
symmetryS S

Article

Projected-Reflected Subgradient-Extragradient Method and Its
Real-World Applications

Aviv Gibali 1,2,*,† , Olaniyi S. Iyiola 3,† , Lanre Akinyemi 4,† and Yekini Shehu 5,†

����������
�������

Citation: Gibali, A.; Iyiola, O.S.;

Akinyemi, L.; Shehu, Y.

Projected-Reflected

Subgradient-Extragradient Method

and Its Real-World Applications.

Symmetry 2021, 13, 489.

https://doi.org10.3390/sym13030489

Academic Editor: Palle E. T.

Jorgensen

Received: 5 February 2021

Accepted: 11 March 2021

Published: 16 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, ORT Braude College, Karmiel 2161002, Israel
2 The Center for Mathematics and Scientific Computation, U. Haifa, Mt. Carmel, Haifa 3498838, Israel
3 Department of Mathematics and Physical Sciences, California University of Pennsylvania,

California, PA 15419, USA; iyiola@calu.edu
4 Department of Mathematics, Prairie View A&M University, Prairie View, TX 77446, USA;

laakinyemi@pvamu.edu
5 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China; yekini.shehu@unn.edu.ng
* Correspondence: avivg@braude.ac.il
† These authors contributed equally to this work.

Abstract: Our main focus in this work is the classical variational inequality problem with Lipschitz
continuous and pseudo-monotone mapping in real Hilbert spaces. An adaptive reflected subgradient-
extragradient method is presented along with its weak convergence analysis. The novelty of the
proposed method lies in the fact that only one projection onto the feasible set in each iteration is
required, and there is no need to know/approximate the Lipschitz constant of the cost function a
priori. To illustrate and emphasize the potential applicability of the new scheme, several numerical ex-
periments and comparisons in tomography reconstruction, Nash–Cournot oligopolistic equilibrium,
and more are presented.

Keywords: subgradient-extragradient; reflected step; variational inequality; pseudo-monotone
mapping; Lipschitz mapping
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1. Introduction

In this paper, we focus on the classical variational inequality (VI) problem, as can be
found in Fichera [1,2], Stampacchia [3], and Kinderlehrer and Stampacchia [4], defined in
real Hilbert space H. Given a nonempty, closed, and convex set of C ⊆ H and a continuous
mapping A : H → H, the variational inequality (VI) problem consists of finding a point
x∗ ∈ C such that:

〈Ax∗, x− x∗〉 ≥ 0 ∀x ∈ C. (1)

VI(C, A) is used to denote the solution set of VIP(1) for simplicity. A wide range of
mathematical and applied sciences rely heavily on variational inequalities in both theory
and algorithms. Due to the importance of the variational inequality problem and many of
its applications in different fields, several notable researchers have extensively studied this
class of problems in the literature, and many more new ideas are emerging in connection
with the problems. In the case of finite-dimensional setting, the current state-of-the-art
results can be found in [5–7] including the substantial references therein.

Many algorithms (iterative methods) for solving the variational inequality (1) have
been developed and well studied; see [5–15] and the references therein. One of the famous
methods is the so-called extragradient method (EGM), which was developed by Korpele-
vich [16] (also by Antipin [17] independently) in the finite-dimensional Euclidean space
for a monotone and Lipschitz continuous operator. The extragradient method has been
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modified in different ways and later was extended to infinite-dimensional spaces. Many of
these extensions were well studied in [18–23] and the references therein.

One feature that renders the Korpelevich algorithm less acceptable has to do with the
fact that two projections onto the feasible set are required in every iteration. For this reason,
there is a need to solve a minimum distance problem twice every iteration. Therefore, the
efficiency of this method (Korpelevich algorithm) is affected, which limits its application as
well.

A remedy to the second drawback was presented in Censor et al. [18–20]. The authors
introduced the subgradient-extragradient method (SEGM). Given x1 ∈ H,

yn = PC(xn − λA(xn)),
Tn := {w ∈ H : 〈xn − λA(xn)− yn, w− yn〉 ≤ 0},
xn+1 = PTn(xn − λA(yn))

(2)

In this algorithm, A is an L-Lipschitz-continuous and monotone mapping and 0 < λ <
1
L

. One of the novelties in the proposed SEGM (2) is the replacement of the second
projection onto a feasible set with a projection onto a half-space. Recently, weak and strong
convergence results of SEGM (2) have been obtained in the literature; see [24,25] and the
references therein.

Thong and Hieu in [26] came up with inertial subgradient-extragradient method in
the following algorithm. Given x0, x1 ∈ H,

wn = xn + θn(xn − xn−1),
yn = PC(wn − λA(wn)),
Tn := {w ∈ H : 〈wn − λA(wn)− yn, w− yn〉 ≤ 0},
xn+1 = PTn(wn − λA(yn)).

(3)

The authors proved the weak convergence of the sequence {xn} generated by (3) to a
solution of variational inequality (VI), Equation (1), for the case where A is monotone and
an L-Lipschitz-continuous mapping. For some:

0 < δ <
1
2
− 2θ − 1

2
θ2,

the parameter λ is chosen to satisfy:

0 < λL ≤
1
2 − 2θ − 1

2 θ2 − δ
1
2 − θ + 1

2 θ2
.

The sequence {θn} is non-decreasing with 0 ≤ θn ≤ θ <
√

5− 2.
Malitsky in [21] introduced the following projected reflected gradient method, which

solves VI (1) when A is Lipschitz continuous and monotone: choose x1, x0 ∈ C:{
wn = 2xn − xn−1,
xn+1 = PC(xn − λAwn),

(4)

where λ ∈ (0,
√

2−1
L ), and we obtain weak convergence results in real Hilbert spaces.

Recently, Bo̧t et al. [27] introduced Tseng’s forward-backward-forward algorithm with
relaxation parameters in Algorithm 1 to solve VI (1).

In [28], the following adaptive golden ratio method in Algorithm 2 for solving VI (1)
was proposed.



Symmetry 2021, 13, 489 3 of 38

Algorithm 1: Tseng’s forward-backward-forward algorithm with relaxation parameters.
Initialization: Choose ρn ∈ (0, 1] with the given parameters λ0 > 0 and 0 < µ < 1. Let x1 ∈ H be arbitrary.
Iterative steps: xn+1 is calculated, with the current iterate xn given as follows:
Step 1. Compute:

yn = PC(xn − λn Axn).

If xn = yn or Ayn = 0, then stop, and yn is a solution of VI(C, A). Otherwise:
Step 2. Compute:

xn+1 = (1− ρn)xn + ρn(yn + λn(Axn − Ayn)),

Update:

λn+1 =

min{ µ‖xn − yn‖
‖Axn − Ayn‖

, λn} i f Axn − Ayn 6= 0,

λn otherwise.
(5)

Set n := n + 1, and go to Step 1.

Algorithm 2: Adaptive golden ratio method .

Initialization: Choose x0, x1 ∈ H, λ0 > 0, φ ∈ (0,
√

5+1
2 ], λ̄ > 0. Set x̄0 = x1, θ0 = 1, ρ = 1

φ + 1
φ2 .

Iterative steps: xn+1 is calculated, with the current iterate xn given as follows:
Step 1. Compute:

λn = min
{

ρλn−1,
φθn−1

4λn−1

‖xn − xn−1‖2

‖Axn − Axn−1‖2 , λ̄
}

.

Step 2. Compute:

x̄n =
(φ− 1)xn + x̄n−1

φ
,

and:
xn+1 = PC(x̄n − λn Axn). (6)

Update:

θn =
λn

λn−1
φ (7)

Set n := n + 1, and go to Step 1.

Motivated by the recent works in [18–21,26–28], our aim in this paper is to introduce a
reflected subgradient-extragradient method that solves variational inequalities and obtain
weak convergence in the case where the cost function is Lipschitz continuous and a pseudo-
monotone operator in real Hilbert spaces. This pseudo-monotone operator is in the sense
of Karamardian [29]. Our method uses self-adaptive step sizes, and the convergence of the
proposed algorithm is proven without any assumption of prior knowledge of the Lipschitz
constant of the cost function.

The outline of the paper is as follows. We start with recalling some basic definitions
and results in Section 2. Our algorithm and weak convergence analysis are presented in
Section 3. In Section 4, we give some numerical experiments to demonstrate the perfor-
mances of our method compared with other related algorithms.

2. Preliminaries

In this section, we provide necessary definitions and results needed in the sequel.

Definition 1. An operator T : H → H is said to be L-Lipschitz continuous with L > 0 if
the following inequality is satisfied:

‖Tx− Ty‖ ≤ L‖x− y‖ ∀x, y ∈ H.



Symmetry 2021, 13, 489 4 of 38

Definition 2. An operator T : H → H is said to be monotone if the following inequality is
satisfied:

〈Tx− Ty, x− y〉 ≥ 0 ∀x, y ∈ H.

Definition 3. An operator T : H → H is said to be pseudo-monotone if the following inequality
implies the other:

〈Tx, y− x〉 ≥ 0 =⇒ 〈Ty, y− x〉 ≥ 0 ∀x, y ∈ H.

Definition 4. An operator T : H → H is said to be sequentially weakly continuous if for
each sequence {xn}, we have that xn converges weakly to x, which implies that {Txn} converges
weakly to Tx.

Recall that for any given point x chosen in H, PC(x) denotes the unique nearest point
in C. This operator has been shown to be nonexpansive, that is,

‖x− PC(x)‖ ≤ ‖x− y‖ ∀y ∈ C.

The operator PC is known as the metric projection of H onto C.

Lemma 1 ([30]). Given x ∈ H and z ∈ C with C a nonempty, closed, and convex subset of a real
Hilbert space H, then:

z = PC(x)⇐⇒ 〈x− z, z− y〉 ≥ 0 ∀y ∈ C.

Lemma 2 ([30,31]). Given x ∈ H, a real Hilbert space and letting C be a closed and convex subset
of H, then the following inequalities are true:

1. ‖PCx− PC(y)‖2 ≤ 〈PCx− PC(y), x− y〉 ∀y ∈ H

2. ‖PC(x)− y‖2 ≤ ‖x− y‖2 − ‖x− PC(x)‖2 ∀y ∈ C.

Lemma 3 ([32]). Given x ∈ H and v ∈ H, v 6= 0, and letting T = {z ∈ H : 〈v, z− x〉 ≤ 0},
then, for all u ∈ H, the projection PT(u) is defined by:

PT(u) = u−max
{

0,
〈v, u− x〉
||v||2

}
v.

In particular, if u /∈ T, then:

PT(u) = u− 〈v, u− x〉
||v||2 v.

The explicit formula provided in Lemma 3 is very important in computing the projec-
tion of any point onto a half-space.

Lemma 4 ([33], Lemma 2.1). Let A : C → H be continuous and pseudo-monotone where C is a
nonempty, closed, and convex subset of a real Hilbert space H. Then, x∗ is a solution of VI(C, A) if
and only if:

〈Ax, x− x∗〉 ≥ 0 ∀x ∈ C.

Lemma 5 ([34]). Let {xn} be a sequence in H and C a nonempty subset of H with the following
conditions satisfied:

(i) every sequential weak cluster point of {xn} is in C;

(ii) lim
n→∞

‖xn − x‖ exists for every x ∈ C.

Then, the sequence {xn} converges weakly to a point in C.
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The following lemmas were given in [35].

Lemma 6. Let h be a real-valued function on a real Hilbert space H, and define K := {x ∈ H :
h(x) ≤ 0}. If h is Lipschitz continuous on H with modulus θ > 0 and K is nonempty, then:

dist(x, K) ≥ 1
θ

max{0, h(x)} ∀x ∈ H,

where dist(x, K) is the distance function from x to K.

Lemma 7. Let H be a real Hilbert space. The following statements are satisfied.

(i) For all x, y ∈ H, ‖x + y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2;
(ii) For all x, y ∈ H, ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉;
(iii) For all x, y ∈ H, ‖x + y‖2 = 2‖x‖2 + 2‖y‖2 − ‖x− y‖2.

Lemma 8 (Maingé [36]). Let {δn}, {ϕn}, and {θn} be sequences defined in [0,+∞) satisfying
the following:

ϕn+1 ≤ ϕn + θn(ϕn − ϕn−1) + δn, ∀n ≥ 1,
+∞

∑
n=1

δn < +∞,

and there exists θ, a real number, with 0 ≤ θn ≤ θ < 1 for all n ∈ N. Then, the following hold:

(i)
+∞

∑
n=1

[ϕn − ϕn−1]+ < +∞, where [t]+ := max{t, 0};

(ii) there exists ϕ∗ ∈ [0,+∞) such that lim
n→∞

ϕn = ϕ∗.

In the work that follows, xn → x as n → ∞ denotes the strong convergence of
{xn}∞

n=1 to a point x, and xn ⇀ x as n→ ∞ denotes the weak convergence of {xn}∞
n=1 to a

point x.

3. Main Results

We first provide the following conditions upon which the convergence analysis of our
method is based and then present our method in Algorithm 3.

Condition 1. The feasible set C is a nonempty, closed, and convex subset of H.

Condition 2. The VI (1) associated operator A : H → H is pseudo-monotone, sequentially weakly
and Lipschitz continuous on a real Hilbert space H.

Condition 3. The solution set of VI (1) is nonempty, that is VI(C, A) 6= ∅.

In addition, we also make the following parameter choices. 0 < α ≤ αn ≤ αn+1 <
1

2+δ := ε, δ > 0.

Remark 1. We point out here that the proposed Algorithm 3 is different from the method (4) in
that the projection step in Algorithm 3 is PC(wn − λn Awn), while the projection step in (4) is
PC(xn − λAwn). Furthermore, A is assumed to be pseudo-monotone in our Algorithm 3, while A
is assumed to be monotone in (4).
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Algorithm 3: Adaptive projected reflected subgradient extragradient method.
Initialization: Given λ0 > 0, µ ∈ (0, 1), let x0, x1 ∈ H be arbitrary
Iterative steps: Given the current iterate xn, calculate xn+1 as follows:
Step 1. Compute: {

wn = 2xn − xn−1
yn = PC(wn − λn Awn).

If xn = wn = yn = xn+1, then stop. Otherwise:
Step 2. Compute:

xn+1 = (1− αn)xn + αnPTn(wn),

where:
Tn := {x ∈ H : hn(x) ≤ 0}

and
hn(x) = 〈wn − yn − λn(Awn − Ayn), x− yn〉. (8)

Update:

λn+1 =

min
{ µ‖wn − yn‖
‖Awn − Ayn‖

, λn

}
i f Awn − Ayn 6= 0,

λn otherwise.
(9)

Set n := n + 1, and go to Step 1.

The first step towards the convergence proof of Algorithm 3 is to show that the
sequence {λn} generated by (9) is well defined. This is done using similar arguments as
in [25].

Lemma 9. The sequence {λn} generated by (9) is a nonincreasing sequence and:

lim
n→∞

λn = λ ≥ min
{

λ0,
µ

L

}
.

Proof. Clearly, by (9), {λn} is nonincreasing since λn+1 ≤ λn for all n ∈ N. Next, using the
fact that A is L-Lipschitz continuous, we have:

‖Awn − Ayn‖ ≤ L‖wn − yn‖.

Therefore, we obtain:

µ
‖wn − yn‖
‖Awn − Ayn‖

≥ µ

L
if Awn 6= Ayn,

which together with (9) implies that:

λn ≥ min
{

λ0,
µ

L

}
.

Therefore, the sequence {λn} is nonincreasing and lower bounded. Therefore, there
exists limn→∞ λn.

Lemma 10. Assume that Conditions 1–3 hold. Let x∗ be a solution of Problem (1) and the function
hn be defined by (8). Then, hn(x∗) ≤ 0, and there exists n0 ∈ N such that:

hn(wn) ≥
1− µ

2
‖wn − yn‖2 ∀n ≥ n0.

In particular, if wn 6= yn then hn(wn) > 0.
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Proof. Using Lemma 4 and the fact that x∗ denotes a solution of Problem (1), we obtain
the following:

〈Ayn, x∗ − yn〉 ≤ 0. (10)

It follows from (10) and yn = PC(wn − λn Awn) that:

hn(x∗) = 〈wn − yn − λn(Awn − Ayn), x∗ − yn〉
= 〈wn − yn − λn Awn, x∗ − yn〉+ λn〈Ayn, x∗ − yn〉
≤ 0.

Hence, the proof of the first claim of Lemma 10 is achieved. Next, we proceed to the proof
of the second claim. Clearly, from the definition of {λn}, the following inequality is true:

‖Awn − Ayn‖ ≤
µ

λn+1
‖wn − yn‖ ∀n. (11)

In fact, Inequality (11) is satisfied if Awn = Ayn. Otherwise, it implies from (9) that:

λn+1 = min{ µ‖wn − yn‖
‖Awn − Ayn‖

, λn} ≤
µ‖wn − yn‖
‖Awn − Ayn‖

.

Thus,
‖Awn − Ayn‖ ≤

µ

λn+1
‖wn − yn‖.

Hence, we can conclude from the above that Inequality (11) is true for Awn = Ayn and
Awn 6= Ayn.

Using (11), we obtain:

hn(wn) = 〈wn − yn − λn(Awn − Ayn), wn − yn〉
= ‖wn − yn‖2 − λn〈Awn − Ayn, wn − yn〉
≥ ‖wn − yn‖2 − λn‖Awn − Ayn‖‖wn − yn‖

≥ ‖wn − yn‖2 − µ
λn

λn+1
‖wn − yn‖2

= (1− µ
λn

λn+1
)‖wn − yn‖2.

Since limn→∞(1 − µ
λn

λn+1
) = 1 − µ >

1− µ

2
> 0, there exists n0 ∈ N such that

(1− µ
λn

λn+1
) >

1− µ

2
for all n ≥ n0. Therefore,

hn(wn) ≥
1− µ

2
‖wn − yn‖2.

Remark 2. Lemma 10 implies that wn /∈ Tn with n ≥ n0. Based on Lemma 3, we can write xn+1
in the form:

xn+1 = wn −
〈wn − yn − λn(Awn − Ayn), wn − yn〉
‖wn − yn − λn(Awn − Ayn)‖2 (wn − yn − λn(Awn − Ayn)) ∀n ≥ n0.

We present the following result using similar arguments in [14], Theorem 3.1.

Lemma 11. Let {wn} be a sequence generated by Algorithm 3, and assume that Conditions 1–3
hold. Let {wn} be a sequence generated by Algorithm 3. If there exists {wnk}, a subsequence of {wn}
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such that {wnk} converges weakly to z ∈ H and limk→∞ ‖wnk − ynk‖ = 0, then z ∈ VI(C, A).

Proof. From wnk ⇀ z, limk→∞ ‖wnk − ynk‖ = 0 and {yn} ⊂ C, we have z ∈ C.
Furthermore, we have:

ynk = PC(wnk − λnk Awnk ).

Thus,
〈wnk − λnk Awnk − ynk , x− ynk 〉 ≤ 0 for all x ∈ C.

Equivalently, we have:

1
λnk

〈wnk − ynk , x− ynk 〉 ≤ 〈Awnk , x− ynk 〉 for all x ∈ C.

From this, we obtain:

1
λnk

〈wnk − ynk , x− ynk 〉+ 〈Awnk , ynk − wnk 〉 ≤ 〈Awnk , x− wnk 〉 ∀ x ∈ C. (12)

We have that {wnk} is a bounded sequence and A is Lipschitz continuous on H, and

we get that {Awnk} is bounded and λn ≥ min{λ0,
µ

L
}. Taking k → ∞ in (12), since

‖wnk − ynk‖ → 0, we get:
lim inf

k→∞
〈Awnk , x− wnk 〉 ≥ 0. (13)

On the other hand, we have:

〈Aynk , x− ynk 〉 = 〈Aynk − Awnk , x− wnk 〉+ 〈Awnk , x− wnk 〉+ 〈Aynk , wnk − ynk 〉. (14)

Since limk→∞ ‖wnk − ynk‖ = 0 and A is Lipschitz continuous on H, we get:

lim
k→∞
‖Awnk − Aynk‖ = 0,

which, together with (13) and (14), implies that:

lim inf
k→∞

〈Aynk , x− ynk 〉 ≥ 0. (15)

Next, we show that z ∈ VI(C, A).
Next, a decreasing sequence, {εk}, of positive numbers, which tends to zero, is chosen.

We denote by Nk, for each k, the smallest positive integer satisfying the inequality:

〈Aynj , x− ynj〉+ εk ≥ 0 for all j ≥ Nk. (16)

It should be noted that the existence of Nk is guaranteed by (15). Clearly, the sequence
{Nk} is increasing from the fact that {εk} is decreasing. Furthermore, for each k, since
{yNk} ⊂ C, we can suppose AyNk 6= 0. We get:

〈AyNk , vNk 〉 = 1 for each k,

where:

vNk =
AyNk

‖AyNk‖2 .

We can infer from (16) that for each k:

〈AyNk , x + εkvNk − yNk 〉 ≥ 0.
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Using the pseudo-monotonicity of the operator A on H, we obtain:

〈A(x + εkvNk ), x + εkvNk − yNk 〉 ≥ 0.

Hence, we have:

〈Ax, x− yNk 〉 ≥ 〈Ax− A(x + εkvNk ), x + εkvNk − yNk 〉 − εk〈Ax, vNk 〉. (17)

Next, we show that:
lim
k→∞

εkvNk = 0.

Using the fact that wnk ⇀ z and limk→∞ ‖wnk − ynk‖ = 0, we get yNk ⇀ z as k → ∞.
Furthermore, for A sequentially weakly continuous on C, {Aynk} converges weakly to
Az. We can suppose Az 6= 0, since otherwise, z is a solution. Using the fact that the norm
mapping is sequentially weakly lower semicontinuous, we obtain:

0 < ‖Az‖ ≤ lim inf
k→∞

‖Aynk‖.

Since {yNk} ⊂ {ynk} and εk → 0 as k→ ∞, we get:

0 ≤ lim sup
k→∞

‖εkvNk‖ = lim sup
k→∞

(
εk

‖Aynk‖

)
≤

lim supk→∞ εk

lim infk→∞ ‖Aynk‖
= 0.

This in fact means limk→∞ εkvNk = 0.
Next, letting k→ ∞, then the right-hand side of (17) tends to zero by A being Lipschitz

continuous, {wNk}, {vNk} are bounded, and:

lim
k→∞

εkvNk = 0.

Hence, we obtain:
lim inf

k→∞
〈Ax, x− yNk 〉 ≥ 0.

Therefore, for all x ∈ C, we get:

〈Ax, x− z〉 = lim
k→∞
〈Ax, x− yNk 〉 = lim inf

k→∞
〈Ax, x− yNk 〉 ≥ 0.

Finally, using Lemma 4, we have z ∈ VI(C, A), which completes the proof.

Remark 3. Imposing the sequential weak continuity on A is not necessary when A is a monotone
function; see [24].

Theorem 4. Any sequence {xn} that is generated using Algorithm 3 converges weakly to an
element of VI(C, A) when Conditions 1–3 are satisfied.

Proof. Claim 1. {xn} is a bounded sequence. Define un := PTn(wn), and let p ∈ VI(C, A).
Then, we have:

‖un − p‖2 = ‖PTn wn − p‖2 ≤ ‖wn − p‖2 − ‖un − wn‖2. (18)

Furthermore,

‖un − p‖2 = ‖PTn wn − p‖2 ≤ ‖wn − p‖2 − ‖PTn wn − wn‖2

= ‖wn − p‖2 − dist2(wn, Tn). (19)

This implies that:
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‖xn+1 − p‖2 = ‖(1− αn)(xn − p) + αn(un − p)‖2

= (1− αn)‖xn − p‖2 + αn‖un − p‖2

−αn(1− αn)‖xn − un‖2, (20)

which in turn implies that:

‖xn+1 − p‖2 ≤ (1− αn)‖xn − p‖2 + αn‖wn − p‖2

−αn(1− αn)‖xn − un‖2. (21)

Note that:
xn+1 = (1− αn)xn + αnun

and this implies:

un − xn =
1

αn
(xn+1 − xn). (22)

Using (22) in (21), we obtain:

‖xn+1 − p‖2 ≤ (1− αn)‖xn − p‖2 + αn‖wn − p‖2

− (1− αn)

αn
‖xn+1 − xn‖2. (23)

Furthermore, by Lemma 7 (iii),

‖wn − p‖2 = ‖2xn − xn−1 − p‖2

= ‖(xn − p) + (xn − xn−1)‖2

= 2‖xn − p‖2 − ‖xn−1 − p‖2

+2‖xn − xn−1‖2. (24)

Using (24) in (23):

‖xn+1 − p‖2 ≤ (1− αn)‖xn − p‖2 + 2αn‖xn − p‖2

−αn‖xn−1 − p‖2 + 2αn‖xn − xn−1‖2

−1− αn

αn
‖xn+1 − xn‖2

= (1 + αn)‖xn − p‖2 − αn‖xn−1 − p‖2

+2αn‖xn − xn−1‖2

−1− αn

αn
‖xn+1 − xn‖2. (25)

Define:
Γn := ‖xn − p‖2 − αn‖xn−1 − p‖2 + 2αn‖xn − xn−1‖2, n ≥ 1.

Since αn ≤ αn+1, we have:

Γn+1 − Γn = ‖xn+1 − p‖2 − (1 + αn+1)‖xn − p‖2

+αn‖xn−1 − p‖2 + 2αn+1‖xn+1 − xn‖2

−2αn‖xn − xn−1‖2

≤ ‖xn+1 − p‖2 − (1 + αn)‖xn − p‖2 + αn‖xn−1 − p‖2

+2αn+1‖xn+1 − xn‖2

−2αn‖xn − xn−1‖2. (26)
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Now, using (25) in (26), one gets:

Γn+1 − Γn ≤ −1− αn

αn
‖xn+1 − xn‖2 + 2αn+1‖xn+1 − xn‖2

= −
(1− αn

αn
− 2αn+1

)
‖xn+1 − xn‖2. (27)

Observe that:

1− αn

αn
− 2αn+1 =

1
αn
− 1− 2αn+1

≥ 2 + δ− 1− 2
2 + δ

= δ +
δ

2 + δ
≥ δ. (28)

Using (28) in (27), we get:

Γn+1 − Γn ≤ −δ‖xn+1 − xn‖2. (29)

Hence, {Γn} is non-increasing. In a similar way, we obtain:

Γn = ‖xn − p‖2 − αn‖xn−1 − p‖2 + 2αn‖xn − xn−1‖2

≥ ‖xn − p‖2 − αn‖xn−1 − p‖2. (30)

Note that:
αn <

1
2 + δ

= ε < 1.

From (30), we have:

‖xn − p‖2 ≤ αn‖xn−1 − p‖2 + Γn

≤ ε‖xn−1 − p‖2 + Γ1

...

≤ εn‖x0 − p‖2 + (1 + · · ·+ εn−1)Γ1

≤ εn‖x0 − p‖2 +
Γ1

1− ε
. (31)

Consequently,

Γn+1 = ‖xn+1 − p‖2 − αn+1‖xn − p‖2

+2αn+1‖xn+1 − xn‖2

≥ −αn+1‖xn − p‖2

and this means from (31) that:

−Γn+1 ≤ αn+1‖xn − p‖2

≤ ε‖xn − p‖2

...

≤ εn+1‖x0 − p‖2 +
εΓ1

1− ε
. (32)
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By (29) and (32), we get:

δ
k

∑
n=1
‖xn+1 − xn‖2 ≤ Γ1 − Γk+1

≤ εk+1‖x0 − p‖2 +
Γ1

1− ε
. (33)

This then implies that:

∞

∑
n=1
‖xn+1 − xn‖2 ≤ Γ1

δ(1− ε)
< +∞. (34)

Hence, lim
n→∞
‖xn+1 − xn‖ = 0. We also have from Algorithm 3 that:

‖wn − xn‖ = ‖xn − xn−1‖ → 0, n→ ∞. (35)

From (25), we obtain:

‖xn+1 − p‖2 ≤ (1 + αn)‖xn − p‖2 − αn‖xn−1 − p‖2

+2‖xn − xn−1‖2. (36)

Using Lemma 8 in (36) (noting (34)), we get:

lim
n→∞

‖xn − p‖2 = l < ∞. (37)

This implies that limn→∞ ‖xn − p‖ exists. Therefore, the sequence {xn} is bounded, and so
is {yn}.

Claim 2. There exists M > 1 such that:[
1
M

1− µ

2
‖wn − yn‖2

]2
≤ ‖wn − p‖2 − ‖un − p‖2 ∀n ≥ n0.

We know that {Awn}, {Ayn} are bounded using the fact that {xn}, {yn}, {wn} are bounded.
Hence, there exists M > 1 such that:

‖wn − yn − λn(Awn − Ayn)‖ ≤ M for all n.

Therefore, for all u, v ∈ H, we obtain:

‖hn(u)− hn(v)‖ = ‖〈wn − yn − λn(Awn − Ayn), u− v〉‖
≤ ‖wn − yn − λn(Awn − Ayn)‖‖u− v‖
≤ M‖u− v‖.

Then, we have that hn(·) is M-Lipschitz continuous on H. From Lemma 6, we get:

dist(wn, Tn) ≥
1
M

hn(wn),

from which, together with Lemma 10, we get:

dist(wn, Tn) ≥
1
M

1− µ

2
‖wn − yn‖2 ∀n ≥ n0. (38)

Combining (19) and (38), we obtain:

‖un − p‖2 ≤ ‖wn − p‖2 −
[

1
M

1− µ

2
‖wn − yn‖2

]2
∀n ≥ n0. (39)
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This complete the proof of Claim 2.
Claim 3. The sequence {xn} converges weakly to an element of VI(C, A). Indeed,

since {xn} is a bounded sequence, there exists the subsequence {xnk} of {xn} such that
xnk ⇀ z ∈ C. Since {wn} and {un} are bounded, there exists M∗ > 0 such that ∀n ≥ n0,
and we have from (39):[

1
M

1− µ

2
‖wn − yn‖2

]2
≤ ‖wn − p‖2 − ‖un − p‖2

=
[
‖wn − p‖ − ‖un − p‖

][
‖wn − p‖+ ‖un − p‖

]
≤ ‖wn − un‖

[
‖wn − p‖+ ‖un − p‖

]
≤ M∗‖wn − un‖. (40)

From (40), we have:
lim

n→∞
‖wn − yn‖ = 0. (41)

Consequently,
‖xn − yn‖ ≤ ‖wn − yn‖+ ‖wn − xn‖ → 0, n→ ∞.

Furthermore, {wnk} of {wn} converges weakly to z ∈ C. This implies from Lemma 11 and
(41) that z ∈ VI(C, A). Therefore, we proved that if p ∈ VI(C, A), then limn→∞ ‖xn − p‖
exists, and each sequential weak cluster point of the sequence {xn} is in VI(C, A). By
Lemma 5, the sequence {xn} converges weakly to an element of VI(C, A).

4. Numerical Illustrations

In this section, we consider many examples in which some are real-life applications
for numerical implementations of our proposed Algorithm 3. For a broader overview
of the efficiency and accuracy of our proposed algorithm, we investigate and compare
the performance of the proposed Algorithm 3 with Algorithm 1 proposed by Boţ et al.
in [27] (Bot Alg.), Algorithm 2 proposed by Malitsky in [28] (Malitsky Alg.), the algorithm
proposed by Shehu and Iyiola in [37] (Shehu Alg.), the subgradient-extragradient method
(SEM) (2), and the extragradient method (EGM) in [16].

Example 1 (Tomography reconstruction model). In this example, we consider the linear inverse
problem:

Bx = b̂, (42)

where x ∈ Rk is the unknown image, B ∈ Rm×k is the projection matrix, and b̂ ∈ Rm is the given
sinogram (set of projections). The aim then is to recover a slice image of an object from a sinogram.
To be realistic, we consider noisy b = b̂ + ε, where ε ∈ Rm. Problem (42) can be presented as a
convex feasibility problem (CFP) with the sets (hyper-planes) Ci = {x : 〈ai, x〉 = bi}. Since, in
practice, the projection matrix B is often rank-deficient, so b /∈ range(B); thus, we may assume
that the CFP has no solution (also called inconsistent), so we consider the least squares model
minx ∑m

i=1 dist(x, Ci)
2.

Recall that the projection onto the hyper-plane Ci has a closed formula PCi x = x− 〈ai ,x〉−bi
‖ai‖2 ai.

Therefore, the evaluation of Tx reduces to a matrix-vector multiplication, and this can be realized
very efficiently, where T := 1

m (PC1 + . . . + PCm) and A := I − T. Note that our approach only
exploits feasibility constraints, which is definitely not a state-of-the-art model for tomography
reconstruction. More involved methods would solve this problem with the use of some regularization
techniques, but we keep such a simple model for illustration purposes only.

As a particular problem, we wish to reconstruct the Shepp–Logan phantom image 128× 128
(thus, x ∈ Rk with k = 28) from the far less measurement m = 27. We generate the matrix
B ∈ Rm×k randomly and define b = Bx + ε, where ε ∈ Rm is a random vector, whose entries are
drawn from N(0, 1).

Using this example, we give some comparisons of our proposed Algorithm 3, Algorithm 1
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proposed by Boţ et al. in [27] (Bot Alg.), and Algorithm 2 proposed by Malitsky et al. in [28]
(Malitsky Alg.) using the residual ‖en‖2 := ‖xn+1 − xn‖2 ≤ ε, where ε = 10−4, as our stopping
criterion. For our proposed algorithm, the starting point x0 is chosen randomly with x1 = (0, . . . , 0)
and αn = 0.002, for Boţ et al., the starting point x0 = (0, . . . , 0) and ρn = 0.2, while for Malitsky
et al., the starting point x0 = x̄0 = (0, . . . , 0) with x1 randomly chosen, θ0 = 1, and λ̄ = 1. All
results are reported in Tables 1 and 2 and Figures 1–6.

Example 2 (Equilibrium-optimization model). Here, we consider the Nash–Cournot oligopolis-
tic equilibrium model in electricity markets. Given m companies, such that the i-th company
possesses Ii generating units, denote by x the power vector, that is each of its j-th entries xj corre-
sponds to the power generated by unit j. Assume that the price function pi is an affine decreasing
function of s := ∑N

j=1 xj where N is the number of all generating units. Therefore, pi(s) := α− βis.
We can now present the profit of company i as fi(x) := pi(s)∑j∈Ii

xj −∑j∈Ii
cj(xj), where cj(xj)

is the cost for generating xj by generating unit j. Denote by Ki the strategy set of the i-th company
i. Clearly, ∑j∈Ii

xj ∈ Ki for each i, and the overall strategy set is C := K1 × K2 × . . .× Km.
The Nash equilibrium concept with regards to the above data is that each company wishes to

maximize its profit by choosing the corresponding production level under the presumption that the
production of the other companies is a parametric input.

Recall that x∗ ∈ C = K1 × K2 × . . .× Km is an equilibrium point if:

fi(x∗) ≥ fi(x∗[xi])∀xi ∈ Ki, i = 1, 2, . . . , m,

where the vector x∗[xi] stands for the vector obtained from x∗ by replacing x∗i with xi. Define:

f (x, y) := ψ(x, y)− ψ(x, x)

with:

ψ(x, y) := −
n

∑
i=1

fi(x∗[yi]).

Therefore, finding a Nash equilibrium point is formulated as:

X∗ ∈ C : f (x∗, x) ≥ 0 ∀x ∈ C. (43)

Suppose for every j, the cost cj for production and the environmental fee g are increasingly convex
functions. This convexity assumption implies that (43) is equivalent to (see [38]):

x ∈ C : 〈Bx− a +∇ϕ(x), y− x〉 ≥ 0 ∀y ∈ C,

where:

a := (α, α, . . . , α)T

B1 =


β1 0 0 . . . 0
0 β2 0 . . . 0

. . . . . . . . . . . . . . .
0 0 0 0 βm

B =


0 β1 β1 . . . β1
β2 0 β2 . . . β2
. . . . . . . . . . . . . . .
βm βm βm . . . βm


ϕ(x) := xT B1x +

N

∑
j=1

cj(xj).

Note that cj is differentiable convex for every j.
Our proposed scheme is tested with the following cost function:

cj(xj) =
1
2

xT
j Dxj + dTxj.
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The parameters β j for all j = 1, . . . , m, matrix D, and vector d were generated randomly in the
interval (0, 1], [1, 40], and [1, 40], respectively.

The numerical experiments involve the initial points x0 and x1 generated randomly in [1, 40]
and m = 10. The stopping role of the algorithm is chosen as ‖en‖2 := ‖xn+1 − xn‖2 ≤ ε, where
ε = 10−4. Let us assume that each company has the same lower production bound one and upper
production bound 40, that is,

Ki := {xi : 1 ≤ xi ≤ 40}, i = 1, . . . , 10.

We compare our proposed Algorithm 3 with Algorithm 1 proposed by Boţ et al. in [27] (Bot
Alg.), Algorithm 2 proposed by Malitsky et al. in [28] (Malitsky Alg.), and Shehu and Iyiola’s
proposed Algorithm 3.2 in [37] (Shehu Alg.). For our proposed algorithm, we choose αn = 0.49, for
Boţ et al., ρn = 0.02, for Malitsky et al., the starting point x0 = x̄0, θ0 = 1, and λ̄ = 1, while for
Shehu and Iyiola, ρ = 1 and σ = 0.5. All results are reported in Tables 3 and 4 and Figures 7–12.

Example 3. This example is taken from [39]. First, generate the following matrices randomly B, S,
D in Rm×m where S is skew-symmetric and D is a positive definite diagonal matrix. Then, define
the operator A by A(x) := Mx + q with M = BBT + S + D. The symmetric property of S implies
that the operator does not arise from an optimization problem, and the positive definiteness of D
implies the uniqueness of the solution to the corresponding variational inequality problem.

We choose here q = 0. Choose random matrix B ∈ Rk×m and b ∈ Rk with nonnegative
entries, and define the VI feasible set C by Bx ≤ b. Clearly, the origin is in C, and it is the
unique solution of the corresponding variational inequality. Projections onto C are computed via the
MATLAB routine fmincon, and thus, it is costly. We test the algorithm’s performances (number of
iterations and CPU time in seconds) for different m’s and inequality constraints k.

For this example, the stopping criterion is chosen as ‖en‖2 := ‖xn‖2 ≤ ε, where ε = 0.002.
We experiment with different values of k (30, and50) and m (10, 20, 30, and40). We randomly
generate vector b and matrices B, S, and D. We choose λ0 and µ appropriately in Algorithm 3.
In (2), L = ‖M‖ is used. Algorithm 3 proposed in this paper is compared with the subgradient-
extragradient method (SEM) (2). For our proposed algorithm, we choose µ = 0.999, λ0 = 0.5, and
αn = 0.499 while for SEM, λ = 0.125

4L . All results are reported in Table 5 and Figures 13–22.

Example 4. Consider VI (1) with:

A(x) =
(

0.5x1x2 − 2x2 − 107

−4x1 + 0.1x2
2 − 107

)
and:

C := {x ∈ R2 : (x1 − 2)2 + (x2 − 2)2 ≤ 1}.

Then, A is not monotone on C, but pseudo-monotone. Furthermore, VI (1) has the unique solution
x∗ = (2.707, 2.707)T . A comparison of our method is made with the extragradient method [16].
We denote the parameter in EGM [16] as λ∗n to differentiate it from λn in our proposed Algorithm 3.
We terminate the iterations if:

‖en‖2 := ‖xn − x∗‖2 ≤ ε

with ε = 10−3. In this, our proposed Algorithm 3 is compared with the extragradient method
(EGM) in [16]. For our proposed algorithm, we choose x0 = (1, 2)T and αn = 0.499, while for
EGM, λ∗n = 0.00000001. All results are reported in Tables 6–8 and Figures 23–32.

Example 5. Consider H := L2([0, 1]) and C := {x ∈ H : ‖x‖ ≤ 2}. Define A : L2([0, 1]) →
L2([0, 1]) by:

A(u)(t) := e−‖u‖
2
∫ t

0
u(s)ds, ∀u ∈ L2([0, 1]), t ∈ [0, 1].

It can also be shown that A is pseudo-monotone, but not monotone on H, Lipschitz continuous with

L =
(

2
e + 1

)
2
π , and sequentially weakly-to-weak;y continuous on H (see Example 2.1 of [27]).
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Our proposed Algorithm 3 is compared with Algorithm 1 proposed by Boţ et al. in [27] (Bot
Alg.), Algorithm 2 proposed by Malitsky et al. in [28] (Malitsky Alg.), and Shehu and Iyiola’s
proposed Algorithm 3.2 in [37] (Shehu Alg.). For our proposed algorithm, we choose x0 = 1

9 et sin(t)
and αn = 0.49, for Boţ et al., ρn = 0.02, for Malitsky et al., θ0 = 1, and φ = 1.1, while for Shehu
and Iyiola, ρ = 1, σ = 0.005, and γ = 0.9. All algorithms are terminated using the stopping
criterion ‖en‖2 := ‖wn − yn‖2 ≤ ε with ε = 10−4. All results are reported in Tables 9 and 10 and
Figures 33–36.

Table 1. Example 1 comparison: proposed Algorithm 3, Bot Algorithm 1, and Malitsky Algorithm 2 with µ = φ = 0.9.

Proposed Algorithm 3 Bot Algorithm 1 Malitsky Algorithm 2

λ0 No. of Iter. CPU Time No. of Iter. CPU Time No. of Iter. CPU Time

0.1 2 5.8318× 10−3 98 0.2590 71 0.1533

1 2 4.3773× 10−3 61 0.1643 39 0.0826

5 12 4.0209× 10−2 38 0.1012 22 0.0491

10 6 1.8319× 10−2 207 0.5764 72 0.1359

Table 2. Example 1: proposed Algorithm 3 with λ0 = 1 for different µ values.

λ0 = 0.1 λ0 = 0.3 λ0 = 0.7 λ0 = 0.9

No. of Iter. 6 6 3 2

CPU Time 2.6506× 10−2 2.7113× 10−2 7.1002× 10−3 4.7982× 10−3

Number of iterations
10

0
10

1
10

2

||
e
n
||
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Proposed Alg. 3

Bot Alg.

Malitsky Alg.

Figure 1. Example 1: µ = φ = 0.9 and λ0 = 0.1. Alg., Algorithm.
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Figure 2. Example 1: µ = φ = 0.9 and λ0 = 1.
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Figure 3. Example 1: µ = φ = 0.9 and λ0 = 5.
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Figure 4. Example 1: µ = φ = 0.9 and λ0 = 10.
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Figure 5. Example 1: µ = φ = 0.9.
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Figure 6. Example 1: λ0 = 1.

Table 3. Example 2 comparison: proposed Algorithm 3, Bot Algorithm 1, Malitsky Algorithm 2, and Shehu Alg. [37] with
λ0 = 1 and µ = φ = γ.

Proposed Algorithm 3 Bot Algorithm 1 Malitsky Algorithm 2 Shehu Alg. [37]

µ No. of Iter. CPU Time No. of Iter. CPU Time No. of Iter. CPU Time No. of Iter. CPU Time

0.1 22 8.7749× 10−3 582 0.1372 33 8.4833× 10−3 15680 8.7073

0.3 24 8.8605× 10−3 594 0.1440 47 9.3949× 10−3 13047 7.2304

0.7 36 1.8575× 10−2 619 0.1914 81 1.9522× 10−2 14736 9.8807

0.999 47 3.9262× 10−2 581 0.3016 1809 0.7438 7048 5.4446

Table 4. Example 2: proposed Algorithm 3 with µ = 0.999 for different λ0 values.

λ0 = 0.1 λ0 = 1 λ0 = 5 λ0 = 10

No. of Iter. 45 52 44 50

CPU Time 2.6624× 10−2 2.1446× 10−2 1.7123× 10−2 1.9696× 10−2
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Figure 7. Example 2: µ = φ = γ = 0.1 and λ0 = 1.
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Figure 8. Example 2: µ = φ = γ = 0.3 and λ0 = 1.
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Figure 9. Example 2: µ = φ = γ = 0.7 and λ0 = 1.
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Figure 10. Example 2: µ = φ = γ = 0.999 and λ0 = 1.
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Figure 11. Example 2: λ = 1.
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Table 5. Comparison of proposed Algorithm 3 and the subgradient-extragradient method (SEM) (2) for Example 3.

m = 10 m = 20 m = 30 m = 40

k = 30 Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time

Proposed
Algorithm 3 157 2.7327 162 3.9759 144 4.4950 128 4.8193

SEM (2) 3785 64.8752 13,980 243.9019 18,994 345.3686 30,777 567.8440

m = 10 m = 20 m = 30 m = 40

k = 50 Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time

Proposed
Algorithm 3 185 4.0691 173 4.3798 128 4.8817 130 6.2658

SEM (2) 4176 77.6893 8645 150.4267 21,262 381.0991 30,956 561.4559
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Figure 13. Example 3: k = 30 and m = 10.
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Figure 14. Example 3: k = 30 and m = 20.
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Figure 15. Example 3: k = 30 and m = 30.



Symmetry 2021, 13, 489 25 of 38

Number of iterations
10

0
10

1
10

2
10

3
10

4
10

5

||
e
n
||
2

10
-3

10
-2

10
-1

10
0

10
1

Proposed Alg. 3

SEM

Figure 16. Example 3: k = 30 and m = 40.
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Figure 17. Example 3: k = 50 and m = 10.
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Figure 18. Example 3: k = 50 and m = 20.
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Figure 19. Example 3: k = 50 and m = 30.
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Figure 20. Example 3: k = 50 and m = 40.
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Figure 21. Example 3: k = 30.



Symmetry 2021, 13, 489 28 of 38

Number of iterations
10

0
10

1
10

2
10

3

||
e
n
||
2

10
-3

10
-2

10
-1

10
0

10
1

Proposed Alg. 3: m = 10

Proposed Alg. 3: m = 20

Proposed Alg. 3: m = 30

Proposed Alg. 3: m = 40

Figure 22. Example 3: k = 50.

Table 6. Comparison of proposed Algorithm 3 and the extragradient method (EGM) [16] for
Example 4 with λ0 = 1 and µ = 0.1.

Proposed Algorithm 3 EGM [16]

x1 No. of Iter. CPU Time No. of Iter. CPU Time

(2, 1)T 13 5.9390× 10−4 62 1.8851× 10−3

(1, 2)T 33 5.2230× 10−4 62 1.9666× 10−3

(1.5, 1.5)T 12 4.7790× 10−4 14 3.955× 10−4

(1.25, 1.75)T 13 6.7980× 10−4 58 1.9138× 10−3

Table 7. Proposed Algorithm 3 for Example 4 with λ0 = 5 and µ = 0.999.

Proposed Algorithm 3

x1 No. of Iter. CPU Time

(2, 1)T 18 7.5980× 10−4

(1, 2)T 15 6.0910× 10−4

(1.5, 1.5)T 13 5.5840× 10−4

(1.25, 1.75)T 16 6.9110× 10−4
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Table 8. Example 4: proposed Algorithm 3 with x1 = (2, 1)T for different µ and λ0 values.

λ0 = 5

µ = 0.1 µ = 0.3 µ = 0.7 µ = 0.999

No. of Iter. 14 14 16 18

CPU Time 6.8600× 10−4 7.1170× 10−4 8.1080× 10−4 8.6850× 10−4

µ = 0.999

λ0 = 0.1 λ0 = 1 λ0 = 5 λ0 = 10

No. of Iter. 12 18 18 18

CPU Time 5.6360× 10−4 9.3920× 10−4 9.0230× 10−4 8.9310× 10−4
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Figure 23. Example 4: k = 50 and m = 10.



Symmetry 2021, 13, 489 30 of 38

Number of iterations
10

0
10

1
10

2

||
e
n
||
2

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Proposed Alg. 1

EGM Alg.

Figure 24. Example 4: k = 50 and m = 20.
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Figure 25. Example 4: k = 50 and m = 30.
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Figure 26. Example 4: k = 50 and m = 40.
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Figure 27. Example 4: λ0 = 1 and µ = 0.1.



Symmetry 2021, 13, 489 32 of 38

Number of iterations
10

0
10

1
10

2

||
e
n
||
2

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

Proposed Alg. 3: x1 = (2, 1)T

Proposed Alg. 3: x1 = (1, 2)T

Proposed Alg. 3: x1 = (1.5, 1.5)T

Proposed Alg. 3: x1 = (1.25, 1.75)T

Figure 28. Example 4: λ0 = 5 and µ = 0.999.
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Figure 29. Example 4: λ0 = 5 and x1 = (2, 1)T .
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Figure 30. Example 4: µ = 0.999 and x1 = (2, 1)T .

Table 9. Example 5 comparison: proposed Algorithm 3, Bot Algorithm 1, Malitsky Algorithm 2, and Shehu Alg. [37] with
λ0 = 1 and µ = 0.9.

Proposed Algorithm 3 Bot Algorithm 1 Malitsky Algorithm 2 Shehu Alg. [37]

x1 Iter. CPU Time Iter. CPU Time Iter. CPU Time Iter. CPU Time
1
12 (t

2 − 2t + 1) 23 5.1433× 10−3 2159 0.23341 371 3.7625× 10−2 37,135 10.8377
1
9 et sin(t) 18 3.2111× 10−3 1681 0.18084 374 3.9159× 10−2 70,741 32.5843
1

21 t2 cos(t) 14 2.4545× 10−3 4344 0.48573 373 3.8413× 10−2 17,741 5.6272
1
7 (3t− 2)et 43 8.7538× 10−3 2774 0.29515 351 3.7544× 10−2 28,758 7.3424

Table 10. Example 5: proposed Algorithm 3 with x1 = t2−2t+1
12 for different µ and λ0 values.

µ = 0.9

λ0 = 0.1 λ0 = 1 λ0 = 2 λ0 = 3

No. of Iter. 167 23 11 8

CPU Time 3.4828× 10−2 4.2089× 10−3 2.2288× 10−3 1.3899× 10−3

λ0 = 2

µ = 0.1 µ = 0.3 µ = 0.7 µ = 0.999

No. of Iter. 11 11 11 11

CPU Time 2.0615× 10−3 2.1237× 10−3 1.9886× 10−3 2.0384× 10−3
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Figure 31. Example 5: λ0 = 1, µ = 0.9 and x1 = 1
12 (t

2 − 2t + 1).
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Figure 32. Example 5: λ0 = 1, µ = 0.9 and x1 = 1
9 et sin(t).
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Figure 33. Example 5: λ0 = 1, µ = 0.9 and x1 = 1
21 t2 cos(t).
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Figure 34. Example 5: λ0 = 1, µ = 0.9 and x1 = 1
7 (3t− 2)et.
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Figure 35. Example 5: µ = 0.9.
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Figure 36. Example 5: λ0 = 2.
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5. Discussion

The weak convergence analysis of the reflected subgradient-extragradient method for
variational inequalities in real Hilbert spaces is obtained in this paper. We provide and
intensive numerical illustration and comparison with related works for several applications
such as tomography reconstruction and Nash–Cournot oligopolistic equilibrium models.
Our result is one of the few results on the subgradient-extragradient method with the
reflected step in the literature. Our next project is to modify our results to bilevel variational
inequalities.
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