselves, preventing the chicks falling into local optimal. The linear decreasing inertia
weight [52] w updates as follows:

w = wmax − (wmax − wmin)(
t

itermax
) (21)

where wmax and wmin are the maximum and minimum values of inertia weight, t is the
number of iterations and itermax is the maximum number of iterations. Then, the chick’s
position update equation is defined as follows:

xt+1
i,j = wxt

i,j + FL(xt
m,j − xt

i,j) (22)

3.4. Update the Chicken’s Position Based on Crossover Operation

Based on GA: the crossover operation is a powerful tool for enhancing the explo-
ration and exploitation capability, improving the population diversity, avoiding premature
convergence, creating more effective solutions, and improving the average fitness values
of the population. In this research, the chicken’s position update operation is based on
three-points crossover operation. The operation is described as follows:

Step 1: Randomly selected pairs of solutions carry out the three points crossover operation.
Step 2: Repeat until the new population is formed.

The three-points crossover operation is illustrated in Figure 2.
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Figure 2. Three-points crossover operation.

3.5. The Proposed HGBCSO Method

The proposed method HGBCSO is combined with the crossover operation and two
positions update the strategies, which helps avoid the local optimal and improve the global
search performance. Therefore, HGBCSO is the proposed method for feature selection in
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this research. The k-NN classifier is used to evaluate each chicken. The fitness function is
based on the classification accuracy (ACC), which is defined as follows:

Fitness =
NTrue

NTrue + NFalse
× 100% (23)

where NTrue is true positive, NFalse is false negative. The flowchart of the proposed method
to achieve an optimal feature subset is illustrated in Figure 3.
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Figure 3. The flowchart of the proposed hybrid genetic binary chicken swarm optimization (HG-
BCSO) method.

4. Diagnosis Model for Rotor Bar Fault

This section is introducing a fault diagnosis model for a rotor bar based on the vibration
signals of the IM. Figure 4 illustrates the proposed model and contains the following three
main stages:

Stage 1: Measuring the vibration signals from the test IM, which are processed by multilayer
signal analysis. The first layer is to use LMD to decompose the vibration signals into a
set of PFs. The second layer is to use PF selection to select two effective PFs. The third
layer is to use WPD to further analyze and denoise the selected PFs. In this model,
the wavelet decomposition level is adopted at level 2. The eight statistical feature
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parameters are calculated for each wavelet packet coefficient. Finally, 64 features are
extracted during Stage 1.

Stage 2: Using the proposed method HGBCSO to remove the irrelative features from the
feature set, achieving the optimal feature subset. The optimal feature subset will
improve the classifier performance of the fault diagnosis model.

Stage 3: Three well-known classifiers, including DT, SVM, and NB, are used to classify the
optimal feature subset. The ACCs are used to evaluate the robustness of classifiers
with rotor bar data to select the best classifier for diagnosing rotor bar faults.
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5. Experiment Results

Two experimental case studies are introduced in this section.
Case study 1 shows the results of the HGBCSO method using the UCI machine

learning datasets for feature selection. To evaluate the effectiveness of the HGBCSO
method, the basic BCSO and two well-known evolutionary algorithms are compared.

Case study 2 uses the experimental dataset from IM, including normal motor and
broken rotor bar motors, to evaluate the validity of the proposed model.
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5.1. Case Study 1: UCI Machine Learning Datasets

1. Describe of Datasets

The feature set used in the motor fault diagnosis model is usually the low-dimensional
feature sets [53,54]. Thus, six UCI machine learning repository datasets [55] are applied in
this research. The six machine learning datasets are described in Table 2.

Table 2. Description of 6 UCI machine learning datasets.

Datasets Features Instances Classes

Wine 13 178 3
Leaf 15 340 30

Vehicle Silhouettes 18 94 4
WDBC 30 569 2

Ionosphere 34 351 2
Sonar 60 208 2

2. Parameter Setting

In this research, the high ACC fault diagnosis model is our focus. The k-NN classifier
with the number of nearest neighbor k = 1 and 10-folds cross-validation is adopted to eval-
uate the solutions from HGBCSO and the other three compared evolutionary algorithms.
Table 3 shows the parameter setting of four algorithms, including HGBCSO, BCSO, BPSO,
and BBA.

Table 3. Experimental parameter setting of four evolutionary algorithms.

HGBCSO BCSO BPSO BBA

Number of chickens: 10
Number of iterations: 100
Rooster parameter: 0.2
Hen parameter: 0.7
Mother parameter: 0.1
ωmin = 0.4
ωmax = 0.9

Number of chickens: 10
Number of iterations: 100

Rooster parameter: 0.2
Hen parameter: 0.7

Mother parameter: 0.1

Number of particles: 10
Number of iterations: 100

c1 = c2 = 2.05

Number of bats: 10
Number of iterations: 100
Maximum frequency: 2
Minimum frequency: 0

Loudness: 0.9
Pulse rate: 0.9

3. Experimental Results for UCI Machine Learning Datasets

This experiment was simulated by Matlab 2017a. The results of three algorithms,
including BCSO, BPSO, and BBA are used to assess the validity of the proposed HGBCSO
algorithm. In this experiment, two following indicators are using to compare the results of
algorithms: (1) Convergence curve of the best solution for each algorithm; (2) Calculate the
average ACC and the average number of selected features (Avg No. Fs) for each algorithm
in thirty independent runs.

Figure 5 shows the convergence curve of the best solution for each algorithm. The HG-
BCSO achieves higher ACC than the other compared algorithms on leaf, vehicle silhouettes,
WDBC, ionosphere, and sonar. Especially on WDBC and ionosphere, HGBCSO achieves
higher ACC than the other compared algorithms of 1.17 and 1.14%. Table 4 presents the
average fitness value (Avg fitness value) and the Avg No. Fs for each algorithm. In each
dataset, the algorithm achieves better results which are in bold in Table 4. The results
show that HGBCSO achieves a better average ACC in these six machine learning datasets.
Especially on WDBC, the average classification accuracy is significantly better than BCSO
with a difference of 1.56%. HGBCSO is most effective on the vehicle silhouettes and the
ionosphere dataset achieves a higher Avg fitness value and lower Avg No. Fs. Based on
the above results, the proposed HGBCSO method is satisfied with our focus.
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Figure 5. Convergence curves for HGBCSO and other evolutionary algorithms in six datasets. (a) Wine (b) Leaf (c) Vehicle
Silhouettes (d) WDBC (e) Ionosphere (f) Sonar.

Table 4. The result of HGBCSO and other evolutionary algorithms.

Datasets
HGBCSO BCSO BPSO BBA

Avg Fitness
Value Avg No. Fs Avg Fitness

Value Avg No. Fs Avg Fitness
Value Avg No. Fs Avg Fitness

Value Avg No. Fs

Wine 99.53 8.93 99.49 8.60 99.06 8.37 98.29 7.77
Leaf 76.25 10.73 76.07 10.73 75.16 10.43 72.45 9.2

Vehicle
Silhouettes 76.60 8.33 75.99 9.17 74.61 9.37 71.21 9.57

WDBC 99.37 16.23 97.81 16.30 97.45 15.60 96.83 15.90
Ionosphere 94.19 13.23 93.76 14.3 93.23 14.77 91.72 15.7

Sonar 94.37 31.07 93.53 31.13 93.33 31.43 90.51 30.43

5.2. Case Study 2: Rotor Broken Bar Experimental Database

1. Experimental Setup

The experimental database for detecting and diagnosing rotor broken bar from the
IEEE Dataport [56] was used in this case study. The experimental setup in this database
consisted of a three-phase IM (1 hp, 220V/380V, 3.02A/1.75A, 4 poles, 60 Hz, a nominal
torque of 4.1 Nm and a rated speed of 1715 rpm) coupled to a DC machine. To simulate
the failure on the rotor, five rotors tested healthy for one, two, three, and four broken bars,
respectively. In this experiment, 12.5, 50, and 100% of the full load of the experimental
datasets were used in the rotor bar fault diagnosis model.

Five axial accelerometers (sensitivity of 10 mV/mm/s and the frequency range of 5 to
2000 Hz) were used to measure the vibration signals in both drive end (DE) and non-drive
end (NDE) sides of the motor, axially or radially, in the horizontal or vertical directions.
Vibration signals are acquired using a 10 channels data acquisition system with 16 bits
A/D converters, type ADS 2000 Lynx Testing, and Measurement Systems. All vibration
signals were sampled at the same time for 18 s, the sample rate of the vibration signals
was 7.6 kHz, and ten repetitions were performed from the transient to steady state of the
induction motor. Figure 6 shows the vibration signals acquisition from the healthy motor
and broken bars motor.



Symmetry 2021, 13, 487 13 of 19

Symmetry 2021, 13, x FOR PEER REVIEW 12 of 19 
 

 

 

Figure 5. Convergence curves for HGBCSO and other evolutionary algorithms in six datasets. (a) Wine (b) Leaf (c) Vehi-

cle Silhouettes (d) WDBC (e) Ionosphere (f) Sonar. 

5.2. Case Study 2: Rotor Broken Bar Experimental Database 

1. Experimental Setup 

The experimental database for detecting and diagnosing rotor broken bar from the 

IEEE Dataport [56] was used in this case study. The experimental setup in this database 

consisted of a three-phase IM (1 hp, 220V/380V, 3.02A/1.75A, 4 poles, 60 Hz, a nominal 

torque of 4.1 Nm and a rated speed of 1715 rpm) coupled to a DC machine. To simulate 

the failure on the rotor, five rotors tested healthy for one, two, three, and four broken 

bars, respectively. In this experiment, 12.5, 50, and 100% of the full load of the experi-

mental datasets were used in the rotor bar fault diagnosis model. 

Five axial accelerometers (sensitivity of 10 mV/mm/s and the frequency range of 5 to 

2000 Hz) were used to measure the vibration signals in both drive end (DE) and 

non-drive end (NDE) sides of the motor, axially or radially, in the horizontal or vertical 

directions. Vibration signals are acquired using a 10 channels data acquisition system 

with 16 bits A/D converters, type ADS 2000 Lynx Testing, and Measurement Systems. All 

vibration signals were sampled at the same time for 18 s, the sample rate of the vibration 

signals was 7.6 kHz, and ten repetitions were performed from the transient to steady 

state of the induction motor. Figure 6 shows the vibration signals acquisition from the 

healthy motor and broken bars motor. 

 

Figure 6. Acquisition for collecting data from accelerometers: (a) healthy; and (b) broken bars. 

95

96

97

98

99

100

0 10 20 30 40 50 60 70 80 90 100

(f) Sonar(e) Ionosphere(d) WDBC

(c) Vehicle Silhouettes(b) Leaf(a) Wine

86

88

90

92

94

96

98

0 10 20 30 40 50 60 70 80 90 100

95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

0 10 20 30 40 50 60 70 80 90 100

67

68

69

70

71

72

73

74

75

76

77

78

79

0 10 20 30 40 50 60 70 80 90 100

89

90

91

92

93

94

95

96

97

0 10 20 30 40 50 60 70 80 90 100

97

100

1
0

96

98

99

≈ 

F
it

n
e
s
s 

v
a
lu

e
 (

%
)

20 30 40 50 60 70 8010 90 100
Iterations

HGBCSO              100  

BCSO                    100

BPSO                    100

BBA                      99.44

Algorithms Best fitness value (%) 

94

95

96

97

98

99

0 10 20 30 40 50 60 70 80 90 100

73

79

0

71

75

77

F
it

n
e
s
s 

v
a
lu

e
 (

%
)

69

≈ 

1 20 30 40 50 60 70 8010 90 100
Iterations

61

63

65

67

69

71

73

75

77

79

81

0 10 20 30 40 50 60 70 80 90 100

HGBCSO              77.94  

BCSO                    77.06

BPSO                    76.76

BBA                      76.47

Algorithms Best fitness value (%) 

94

95

96

97

98

99

0 10 20 30 40 50 60 70 80 90 100

20 30 40 50 60 70 8010 90 100
Iterations

69

81

0

73

77

F
it

n
e
s
s 

v
a
lu

e
 (

%
)

65

≈ 

1

HGBCSO              80.85  

BCSO                    78.72

BPSO                    78.72

BBA                      76.60

Algorithms Best fitness value (%) 

94

95

96

97

98

99

0 10 20 30 40 50 60 70 80 90 100

97

100

1
0

96

98

99

≈ 

F
it

n
e
s
s 

v
a
lu

e
 (

%
)

20 30 40 50 60 70 8010 90 100
Iterations

HGBCSO              99.59  

BCSO                    98.42

BPSO                    98.07

BBA                      97.36

Algorithms Best fitness value (%) 

94

95

96

97

98

99

0 10 20 30 40 50 60 70 80 90 100

97

0

91

93

95

≈ 

F
it

n
e
s
s 

v
a
lu

e
 (

%
)

1 20 30 40 50 60 70 8010 90 100
Iterations

HGBCSO              96.01  

BCSO                    94.59

BPSO                    94.87

BBA                      93.45

Algorithms Best fitness value (%) 

94

95

96

97

98

99

0 10 20 30 40 50 60 70 80 90 100

20 30 40 50 60 70 8010 90 100
Iterations

1

98

0

90

92

94

≈ 

F
it

n
e
s
s 

v
a
lu

e
 (

%
) 96

HGBCSO              97.12  

BCSO                    96.15

BPSO                    95.19

BBA                      92.79

Algorithms Best fitness value (%) 

94

95

96

97

98

99

0 10 20 30 40 50 60 70 80 90 100

(b)

(a)

10

-10

0

-15

15

0

A
cc

el
er

at
io

n 
(g

)
A

cc
el

er
at

io
n 

(g
)

0 1000 2000 3000 4000 5000 6000 7000 8000

0 1000 2000 3000 4000 5000 6000 7000 8000

Data points

Data points

Figure 6. Acquisition for collecting data from accelerometers: (a) healthy; and (b) broken bars.

2. Experimental Results for Feature Selection

Section 4 presented the proposed three stages of the rotor bar fault diagnosis model.
In stage 1, the potential fault feature dataset that included 64 features was extracted. In
stage 2, HGBCSO was applied to the rotor bar datasets, including 12.5, 50, and 100% of full
load conditions. In addition, the other three feature selection algorithms (BCSO, BPSO,
BBA) are also calculated. The results under three different load conditions are shown from
Tables 5–7. Compare with the other algorithms, the proposed algorithm reaches higher
average classification accuracy in 30 independent runs. The convergence curves of the
best solution under three different load conditions are shown in Figure 6. In Figure 7a,
BCSO, BBA converge at the 51st and 75th iteration, respectively. In Figure 7b, BBA, BPSO
converge at the 31st and 53rd iteration, respectively. In Figure 7c, BBA, BPSO converge
at the 48th and 54th iteration, respectively. The above results show that the weaknesses
of BCSO, BPSO, and BBA are its premature convergence and the likelihood of it falling
into the local optimal. Meanwhile, in Figure 7a–c, HGBCSO converges at the 87th, 63rd,
and 90th iteration, respectively. These results show that the proposed method based on
three proposed positions’ update strategies has global exploration ability and preventing
premature convergence.

Table 5. Comparison of the 12.5% load condition rotor bar dataset.

Algorithms Avg Fitness Value (%) Avg No. Fs

HGBCSO 95.09 31.73
BCSO 95.05 31.97
BPSO 93.99 32.80
BBA 94.57 32.83

Table 6. Comparison of the 50% load condition rotor bar dataset.

Algorithms Avg Fitness Value (%) Avg No. Fs

HGBCSO 95.22 28.6
BCSO 95.09 30.27
BPSO 94.64 33.03
BBA 94.22 32.70
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Table 7. Comparison on the 100% load condition rotor bar dataset.

Algorithms Avg Fitness Value (%) Avg No. Fs

HGBCSO 91.86 29.10
BCSO 91.70 30.67
BPSO 90.83 31.50
BBA 89.85 31.57
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Figure 7. Convergence curve of the best solution for different load conditions in three datasets. (a) 12.5% Load(b) 50% Load
(c) 100% Load.

Tables 8–10 present the best solution for each algorithm. Based on the number of the
selected features of the optimal feature subset, HGBCSO has achieved 22 features from the
12.5% of full load condition dataset, 27 features from the 50% of full load condition dataset,
and 23 features from the 100% of full-load condition dataset. Compared with the other
algorithms, the proposed algorithm reaches the lower number of the selected features in
30 independent runs.

Table 8. Details on the 12.5% load condition rotor bar dataset.

Algorithms Features Feature Indicators (F)

HGBCSO 22 2, 3, 5, 9, 10, 12, 14, 15, 16, 17, 18, 19, 20, 22, 29, 30, 41, 44, 47, 49,
51, 55.

BCSO 28 1, 2, 3, 5, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 20, 23, 26, 27, 29, 30, 32,
40, 41, 46, 51, 52, 55, 58.

BPSO 31 2, 3, 5, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 22, 25, 26, 27, 28, 29,
30, 31, 32, 33, 38, 41, 45, 46, 50, 51, 63.

BBA 32 2, 3, 4, 8, 9, 11, 12, 13, 14, 15, 16, 18, 19, 20, 22, 24, 26, 27, 30, 32,
33, 35, 36, 38, 40, 41, 42, 44, 45, 49, 54, 63.

Table 9. Details on the 50% load condition rotor bar dataset.

Algorithms Features Feature Indicators (F)

HGBCSO 27 1, 5, 6, 7, 9, 10, 11, 12, 13, 14, 19, 20, 21, 22, 24, 25, 26,
28, 31, 33, 36, 39, 40, 42, 48, 53, 61.

BCSO 38
1, 3, 4, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 23,
24, 25, 31, 32, 33, 35, 37, 38, 39, 42, 43, 46, 47, 50, 51,

52, 53, 55, 57, 61, 63.

BPSO 30 1, 6, 7, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 22, 24, 27,
31, 37, 38, 39, 42, 43, 44, 46, 48, 49, 50, 52, 55.

BBA 32 1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 25, 27,
29, 31, 34, 35, 36, 38, 39, 40, 45, 48, 51, 54, 56, 58, 60.
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Table 10. Details on the 100% load condition rotor bar dataset.

Algorithms Features Feature Indicators (F)

HGBCSO 23 1, 2, 4, 5, 10, 12, 15, 16, 17, 18, 19, 20, 22, 23, 24, 37, 38, 41,
42, 43, 44, 46, 52.

BCSO 33 5, 6, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 27,
32, 33, 37, 40, 41, 43, 44, 45, 49, 51, 52, 53, 56, 61, 63.

BPSO 33 3, 5, 6, 8, 9, 10, 11, 12, 14, 16, 17, 19, 20, 21, 22, 23, 25, 27, 28,
36, 37, 42, 44, 47, 49, 50, 52, 53, 54, 55, 59, 61, 63.

BBA 34 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 22, 23, 25, 26,
28, 32, 33, 36, 37, 39, 41, 42, 45, 46, 50, 53, 54, 59, 62.

3. Experimental results for classification

In stage 3, three provided classifiers, including DT, SVM, and NB, were adopted to
classify the optimal feature subset. Table 11 shows the parameter setting of the three
classifiers, including DT, SVM, and NB. Four optimal feature subsets were provided from
HGBCSO, BCSO, BPSO, and BBA, respectively. In addition, the original feature set means
without doing the feature selection were also used to classify in this experiment. The
robustness of these three classifiers was also considered in the noise condition. In this
experiment, the original signals were added to different levels of Gaussian white noise
to simulate the noisy environment. This experiment was closer to the real condition in
industrial production. In this experiment, the signal-to-noise ratio (SNR) value test ranged
from−10 to 10 dB. Figure 8 shows the healthy motor signal is added by the Gaussian white
noise with SNR = 0 dB. The average ACC is obtained after 30 training times. Figure 9 shows
the average ACC using the DT, SVM, and NB of three different load conditions and under
different SNR values. Obviously, DT and SVM achieved a better classification performance
than NB. The proposed HGBCSO achieved higher ACC than the other three algorithms
under different load conditions. As the SNR value decreases, the performance of the
three classifiers decreases. However, under a lower SNR value, the robustness of the SVM
classifier was more effective compared to DT and NB. Especially in SNR = −8 dB, the ACC
of all algorithms and under 12.5, 50, and 100% of full load conditions are higher than 84.61,
75.86, and 75.62% when using the SVM classifier. The accuracy of all algorithms is lower
than 82.89, 74.7, and 71.79% when using the DT classifier. The accuracy of all algorithms is
lower than 72.6, 66.94, and 62.15% when using the NB classifier. In SNR = −10 dB, the ACC
of SVM is still higher than DT and NB. Therefore, the SVM classifier is the suitable classifier
with the rotor bar fault diagnosis model. Finally, we compared it with the classification
results for different load conditions based on the proposed fault diagnosis model. As the
load torque increases, the performance of the proposed model decreases. The classification
accuracy of the proposed model under 12.5% of full load condition and under the SNR
value ranging from −10 to 10 dB is from 88.64 to 94.17%. The classification accuracy of
the proposed model under 50% of full load condition and under the SNR value ranging
from −10 to 10 dB is from 78.97 to 93.67%, respectively. The classification accuracy of the
proposed model under 100% of full load condition and under the SNR value ranging from
−10 to 10 dB is from 75.62 to 88.83%. In conclusion, according to the above analysis, the
proposed rotor bar fault diagnosis model in this research is highly effective and achieves
high robustness to detecting rotor bar failure.

Table 11. Parameter setting of three classifiers.

DT SVM NB

Complex tree
Split criterion: Gini’s diversity

index
Surrogate splits: off

Max number of splits: 100

Kernel function: polynomial
Polynomial order: 2
Kernel scale: auto
Box constraint: 1

Kernel distributions: normal
Support regions: unbounded
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6. Conclusions

This article presents an effective rotor bar fault diagnosis model. The model contains
three main stages to detect rotor bar failure. This research uses multilayer signal analysis for
processing signals. In multilayer signal analysis, the vibration signals can be decomposed
into the effective product function components which contains most of the fault information
of the original signal. The proposed HGBCSO algorithm uses three positions update
strategies to improve the basic BCSO algorithm and enhance the ability to select important
features. The results show that the HGBCSO algorithm achieved higher ACC. The best
fault diagnosis model achieves better robustness by using the SVM classifier. The classifier
performance was tested from low load torque to full load torque and under high noise
level. The result shows that the proposed model achieves 75.62% classification accuracy
under 100% full load condition and SNR = −10 dB. In addition, the proposed HGBCSO
algorithm was compared with the UCI machine learning datasets and the results are better
than the adopted evolutionary algorithm. However, the proposed model still has some
limitations as follows: (1) the feature extract process is highly dependent on the former
knowledge for researchers; (2) machine learning has a shallow structure that cannot work
well for complex non-linear problems. Therefore, deep learning algorithms and automatic
feature extraction for rotor bar fault classification should be considered in the future.
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