Perturbative RG Analysis of the Condensate Dependence of the Axial Anomaly in the Three-Flavor Linear Sigma Model
Abstract
:1. Introduction
2. Model and Method
3. Calculation of the Effective Action
4. Anomaly Strengthening at The Nuclear Liquid–Gas Transition
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Fukushima, K.; Hatsuda, T. The phase diagram of dense QCD. Rept. Prog. Phys. 2011, 74, 014001. [Google Scholar] [CrossRef] [Green Version]
- Hooft, G. Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev. D 1976, 14, 3432. [Google Scholar]
- Gross, D.J.; Pisarski, R.D.; Yaffe, L.G. QCD and instantons at finite temperature. Rev. Mod. Phys. 1981, 53. [Google Scholar] [CrossRef]
- Mitter, M.; Schaefer, B.-J. Fluctuations and the axial anomaly with three quark flavors. Phys. Rev. D 2014, 89, 054027. [Google Scholar] [CrossRef] [Green Version]
- Cossu, G.; Fukaya, H.; Hashimoto, S.; Noaki, J.; Tomiya, A. On the Axial U(1) Symmetry at Finite Temperature. Available online: http://arxiv.org/abs/1511.05691 (accessed on 12 March 2021).
- Ishii, M.; Yonemura, K.; Takahashi, J.; Kouno, J.; Yahiro, M. Determination of U(1)A restoration from pion and a0-meson screening masses: Toward the chiral regime. Phys. Rev. D 2016, 93, 016002. [Google Scholar] [CrossRef] [Green Version]
- Nicola, A.G.; de Elvira, J.R. Chiral and U(1)A restoration for the scalar and pseudoscalar meson nonets. Phys. Rev. D 2018, 98, 014020. [Google Scholar] [CrossRef] [Green Version]
- Bottaro, S.; Meggiolaro, E. QCD axion and topological susceptibility in chiral effective Lagrangian models at finite temperature. Phys. Rev. D 2020, 102, 014048. [Google Scholar] [CrossRef]
- Dick, V.; Karsch, F.; Laermann, E.; Mukherjee, S.; Sharma, S. Microscopic origin of UA(1) symmetry violation in the high temperature phase of QCD. Phys. Rev. D 2015, 91, 094504. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Dick, V.; Karsch, F.; Laermann, E.; Mukherjee, S. The topological structures in strongly coupled QGP with chiral fermions on the lattice. Nucl. Phys. A 2016, 956, 793. [Google Scholar] [CrossRef] [Green Version]
- Fejos, G.; Hosaka, A. Thermal properties and evolution of the UA(1) factor for 2+1 flavors. Phys. Rev. D 2016, 94, 036005. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Fu, W.; Liu, Y. New insight about the effective restoration of UA(1) symmetry. Phys. Rev. D 2020, 101, 054034. [Google Scholar] [CrossRef] [Green Version]
- Braun, J.; Leonhardt, M.; Pawlowski, J.M.; Rosenblüh, D. Chiral and Effective U(1)A Symmetry Restoration in QCD. Available online: http://arxiv.org/abs/2012.06231 (accessed on 12 March 2021).
- Fejos, G.; Hosaka, A. Axial anomaly and hadronic properties in a nuclear medium. Phys. Rev. D 2018, 98, 036009. [Google Scholar] [CrossRef] [Green Version]
- Pelissetto, A.; Vicari, E. Relevance of the axial anomaly at the finite-temperature chiral transition in QCD. Phys. Rev. D 2013, 88, 105018. [Google Scholar] [CrossRef] [Green Version]
- Horvatic, D.; Kekez, D.; Klabucar, D. Temperature dependence of the axion mass in a scenario where the restoration of chiral symmetry drives the restoration of the UA(1) Symmetry. Universe 2019, 10, 208. [Google Scholar] [CrossRef] [Green Version]
- Nagahiro, H.; Takizawa, M.; Hirenzaki, S. eta- and eta’-mesic nuclei and UA(1) anomaly at finite density. Phys. Rev. C 2006, 74, 045203. [Google Scholar] [CrossRef] [Green Version]
- Sakai, S.; Jido, D. In medium eta’ mass and eta’ N interaction based on chiral effective theory. Phys. Rev. C 2013, 88, 064906. [Google Scholar] [CrossRef] [Green Version]
- Sakai, S.; Hosaka, A.; Nagahiro, H. Effect of the final state interaction of eta’N on the eta’ photoproduction off nucleon. Phys. Rev. C 2017, 95, 045206. [Google Scholar] [CrossRef] [Green Version]
- Jido, D.; Masutani, H.; Hirenzaki, S. Structure of eta’ mesonic nuclei in a relativistic mean field theory. Prog. Theor. Exp. Phys. 2019, 2019, 053D02. [Google Scholar] [CrossRef]
- Horvatic, D.; Kekez, D.; Klabucar, D. Eta’ and eta mesons at high T when the UA(1) and chiral symmetry breaking are tied. Phys. Rev. D 2019, 99, 014007. [Google Scholar] [CrossRef] [Green Version]
- Rai, S.K.; Tiwari, V.K. Exploring axial U(1) restoration in a modified 2+1 flavor Polyakov quark meson model. Eur. Phys. J. Plus 2020, 135, 844. [Google Scholar] [CrossRef]
- Kopietz, P.; Bartosch, L.; Schütz, F. Introduction to the Functional Renormalization Group; Springer: New York, NY, USA, 2010. [Google Scholar]
- Litim, D. Optimisation of the exact renormalisation group. Phys. Lett. B 2000, 486, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Pisarski, R.D.; Wilczek, F. Remarks on the chiral phase transition in chromodynamics. Phys. Rev. D 1984, 29, 338. [Google Scholar] [CrossRef]
- Floerchinger, S.; Wetterich, C. Chemical freeze-out in heavy ion collisions at large baryon densities. Nucl. Phys. A 2012, 890, 891. [Google Scholar] [CrossRef] [Green Version]
- Drews, M.; Weise, W. Functional renormalization group studies of nuclear and neutron matter. Prog. Part. Nucl. Phys. 2017, 93, 69. [Google Scholar] [CrossRef] [Green Version]
- Pisarski, R.D.; Rennecke, F. Multi-instanton contributions to anomalous quark interactions. Phys. Rev. D 2020, 101, 114019. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fejős, G. Perturbative RG Analysis of the Condensate Dependence of the Axial Anomaly in the Three-Flavor Linear Sigma Model. Symmetry 2021, 13, 488. https://doi.org/10.3390/sym13030488
Fejős G. Perturbative RG Analysis of the Condensate Dependence of the Axial Anomaly in the Three-Flavor Linear Sigma Model. Symmetry. 2021; 13(3):488. https://doi.org/10.3390/sym13030488
Chicago/Turabian StyleFejős, Gergely. 2021. "Perturbative RG Analysis of the Condensate Dependence of the Axial Anomaly in the Three-Flavor Linear Sigma Model" Symmetry 13, no. 3: 488. https://doi.org/10.3390/sym13030488
APA StyleFejős, G. (2021). Perturbative RG Analysis of the Condensate Dependence of the Axial Anomaly in the Three-Flavor Linear Sigma Model. Symmetry, 13(3), 488. https://doi.org/10.3390/sym13030488