Quantum-Chemical Search for Keto Tautomers of Azulenols in Vacuo and Aqueous Solution
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Deprotonated Forms of Hydroxyazulenes
3.2. Possible Keto and Enol Isomers of Hydroxyazulenes
3.3. Bonds Lengths Alternation in Neutral and Anionic Forms of Hydroxyazulenes
3.4. Favored Isomers for Hydroxyazulenes in Vacuo and Aqueous Solution
3.5. Acid-Base Properties for Selected Isomers and for Isomeric Mixtures
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murfin, L.C.; Lewis, S.E. Azulene—A bright core for sensing and imaging. Molecules 2021, 26, 353. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Morita, N. Creation of stabilized electrochromic materials by taking advantage of azulene skeletons. Eur. J. Org. Chem. 2009, 2009, 4567–4579. [Google Scholar] [CrossRef]
- Shoji, T.; Ito, S. Azulene-based donor-acceptor systems: Synthesis, optical, and electrochemical properties. Chem. Eur. J. 2017, 23, 16696–16709. [Google Scholar] [CrossRef] [Green Version]
- Xin, H.; Gao, X. Application of azulene in constructing organic optoelectronic materials: New tricks for an old dog. ChemPlusChem 2017, 82, 945–956. [Google Scholar] [CrossRef] [Green Version]
- Pirzad, A.; Alyari, H.; Shakiba, M.R.; Zehtab-Salmasi, S.; Mohammadi, A. Essential oil content and composition of German chamomile (Matricaria chamomilla L.) at different irrigation regimes. J. Agron. 2006, 5, 451–455. [Google Scholar] [CrossRef]
- Németh, E. Essential oil composition of species in the genus Achillea. J. Essent. Oil Res. 2005, 17, 501–512. [Google Scholar] [CrossRef]
- Vasylievna, Z.S.; Erdemovna, R.T.; Dorzhievna, R.L.; Arnoldovich, A.; Long, C.S.; Gao, Q.B.; Qi, Z.F. Comparative studies on composition of essential oil in three wormwoods (Artemisia L.) from Buryatia and Mongolia. J. Essent. Oil Bear. Plants 2015, 18, 637–641. [Google Scholar] [CrossRef]
- Tala, M.T.; Qin, J.; Ndongo, J.T.; Laatsch, H. New Azulene-type sesquiterpenoids from fruiting bodies of Lactarius delicious. Nat. Prod. Bioprospect. 2017, 7, 269–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, D.M.; Valentao, P.; Andrade, P.B. Marine natural pigments: Chemistry, distribution and analysis. Dye. Pigment. 2014, 111, 124–134. [Google Scholar] [CrossRef]
- Liu, R.S.H.; Asato, A.E. Tuning the color and excited state properties of the azulenic chromophore: NIR absorbing pigments and materials. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 179–194. [Google Scholar] [CrossRef]
- Murai, M.; Ku, S.-Y.; Treat, N.D.; Robb, M.J.; Chabinyc, M.L.; Hawker, C.J. Modulating structure and properties in organic chromophores: Influence of azulene as a building block. Chem. Sci. 2014, 5, 3753–3760. [Google Scholar] [CrossRef] [Green Version]
- McKay, D.L.; Blumberg, J.B. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother. Res. 2006, 20, 519–530. [Google Scholar] [CrossRef]
- Peet, J.; Selyutina, A.; Bredihhin, A. Antiretroviral (HIV-1) activity of azulene derivatives. Bioorg. Med. Chem. 2016, 24, 1653–1657. [Google Scholar] [CrossRef]
- Ueki, J.-I.; Sakagami, H.; Wakabayashi, H. Anti-UV activity of newly-synthesized water-soluble azulenes. Vivo 2013, 27, 119–126. [Google Scholar]
- Murafuji, T.; Kitagawa, K.; Yoshimatsu, D.; Kondo, K.; Ishiguro, K.; Tsunashima, R.; Miyakawa, I.; Mikata, Y. Heterocyclic bismuth carboxylates based on a diphenyl sulfone scaffold: Synthesis and antifungal activity against Saccharomyces cerevisiae. Eur. J. Med. Chem. 2013, 63, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Wada, T.; Maruyama, R.; Irie, Y.; Hashimoto, M.; Wakabayashi, H.; Okudaira, N.; Uesawa, Y.; Kagaya, H.; Sakagami, H. In vitro anti-tumor activity of azulene amide derivatives. Vivo 2018, 32, 479–486. [Google Scholar] [CrossRef] [Green Version]
- Ayaz, F.; Yuzer, A.; Ince, T.; Ince, M. Anti-cancer and anti-inflammatory activities of bromo- and cyano-substituted azulene derivatives. Inflammation 2020, 43, 1009–1018. [Google Scholar] [CrossRef]
- Szopa, A.; Pajor, J.; Klin, P.; Rzepiela, A.; Elansary, H.O.; Al-Mana, F.A.; Mattar, M.A.; Ekiert, H. Artemisia absinthium L.–Importance in the history of medicine, the latest advances in phytochemistry and therapeutical, cosmetological and culinary uses. Plants 2020, 9, 1063. [Google Scholar] [CrossRef] [PubMed]
- Barić, D. Utilizing the azaazulene scaffolds in the design of new organic superbases. ACS Omega 2019, 4, 15197–15207. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, S.; Baumgarten, M.; Simon, J.; Hafner, K. 2,4,6,8-Tetracyanoazulene: A new building block for “organic metals”. Angew. Chem. Int. Ed. 1998, 37, 1077–1081. [Google Scholar] [CrossRef]
- Mori, A.; Yokoo, M.; Hashimoto, M.; Ujiie, S.; Diele, S.; Baumeister, U.; Tschierske, C. A novel biaxial smectic liquid crystalline phase formed by rodlike molecules with a 1,3-diazaazulene skeleton. J. Am. Chem. Soc. 2003, 125, 6620–6621. [Google Scholar] [CrossRef]
- Tang, T.; Lin, T.; Wang, F.; He, C. Azulene-based conjugated polymers with tuneable near-IR absorption up to 2.5 μm. Polym. Chem. 2014, 5, 2980–2989. [Google Scholar] [CrossRef]
- Lacroix, P.G.; Malfant, I.; Iftime, G.; Razus, A.C.; Nakatani, K.; Delaire, J.A. Azo-azulene derivatives as second-order nonlinear optical chromophores. Chem. Eur. J. 2000, 6, 2599–2608. [Google Scholar] [CrossRef]
- Xin, X.S.; Ge, C.W.; Jiao, X.C.; Yang, X.D.; Rundel, K.; McNeill, C.R.; Gao, X.K. Incorporation of 2,6-connected azulene units into the backbone of conjugated polymers: Towards high-performance organic optoelectronic materials. Angew. Chem. Int. Ed. 2018, 57, 1322–1326. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, B.; Fabbiani, F.P.A.; Henn, J.; Schmidt, M.U.; Macchi, P.; Meindl, K.; Spackman, M.A. Azulene revisited: Solid-state structure, invariom modeling and lattice-energy minimization of a classical example of disorder. Acta Crystallogr. B 2018, 74, 416–426. [Google Scholar] [CrossRef]
- Huber, S.; Grassi, G.; Bauder, A. Structure and symmetry of azulene as determined from microwave spectra of isotopomers. Mol. Phys. 2005, 103, 1395–1409. [Google Scholar] [CrossRef]
- NIST Chemistry WebBook. NIST Standard Reference Database No. 69; Linstrom, P.J., Mallard, W.G., Eds.; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2014. Available online: http://webbook.nist.gov/chemistry (accessed on 20 February 2021).
- Gal, J.-F.; Maria, P.-C.; Decouzon, M.; Mó, O.; Yanez, M.; Abboud, J.L.A. Lithium-cation/π complexes of aromatic systems. The effect of increasing the number of fused rings. J. Am. Chem. Soc. 2003, 125, 10394–10401. [Google Scholar] [CrossRef] [PubMed]
- Mąkosza, M.; Podraza, R. Hydroxylation and amination of azulenes by vicarious nucleophilic substitution of hydrogen. Eur. J. Org. Chem. 2000, 2000, 193–198. [Google Scholar] [CrossRef]
- Yokoyama, R.; Ito, S.; Okujima, T.; Kubo, T.; Yassunami, M.; Tajiri, A.; Morita, N. Synthesis of 2-aminoazulene derivatives. Nucleophilic and palladium-catalyzed amination of 2-substituted azulene. Tetrahedron 2003, 59, 8191–8198. [Google Scholar] [CrossRef]
- Hafner, K.; Kaiser, H. Zur kenntnis der azulene. 3. Eine einfache synthese substituierter azulene. Justus Liebigs Ann. Chem. 1958, 618, 140–152. [Google Scholar] [CrossRef]
- Takase, K.; Asao, T.; Takagi, Y.; Nozoe, T. Syntheses and some properties of 2- and 6-hydroxyazulenes. J. Chem. Soc. Chem. Commun. 1968, 368b–370. [Google Scholar] [CrossRef]
- Morita, T.; Kanzawa, H.; Takase, K. The synthesis and some properties of 2,6-dihydroxyazulene. Chem. Lett. 1977, 6, 753–756. [Google Scholar] [CrossRef]
- Asao, T.; Ito, S.; Morita, N. 1-Hydroxyazulene and 3-hydroxyguaiazulene: Synthesis and their properties. Tetrahedron Lett. 1989, 30, 6693–6696. [Google Scholar] [CrossRef]
- Parr, R.G.; Yang, W. Density Functional Theory of Atoms and Molecular Orbital Theory; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Hehre, W.J.; Radom, L.; Schleyer, P.v.R.; Pople, J.A. Ab Initio Molecular Theory; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Miertus, S.; Tomasi, J. Approximate evaluation of the electrostatic free energy and internal energy changes in solution processes. Chem. Phys. 1982, 65, 239–245. [Google Scholar] [CrossRef]
- Miertus, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem. Phys. 1981, 55, 117–129. [Google Scholar] [CrossRef]
- Raczyńska, E.D.; Makowski, M.; Zientara-Rytter, K.; Kolczyńska, K.; Stępniewski, T.M.; Hallmann, M. Quantum-chemical studies on the favored and rare tautomers of neutral and redox adenine. J. Phys. Chem. A 2013, 117, 1548–1559. [Google Scholar] [CrossRef]
- Raczyńska, E.D.; Kamińska, B. Variations of the tautomeric preferences and π-electron delocalization for the neutral and redox forms of purine when proceeding from the gas phase (DFT) to water (PCM). J. Mol. Model. 2013, 19, 3947–3960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J.A., Jr.; Vreven, T.; Kudin, K.N.; Burant, J.C.; et al. Gaussian-03, Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2004. [Google Scholar]
- Raczyńska, E.D. Application of the extended HOMED (Harmonic Oscillator Model of Aromaticity) index to simple and tautomeric five-membered heteroaromatic cycles with C, N, O, P, and S atoms. Symmetry 2019, 11, 146. [Google Scholar] [CrossRef] [Green Version]
- Kruszewski, J.; Krygowski, T.M. Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett. 1972, 13, 3839–3842. [Google Scholar] [CrossRef]
- Fifen, J.J.; Dhaouadi, Z.; Nsangou, M. Revision of the thermodynamics of the proton in the gas phase. J. Phys. Chem. A 2014, 118, 11090–11097. [Google Scholar] [CrossRef] [PubMed]
- Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornel University Press: New York, NY, USA, 1960. [Google Scholar]
- Ośmiałowski, B.; Raczyńska, E.D.; Krygowski, T.M. Tautomeric equilibria and pi electron delocalization for some monohydroxyarenes–quantum chemical studies. J. Org. Chem. 2006, 71, 3727–3736. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Langer, J.; Oomens, J.; Dopfer, O. Infrared spectra of protonated polycyclic aromatic hydrocarbon molecules: Azulene. J. Chem. Phys. 2009, 131, 184307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krygowski, T.M.; Zachara, J.E. Geometry-based analysis of azulene and azulene-like systems with H- or Li-bonding. J. Phys. Org. Chem. 2007, 20, 594–599. [Google Scholar] [CrossRef]
- Reichardt, C. Solvent Effects in Organic Chemistry; Verlag Chemie GmbH: Weinheim, Germany, 1979. [Google Scholar]
Structure | HOMED5 | HOMED7 | HOMED11 | HOMED12 |
---|---|---|---|---|
AH1a | 0.803 | 0.855 | 0.902 | 0.861 |
AH1b | 0.817 | 0.868 | 0.910 | 0.866 |
AH2a/AH2b | 0.832 | 0.871 | 0.913 | 0.882 |
AH3a | 0.865 | 0.903 | 0.932 | 0.895 |
AH3b | 0.852 | 0.896 | 0.928 | 0.888 |
AH4a | 0.812 | 0.864 | 0.908 | 0.851 |
AH4b | 0.806 | 0.860 | 0.904 | 0.848 |
AH5a/AH5b | 0.859 | 0.899 | 0.930 | 0.932 |
Isomer | Structure | HOMED5 | HOMED7 | HOMED11 | HOMED12 |
---|---|---|---|---|---|
C1H/C3H | AH2c/AH2d | 0.341 | 0.829 | 0.607 | 0.596 |
C1H | AH3c | 0.504 | 0.835 | 0.652 | 0.650 |
C3H | AH3e | 0.519 | 0.831 | 0.657 | 0.656 |
C1H | AH4c | 0.382 | 0.776 | 0.582 | 0.582 |
C3H | AH4d | 0.384 | 0.782 | 0.587 | 0.586 |
C1H/C3H | AH5c/AH5d | 0.495 | 0.814 | 0.634 | 0.632 |
C2H | AH1c | 0.232 | 0.768 | 0.520 | 0.504 |
C2H | AH3d | 0.509 | 0.638 | 0.583 | 0.596 |
C2H | AH5e | 0.504 | 0.625 | 0.575 | 0.571 |
C4H | AH1d | 0.361 | 0.635 | 0.460 | 0.444 |
C8H | AH1h | 0.343 | 0.641 | 0.456 | 0.443 |
C4H/C8 | AH2e/AH2f | 0.341 | 0.829 | 0.607 | 0.596 |
C4H | AH4e | 0.670 | 0.446 | 0.525 | 0.515 |
C8H | AH4g | 0.637 | 0.424 | 0.504 | 0.501 |
C5H | AH1e | 0.473 | 0.523 | 0.467 | 0.457 |
C7H | AH1g | 0.484 | 0.521 | 0.473 | 0.462 |
C5H | AH3f | 0.769 | 0.453 | 0.572 | 0.562 |
C7H | AH3g | 0.731 | 0.476 | 0.576 | 0.572 |
C5H/C7H | AH5f/AH5g | 0.774 | 0.459 | 0.572 | 0.564 |
C6H | AH1f | 0.374 | 0.626 | 0.454 | 0.440 |
C6H | AH2g | 0.396 | 0.471 | 0.485 | 0.475 |
C6H | AH4f | 0.794 | 0.390 | 0.570 | 0.558 |
C9H | AH1i | 0.250 | 0.578 | 0.470 | 0.458 |
C10H | AH1j | 0.229 | 0.575 | 0.449 | 0.440 |
C9H | AH3h | 0.513 | 0.480 | 0.534 | 0.529 |
C10H | AH3i | 0.457 | 0.418 | 0.468 | 0.467 |
C9H/C10H | AH5h/AH5i | 0.461 | 0.425 | 0.473 | 0.318 |
Structure | Type of Isomer | x | Structure | Type of Isomer | x | ||
---|---|---|---|---|---|---|---|
Gas 1 | Water 2 | Gas 1 | Water 2 | ||||
AH1a | OH(a) | 10.1 | 12.4 | AH3e | C3H | 0.5 | 0.05 |
AH1b | OH(b) | 89.6 | 87.6 | AH4a | OH(a) | 28.4 | 33.7 |
AH1c | C2H | 0.3 | 0.001 | AH4b | OH(b) | 29.0 | 41.9 |
AH2a/AH2b | OH(a)/OH(b) | 52.8 | 67.9 | AH4c | C1H | 9.2 | 7.8 |
AH2c/AH2d | C1H/C3H | 47.2 | 32.1 | AH4d | C3H | 33.4 | 16.5 |
AH3a | OH(a) | 89.4 | 7.5 | AH5a/AH5b | OH(a)/OH(b) | 99.5 | 99.96 |
AH3b | OH(b) | 9.5 | 92.4 | AH5c/AH5d | C1H/C3H | 0.5 | 0.04 |
AH3c | C1H | 0.7 | 0.1 |
Structure | Type of Isomer | PA(A−) = ∆acidH(AH) | GB(A−) = ∆acidG(AH) | Structure | Type of Isomer | PA(A−) = ∆acidH(AH) | GB(A−) = ∆acidG(AH) |
---|---|---|---|---|---|---|---|
AH1a | OH(a) | 1419.2 | 1385.8 | AH3e | C3H | 1369.5 | 1339.4 |
AH1b | OH(b) | 1420.4 | 1391.2 | AH4a | OH(a) | 1402.4 | 1370.8 |
AH1c | C2H | 1407.2 | 1377.0 | AH4b | OH(b) | 1402.6 | 1370.9 |
AH2a/AH2b | OH(a)/OH(b) | 1393.9 | 1362.5 | AH4c | C1H | 1398.4 | 1368.0 |
AH2c/AH2d | C1H/C3H | 1391.9 | 1362.2 | AH4d | C3H | 1401.7 | 1371.2 |
AH3a | OH(a) | 1383.1 | 1352.3 | AH5a/AH5b | OH(a)/OH(b) | 1371.0 | 1339.3 |
AH3b | OH(b) | 1378.3 | 1346.7 | AH5c/AH5d | C1H/C3H | 1355.3 | 1326.0 |
AH3c | C1H | 1370.1 | 1340.1 |
Compound | Mixture of the Favored Isomers for Neutral AH (Acid) 1 | Anion A− (Base) 2 | PA or ∆acidH | GB or ∆acidG | Ref. |
---|---|---|---|---|---|
1-Azulenol | AH1a ⇄ AH1b ⇄ AH1c | A−1 | 1420.3 | 1390.6 | 3 |
2-Azulenol | AH2a/AH2b ⇄ AH2c/AH2d | A−2 | 1393.0 | 1362.3 | 3 |
4-Azulenol | AH3a ⇄ AH3b ⇄ AH3c ⇄ AH3e | A−3 | 1382.5 | 1351.6 | 3 |
5-Azulenol | AH4a ⇄ AH4b ⇄ AH4c ⇄ AH4d | A−4 | 1401.8 | 1370.7 | 3 |
6-Azulenol | AH5a/AH2b ⇄ AH5c/AH5d | A−5 | 1370.9 | 1339.2 | 3 |
2-Naphthol 4 | 1438 | 1408 | 5 | ||
Phenol 4 | 1462 | 1432 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raczyńska, E.D. Quantum-Chemical Search for Keto Tautomers of Azulenols in Vacuo and Aqueous Solution. Symmetry 2021, 13, 497. https://doi.org/10.3390/sym13030497
Raczyńska ED. Quantum-Chemical Search for Keto Tautomers of Azulenols in Vacuo and Aqueous Solution. Symmetry. 2021; 13(3):497. https://doi.org/10.3390/sym13030497
Chicago/Turabian StyleRaczyńska, Ewa D. 2021. "Quantum-Chemical Search for Keto Tautomers of Azulenols in Vacuo and Aqueous Solution" Symmetry 13, no. 3: 497. https://doi.org/10.3390/sym13030497
APA StyleRaczyńska, E. D. (2021). Quantum-Chemical Search for Keto Tautomers of Azulenols in Vacuo and Aqueous Solution. Symmetry, 13(3), 497. https://doi.org/10.3390/sym13030497