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Abstract: Coupling of ‘t Hooft’s determinant term is investigated in the framework of the three-flavor
linear sigma model as a function of the chiral condensate. Using perturbation theory around the
minimum point of the effective action, we calculate the renormalization group flow of the first
field-dependent correction to the coupling of the conventional UA(1) breaking determinant term.
It is found that, at low temperatures, mesonic fluctuations make the anomaly increase when the
chiral condensate decreases. As an application, we analyze the effect at the zero temperature nuclear
liquid–gas transition.
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1. Introduction

The UA(1) subgroup of approximate UL(3)×UR(3) chiral symmetry is anomalously
broken in quantum chromodynamics (QCD). QCD is a strongly coupled theory, and as
such, most accurate results can be expected to emerge through lattice simulations. These,
however, lack the ability to simulate the system at finite density due to the notorius sign
problem. To tackle this issue, it is common to build effective models upon chiral symmetry,
which are expected to capture essential features of QCD in the low energy regime. Even at
zero density, these models are known to provide reasonable results for temperatures below
that of the chiral transition [1].

In effective theories, such as the Nambu–Jona–Lasinio or linear sigma models, this
is taken into account by ‘t Hooft’s determinant term. Coefficients of operators in the La-
grangian of field theories, including the aforementioned determinant term, are considered
to be (coupling) constants, without any field or environment dependence. In the quantum
version of the action, however, fluctuations introduce temperature (T), baryochemical
potential (µB) and also field dependence as they become coefficient functions. When talking
about field dependence of a given coupling, one has in mind the resummation of higher
dimensional operators that can reappear when Taylor expanding the coefficient functions
in terms of the field variable(s) around a conveniently chosen expansion point.

In QCD, it is well established that the anomalous breaking of UA(1) symmetry should
gradually disappear beyond the critical temperature, as at high T the instanton density
causing the anomaly exponentially vanishes [2,3]. At lower temperatures, however, the
situation is far from being understood in a satisfactory fashion. One has also great interest
in gaining results regarding the anomaly evolution at finite µB due to the sign problem, as
mentioned earlier.

The finite temperature and/or density behavior of the UA(1) anomaly represents an
active direction of research. More conservative results usually argue that the evaporation
of the anomaly should follow that of the chiral condensate and thus the UA(1) symmetry
restores around the critical temperature (TC) of the chiral transition [4–8]. There are also
several arguments and results that indicate that it is visible even beyond TC [9–13]. For
example, earlier renormalization group studies indicate that when considering a field-
dependent anomaly coefficient, it decreases as a function of the chiral condensate [11,14],
and this profile function can also depend explicitly on the tempereture (though the former
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effect is more dominant). Effective restoration of the anomaly has, e.g., a consequence
regarding the order of the chiral transition [15], the axion mass [16], and the fate of η′

meson, whose mass if substantially drops [17–22], in a nuclear medium could lead to the
formation of an η′-nucleon bound state.

The goal of this paper is to calculate the first field-dependent correction to the cou-
pling of the ‘t Hooft determinant in the effective action perturbatively, i.e., we determine
the first Taylor coefficient of the anomaly function. Determining this coefficient (at least
qualitatively) allows for obtaining the behavior of the anomaly strength as the function of
the chiral condensate. This allows for providing answer for the question whether the afore-
mentioned results on anomaly strengthening [11,14] can be reproduced within a simple
perturbative renormalizatrion group setting of the linear sigma model, or determining a
full functional dependence of the effective action is necessary. Fluctuations will be included
using the functional variant of the renormalization group (FRG) [23], in the so-called local
potential approximation (LPA). Even though renormalizable, we think of the model as an
effective field theory; therefore, an ultra violet (UV) cutoff is inherently part of the system,
which we set to Λ = 1 GeV (we expect the linear sigma model to emerge from QCD around
this scale). Our task is to integrate out all fluctuations below Λ.

The paper is organized as follows. In Section 2, we introduce the model and the
corresponding method of the FRG. Section 3 is devoted for calculating the effective action
and discussing the problem of the expansion point of the Taylor series. After appropriate
parametrization of the model, in Section 4, as an application, we show how the anomaly
strengthens at the zero temperature nuclear liquid–gas phase transition. Section 5 contains
the summary.

2. Model and Method

The model we are working with in this paper is the three-flavor linear sigma model,
which is defined via the following Euclidean Lagrangian:

L = Tr (∂i M†∂i M) + m2 Tr (M† M) + g1

(
Tr (M† M)

)2
+ g2 Tr (M† M− Tr (M† M))2

+a(det M + det M†)− (h0s0 + h8s8), (1)

where M contains the meson fields, M = (sa + iπa)Ta [Ta = λa/2 are generators of the
U(3) group with λa being the Gell-Mann matrices, a = 0, ..., 8], m2 is the mass parameter
and g1, g2 refer to independent quartic couplings. As discussed in the previous section, the
determinant term and the corresponding a parameter is responsible for the UA(1) anomaly.
We also have explicit symmetry breaking terms containing h0 and h8, which represent finite
quark masses.

Our main goal is to calculate the quantum effective action, Γ, built upon the theory
defined via (1). As announced in the introduction, we think of (1) as an inherently effective
model, which is only valid up to the scale Λ = 1 GeV , therefore, one needs to take into
account fluctuations with a cutoff Λ. The scale dependent quantum effective action, Γk,
which includes fluctuations with momenta larger than k (i.e., they are integrated out) is
defined as

Zk[J] =
∫
DMDM† exp

{
−
∫
L−

∫
(JM + h.c.)−

∫ ∫
M†Rk M

}
,

Γk[M] = − log Zk[J]−
∫
(JM + h.c.)−

∫ ∫
M†Rk M, (2)

where we omitted matrix indices, J is the conjugate source variable to M, and Rk is an
appropriately chosen (bilocal) regulator function freezing fluctuations with momenta
smaller than k. We note that the integrals can be considered either in direct or Fourier
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spaces. The Γk functional, for homogeneous field configurations, obeys the following,
so-called flow equation [23]:

∂kΓk[M] =
1
2

Tr
∫

x

∫
q
(Γ(2)

k + Rk)
−1(q)∂kRk(q), (3)

where Γ(2)
k is the second functional derivative of Γk in a homogeneous background field

M, thus the x integral merely gives a spacetime volume factor. We also assumed that the
regulator is diagonal in momentum space.

Our aim is to calculate the scale dependent effective action, Γk, in an approximation
that takes into account the evolution of the anomaly at the next-to-leading order, i.e., we
wish to determine in Γk the coefficient of the operator Tr (M† M) · (det M + det M†). Our
ansatz for Γk is as follows:

Γk =
∫

x

[
Tr (∂i M†∂i M) + m2

k Tr (M† M) + g1,k

(
Tr (M† M)

)2

+g2,k Tr (M† M− Tr (M† M))2 − (h0s0 + h8s8)

+ak(det M + det M†) + a1,k Tr (M† M) · (det M + det M†)
]
. (4)

This is sometimes called the Local Potential Approximation (LPA), where momentum
dependence is only introduced into the two point function, via the standard kinetic term
in (4). Note that the LPA can be considered as the leading order of the derivative expansion,
and there is substantial evidence that these kind of series do converge [23]. As seen in (4),
instead of working with a completely general field-dependent potential, we are employing
perturbation theory in terms of the small parameter 1/Λ. That is, by gradually including
higher dimensional operators, since their coefficients scale with inverse powers of the scale,
the ansatz (4) in the UV can be thought of as a power series in 1/Λ. We choose (4) to
be compatible with (1), but all couplings come with k–dependence. The only exceptions
are h0 and h8, as one point couplings do not flow with respect to the scale. Furthermore,
notice the new term proportional to a1,k, which is key for our purposes to determine the

anomaly behavior at k = 0. First, our task is to calculate Γ(2)
k from (4), then plug it into (3),

and identify the individual differential equations for m2
k , g1,k, g2,k, ak, and a1,k. Finally,

these equations need to be integrated from k = 1 GeV to k = 0 to obtain Γ ≡ Γk=0. In the
ansatz (4), obviously the actual strength of the anomaly is not described by the parameter a,
but rather a + a1 · Tr (M† M)|min, where we need to evaluate the chiral condensates in the
minimum point of the effective action. Therefore, what we are basically after is the relative
sign of a1 to a at k = 0 to decide whether the anomaly strengthens or weakens as the chiral
condensate gradually evaporates.

We finally note that there are various choices for the regulator function, Rk. In this
paper we will stick to Rk(q, p) ≡ Rk(q)(2π)3δ(q + p) = (k2 − q2)Θ(k2 − q2)(2π)4δ(q + p),
where Θ(x) is the step function. This variant has been shown to be the optimal choice for
the LPA [24], maximizing the radius of convergence of an amplitude expansion.

3. Calculation of the Effective Action

The first step is to calculate Γ(2)
k . In principle it is a 18× 18 matrix in the sa − πa

space, and there is not much hope that one can invert such a complicated expression
analytically. Luckily, it is not necessary at all, as in (4) we kept the field dependence up to
the order of O(M5). By working with a restricted background, Γ(2)

k is easily invertable and
by expanding the rhs of (3) in terms of the field variables it still allows for identifying each
operator that are being kept in (4).
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A convenient choice is to work with M = s0T0 + s8T8. In such a background, the
operators that need to be identified are as follows:

ρ := Tr (M† M) =
1
2
(s2

0 + s2
8), (5a)

τ := Tr (M† M− Tr (M† M))2 =
1

24
s2

8(8s2
0 − 4

√
2s0s8 + s2

8), (5b)

∆ := det M + det M† =
1

36
(2
√

6s3
0 − 3

√
6s0s2

8 − 2
√

3s3
8). (5c)

The Γ(2)
k matrix elements in the scalar sector read

Γ(2)
k,s0s0

= q2 + m2
k + g1,k(3s2

0 + s2
8) +

2
3

g2,ks2
8

+

√
2
3

aks0 + ak,1

(5
3

√
2
3

s3
0 −

1
2
√

6
s0s2

8 −
1

6
√

3
s3

8

)
, (6)

Γ(2)
k,s0s8

= 2g1,ks0s8 + g2,k

(4
3

s0s8 −
1√
2

s2
8

)
− ak√

6
s8 − a1,k

( 1
2
√

6
s2

0s8 +
1

2
√

3
s0s2

8 +
1√
6

s3
8

)
, (7)

Γ(2)
k,s8s8

= q2 + m2
k + g1,k(s2

0 + 3s2
8) + g2,k

(2
3

s2
0 −
√

2s0s8 +
1
2

s2
8

)
−ak

( 1√
6

s0 +
1√
3

s8

)
−a1,k

( 1
6
√

6
s3

0 +
1

2
√

3
s2

0s8 +

√
3
2

s0s2
8 +

5
3
√

3
s3

8

)
, (8)

Γ(2)
k,s1s1

= Γ(2)
k,s2s2

= Γ(2)
k,s3s3

= q2 + m2
k + g1,k(s2

0 + s2
8) + g2,k

(2
3

s2
0 +
√

2s0s8 +
1
6

s2
8

)
+ak

(
− 1√

6
s0 +

1√
3

s8

)
+a1,k

(
− 1

6
√

6
s3

0 +
1

2
√

3
s2

0s8 −
1√
6

s0s2
8 +

1
3
√

3
s3

8

)
, (9)

Γ(2)
k,s4s4

= Γ(2)
k,s5s5

= Γ(2)
k,s6s6

= Γ(2)
k,s7s7

=

q2 + m2
k + g1,k(s2

0 + s2
8) + g2,k

(2
3

s2
0 −

1√
2

s0s8 +
1
6

s2
8

)
−ak

( 1√
6

s0 +
1

2
√

3
s8

)
−a1,k

( 1
6
√

6
s3

0 +
1

4
√

3
s2

0s8 +
1√
6

s0s2
8 +

5
12
√

3
s3

8

)
, (10)

while the pseudoscalar components are

Γ(2)
k,π0π0

= q2 + m2
k + g1,k(s2

0 + s2
8)−

√
2
3

aks0 − a1,k

(1
3

√
2
3

s3
0 +

1
2

√
3
2

s0s2
8 +

1
6
√

3
s3

8

)
, (11)

Γ(2)
k,π0π8

= g2,k

(2
3

s0s8 −
1

3
√

2
s2

8

)
+

ak√
6

s8 + a1,k

( 1
2
√

6
s2

0s8 +
1

2
√

6
s3

8

)
, (12)

Γ(2)
k,π8π8

= q2 + m2
k + g1,k(s2

0 + s2
8) + g2,k

(
−
√

2
3

s0s8 +
1
6

s2
8

)
+ ak

( 1√
6

s0 +
1√
3

s8

)
+a1,k

(5
6

√
1
6

s3
0 +

1
2
√

3
s2

0s8 +
1

3
√

3
s3

8

)
, (13)



Symmetry 2021, 13, 488 5 of 10

Γ(2)
k,π1π1

= Γ(2)
k,π2π2

= Γ(2)
k,π3π3

=

q2 + m2
k + g1,k(s2

0 + s2
8) + g2,k

(√2
3

s0s8 −
1
6

s2
8

)
+ak

( 1√
6

s0 −
1√
3

s8

)
+ a1,k

(5
6

√
1
6

s3
0 −

1
2
√

3
s2

0s8 −
2

3
√

3
s3

8

)
, (14)

Γ(2)
k,π4π4

= Γ(2)
k,π5π5

= Γ(2)
k,π6π6

= Γ(2)
k,π7π7

=

q2 + m2
k + g1,k(s2

0 + s2
8) + g2,k

(
− 1

3
√

2
s0s8 +

5
6

s2
8

)
+ak

( 1√
6

s0 +
1

2
√

3
s8

)
+ a1,k

(5
6

√
1
6

s3
0 +

1
4
√

3
s2

0s8 +
1

12
√

3
s3

8

)
. (15)

Using that ∂kRk(q) = 2kΘ(k2 − q2) and Γ(2)
k (q) + Rk(q) = Γ(2)

k (k) for q < k, from (3)
we get

∂kΓk =
∫

x

k5

32π2 Tr
(
Γ(2)

k (k)
)−1. (16)

Plugging in the matrix elements calculated in the M = s0T0 + s8T8 background, we
can expand the rhs of (16) in terms of s0 and s8. After this step, using (5) we identify the ρ,
τ and ∆ operators as

∂kΓk =
∫

x

[
∂km2

k · ρ + ∂kg1,k · ρ2 + ∂kg2,k · τ + ∂kak · ∆ + ∂ka1,k · ρ∆ + ...
]
, (17)

where

∂km2
k = − k5

32π2
8(15g1,k + 4g2,k)

3(k2 + m2
k)

2
, ∂kg1,k =

k5

32π2

8(117g2
1,k + 48g1,kg2,k + 16g2

2,k)

9(k2 + m2
k)

3
,

∂kg2,k =
k5

32π2

48g1,kg2,k + 32g2
2,k

(k2 + m2
k)

3
, ∂kak =

k5

32π2

(8ak(3g1,k − 4g2,k)

(k2 + m2
k)

3
−

24a1,k

(k2 + m2
k)

2

)
,

∂ka1,k =
k5

32π2

(32ak(−9g2
1,k + 6g1,kg2,k + 2g2

2,k)

(k2 + m2
k)

4
+

16a1,k(33g1,k − 2g2,k)

3(k2 + m2
k)

3

)
. (18)

Note that we treated the anomaly as perturbation and dropped every term beyond
O(ak, a1,k). Introducing scale independent variables, from (18) one easily reproduces the
well known 1-loop β functions of the couplings in the linear sigma model [25]. Our task
now is to solve Equation (18) starting from k = Λ ≡ 1 GeV to k = 0.

Solving (18) all the way down to k = 0 would require m2
k > 0 throughout the

renormalization group flow. Since we wish to obtain phenomenologically reasonable
results, the potential has to show spontaneous symmetry breaking. That is to say, when
all fluctuations are integrated out, m2

k=0 has to be negative. However, then there exists a
critical scale k crit > 0, for which all denominators in (18) blow up and the flow equations
lose their meaning. The way out is to realize is that one actually has the choice to determine
the flow equations in the minimum point of the effective action, Γk|s0,min,s8,min , rather than
evaluating it in a vanishing background. That is, all renormalization group flows are to be
extracted at s0,min, s8,min. This way one always has a positive definite denominator and the
flow equation is valid for any k.

One, therefore, repeats the calculations starting from (16), but this time expands only
in terms of s8 so that the ρ dependence of the parameters can be traced via s0. A long but
straightforward calculation leads once again to the possibility of identifying the invariants
appear in (17), whose coefficients now read as
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∂km2
k = − k5

32π2

[
18g1,k

(k2 + m2
k + 2g1,kρ0)2

+
6g1,k

(k2 + m2
k + 6g1,kρ0)2

+
16(3g1,k + 2g2,k)

3(k2 + m2
k + 2g1,kρ0 + 4g2,kρ0/3)2

+
72g2

1,kρ0

(k2 + m2
k + 2g1,kρ0)3

+
72g2

1,kρ0

(k2 + m2
k + 6g1,kρ0)3

+
64(3g1,k + 2g2,k)

2ρ0

9(k2 + m2
k + 2g1,kρ0 + 4g2,kρ0/3)3

]
,

∂kg1,k =
k5

32π2

[
36g2

1,k

(k2 + m2
k + 2g1,kρ0)3

+
36g2

1,k

(k2 + m2
k + 6g1,kρ0)3

+
32(3g1,k + 2g2,k)

2

9(k2 + m2
k + 2g1,kρ0 + 4g2,kρ0/3)3

]
,

∂kg2,k =
k5

32π2

[
6g2

2,k

(k2 + m2
k + 2g1,kρ0)3

−
9g2,k/2

ρ0(k2 + m2
k + 2g1,kρ0)2

+
3g2,k(6g1,k + g2,k)

ρ0(g2,k − 3g1,k)(k2 + m2
k + 6g1,kρ0)2

+
30g2

2,k

(k2 + m2
k + 2g1,kρ0 + 4g2,kρ0/3)3

+
3g2,k(g2,k − 21g1,k)/2

ρ0(g2,k − 3g1,k)(k2 + m2
k + 2g1,kρ0 + 4g2,kρ0/3)2

]
,

∂kak =
k5

32π2

[
−

36g1,k(ak + 2a1,kρ0)

(k2 + m2
k + 2g1,kρ0)3

−
18(ak + a1,kρ0)

ρ0(k2 + m2
k + 2g1,kρ0)2

−
12g1,k(3ak + 10a1,kρ0)

(k2 + m2
k + 6g1,kρ0)3

−
6ak + 10a1,kρ0

ρ0(k2 + m2
k + 6g1,kρ0)2

+
16(3g1,k + 2g2,k)(3ak + a1,kρ0)

3(k2 + m2
k + 2g1,kρ0 + 4g2,kρ0/3)3

+
4(6ak + a1,kρ0)

ρ0(k2 + m2
k + 2g1,kρ0 + 4g2,kρ0/3)2

]
,

∂ka1,k =
k5

32π2

[
36g1,k(ak + 2a1,kρ0)

ρ0(k2 + m2
k + 2g1,kρ0)3

+
9ak

ρ2
0(k

2 + m2
k + 2g1,kρ0)2

+
12g1,k(3ak + 10a1,kρ0)

ρ0(k2 + m2
k + 6g1,kρ0)3

−
16(3g1,k + 2g2,k)(3ak + a1,kρ0)

3ρ0(k2 + m2
k + 2g1,kρ0 + 4g2,kρ0/3)3

− 12ak

ρ2
0(k

2 + m2
k + 2g1,kρ0 + 4g2,kρ0/3)2

]
, (19)

where we have denoted the expansion point by ρ0, which is to be set to the value of ρ
corresponding to the minimum point of the effective action [note that ρ = Tr (M† M)/2].
As a side remark, one easily checks that choosing ρ0 = 0 (19) would lead back to the earlier
results, (18). Our task is to integrate the system of equations (19) from k = Λ ≡ 1 GeV
down to k = 0 with the boundary conditions m2

Λ = m2, g1,Λ = g1, g2,Λ = g2, aΛ = a,
a1,Λ = 0, where m2, g1, g2, a are such constants that reproduce as accurately as possible
the mesonic spectrum in the infrared. Here we used that at the UV scale the coefficient
of the operator ρ∆ can be set to zero due to perturbative renormalizability. This might
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be questionable if the UV scale was not high enough, as being a dimension 5 operator,
dimensional analyis suggests that its coefficient, a1, is of O(1/Λ). Obviously, if the linear
sigma model was not an effective theory, and Λ could be sent to infinity, the term in
question would not be present. But, in principle the a1 coupling could be included already
in the UV action. Investigation of such a scenario is beyond the scope of this paper.

Before solving the coupled system of equations (19), we need to fix the explicit sym-
metry breaking terms, i.e., the values for h0, h8. Instead of h0 and h8, we will work in

the nonstrange–strange basis, i.e., h ns =
√

2
3 h0 +

1√
3

h8, hs =
1√
3

h0 −
√

2
3 h8. The partially

conserved axialvector current (PCAC) relations give

m2
π fπ = h ns , m2

K fK =
h ns

2
+

hs√
2

, (20)

where m2
π = δ2Γ/δπ2

i (q = 0) [i = 1, 2, 3] and m2
K = δ2Γ/δπ2

i (q = 0) [j = 4, 5, 6, 7]. Using
physical pion and kaon masses, ∼ 140 MeV , ∼ 494 MeV , respectively, and decay constants,
fπ = 93 MeV , fK = 113 MeV , one gets

h ns = m2
π fπ ≈ (122 MeV )3, h s =

1√
2
(2m2

K fK −m2
π fπ) ≈ (335 MeV )3, (21)

which is equivalent to

h0 =

√
2
3
(
m2

π fπ/2 + m2
K fK) ≈ (285 MeV )3, h8 =

2√
3

(
m2

π fπ −m2
K fK) ≈ −(310 MeV )3. (22)

Now we use that Ward identities of chiral symmetry lead to

δΓ
δs ns

(q = 0) = m2
πs ns − h ns ,

δΓ
δs s

(q = 0) =
m2

K −m2
π√

2
s ns + m2

Ks s − h s . (23)

Combined with (21), this shows that no matter how we choose the remaining parame-
ters m2, g1, g2, a, in the minimum point of the effective action

s ns ,min = fπ , s s ,min =
√

2( fK − fπ/2). (24)

That leads to ρ0 = (s2
ns ,min + s2

s ,min)/2, and thus we are ready to fix the aforementioned
parameters. Solving (19), the values {m2, g1, g2, a} ≈ {0.6835 GeV 2, 29.7, 91.5,−4.4 GeV }
lead to the masses of the pion, kaon, η, η′ as mπ ≈ 133 MeV , mK ≈ 494 MeV , mη ≈ 537 MeV ,
mη′ ≈ 957 MeV , respectively. Note that the strength of the axial anomaly, a, is negative, and
it remains so throughout the renormalization group flow. However, after solving (19), one
concludes that at k = 0 the coefficient a1,k=0 is positive. That is to say, since the actual strength
of the determinant term is A := ak=0 + a1,k=0 · ρ0, when the chiral condensate evaporates,
the absolute value of A becomes larger. This shows that at low temperatures T, where the T
dependence of the anomaly parameters is negligible, the anomaly is actually strengthening as
chiral symmetry gradually restores. That is one of the main results of the paper.

In what follows, we provide a rough estimate how the anomaly behaves at the zero
temperature nuclear liquid–gas transition.

4. Anomaly Strengthening at The Nuclear Liquid–Gas Transition

In this section we apply our results to the zero temperature nuclear liquid–gas tran-
sition. We assume that the nucleon field couples to the mesons via Yukawa interaction,
L int = gψ̄M5ψ, ψT = (p, n), M5 = ∑a= ns ,1,2,3(sa + iπaγ5)Ta, where the nonstrange gen-
erator is T ns =

√
2/3T0 + 1/

√
3T8, while γ5 is the fifth Dirac matrix. In principle, one

would also need to include the dynamics of an ω vector particle into the system [26,27]
that models the repulsive interaction between nucleons, but as we will see in a moment,
for our purposes it plays no role.
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First, we exploit some of the zero temperature properties of nuclear matter. Note that,
in the current model, the nucleon mass entirely originates from the spontaneous breaking
of chiral symmetry,

mN(s ns ) = gYs ns /2, (25)

and since mN( fπ) ≈ 939 MeV in the vacuum, we arrive at gY ≈ 20.19. Normal nuclear
density, nN ≈ 0.17 fm−3 ≈ (109.131 MeV )3 leads to the Fermi momentum, pF, of the
nucleons, since at the mean field level, for T = 0 we have

nN = 4
∫

p
nF

(√
p2 + m2

N − pF

)∣∣∣
T=0
≡ 2

3π2 p3
F, (26)

therefore, pF ≈ 267.9 MeV ≈ 1.36 fm−1. This leads to the nonstrange condensate in the
liquid phase, s ns, liq , because the Landau mass, which is defined as

ML =
√

p2
F + m2

N(s ns, liq ) (27)

is known to be ML ≈ 0.8mN( fπ) ≈ 751.2 MeV , and thus s ns,liq ≈ 69.52 MeV [26,27].
This shows that as we increase the chemical potential, the nonstrange chiral condensate,
s ns , jumps: fπ → s ns, liq . This will definitely be accompanied by a jump in the strange
condensate, but it has been shown to be significantly smaller [14]. Neglecting the change
in s s , the ρ chiral invariant jumps as ( f 2

π + s2
s,min)/2→ (s2

ns, liq + s2
s ,min)/2. As discussed

in the previous section, the anomaly strength is A = ak=0 + a1,k=0 · ρ, which also jumps
accordingly, and the change in A becomes

∆A = a1,k=0 · ∆ρ, (28)

where ∆ρ = (s2
ns , liq − f 2

π)/2. Solving (19) one gets ak=0 ≈ −9.05 GeV and a1,k=0 ≈
494.5 GeV−1, therefore, the relative change in the anomaly at the liquid–gas transition is

∆A
A

=
a1,k=0 · ∆ρ

ak=0 + a1,k=0 · ρ0
≈ 0.2 = 20%, (29)

which is in the ballpark of the result of [14]. One can now check how robust this result is
with respect to changing the cutoff Λ. A thorough investigation reveals that in a cutoff
interval of 0.8–1.5 GeV , while the mass spectrum can be maintained within a few percent
error after reparametrization, the ∆A/A ratio is less stable. One finds that the latter is a
monotonically decreasing function of the cutoff and varies roughly between 15–40% in the
above interval. Results show that when going below 1 GeV the cutoff dependence gets
stronger, which is understandable, since non-renormalizable operators are absent at the
UV scale. That is, if the latter is chosen to be too small, the model cannot provide robust
results (more operators would be needed). Going beyond 1.5–2 GeV , in turn, would be
physically inappropriate as at those scales quark degrees of freedom would definitely play
a crucial role. From these findings it is safe to say is that the relative change of the anomaly
strength is of O(10%) at the transition point.

At this point, we once again wish to emphasize that we have neglected the drop in
the strange condensate, and also, the present analysis is based on perturbation theory. In
principle higher order operators that break the UA(1) subgroup should also be resummed,
e.g., terms such as ∼

(
Tr (M† M)

)n
(det M + det M†) could be of huge importance. The

lesson we wish to point out here is that the present, rather simple perturbative calculation
can also capture the phenomenon of strengthening anomaly as the chiral condensate
(partially) evaporates.
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5. Conclusions

In this paper, we investigated how the UA(1) anomaly behaves as a function of the
chiral condensate. We worked with the three-flavor linear sigma model, and calculated
the leading correction in a 1/Λ expansion to the conventional anomaly term caused by
quantum fluctuations. We have found that the coefficient of the aforementioned operator,
∼ Tr (M† M) · (det M + det M†), causes the actual strength of the anomaly to become
larger once the chiral condensate evaporates. For the sake of an example, we demonstrated
that at the zero temperature nuclear liquid–gas transition, where (on top of a jump in the
nuclear density) the chiral condensate partially restores, the actual strength of the anomaly
increases. This could also happen toward the full restoration of chiral symmetry, where
quark dynamics also play a significant role. Note that our findings are based solely on
calculating mesonic fluctuations, and no instanton effects have been taken into account.

The linear sigma model, being an effective field theory, cannot accommodate in-
stantons as the fundamental model of QCD. Still, there are at least two directions worth
exploring in the effective model framework. Recently it has been shown [28] that 3Q-
point interactions are generated by instantons with Q topological charge, which can be
embedded into the linear sigma model via ∼ [(det M†)Q + (det M)Q] operators. Another
important direction could be to assign environment dependence even to the bare anomaly
coefficient(s) from QCD data and see how these compete against thermal effects caused by
mesonic fluctuations.

Finally, we wish to point out that our study calls for an extension via a non-perturbative
treatment, where fluctuations are taken into account beyond the O(a) order, and the coeffi-
cient function of the determinant term is obtained in a functional fashion, rather than at
the lowest order of its Taylor series. The aforementioned directions are under progress and
will be reported in a separate study.
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