Inverse Scattering and Soliton Solutions of Nonlocal Complex Reverse-Spacetime Modified Korteweg-de Vries Hierarchies
Abstract
:1. Introduction
2. Nonlocal Symmetric Reductions and Nonlocal mKdV Hierarchies
2.1. Multicomponent AKNS Hierarchy
2.2. Nonlocal Reverse-Spacetime mKdV Hierarchies
3. Inverse Scattering Transforms
3.1. Property of Eigenfunctions
3.2. Riemann-Hilbert Problems
3.3. Time Evolution of the Scattering Data
3.4. Gelfand-Levitan-Marchenko Type Integral Equations
3.5. Recovery of the Potential
4. Soliton Solutions
4.1. Basic Formulation of Solutions
4.2. Nonreduced Case
4.3. Nonlocal Case
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ablowitz, M.J.; Musslimani, Z.H. Integrable Nonlocal Nonlinear Equations. Stud. Appl. Math. 2017, 39, 7–59. [Google Scholar] [CrossRef] [Green Version]
- Ablowitz, M.J.; Musslimani, Z.H. Integrable Nonlocal Nonlinear Schrödinger Equation. Phys. Rev. Lett. 2013, 110, 064105. [Google Scholar] [CrossRef] [Green Version]
- Ablowitz, M.J.; Musslimani, Z.H. Inverse Scattering Transform for the Integrable Nonlocal Nonlinear Schrödinger Equation. Nonlinearity 2016, 29, 915–946. [Google Scholar] [CrossRef] [Green Version]
- Gerdjikov, V.S.; Saxena, A. Complete Integrability of Nonlocal Nonlinear Schrödinger Equation. J. Math. Phys. 2017, 58, 013502. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.L.; Zhu, Z.N. Soliton Solutions of an Integrable Nonlocal Modified Korteweg-de Vries Equation through Inverse Scattering Transform. J. Math. Anal. Appl. 2017, 453, 973–984. [Google Scholar] [CrossRef] [Green Version]
- Ablowitz, M.J.; Luo, X.D.; Musslimani, Z.H. Inverse Scattering Transform for the Nonlocal Nonlinear Schrödinger Equation with Nonzero Boundary Conditions. J. Math. Phys. 2018, 59, 011501. [Google Scholar] [CrossRef] [Green Version]
- Ablowitz, M.J.; Feng, B.F.; Luo, X.D.; Musslimani, Z.H. Inverse Scattering Transform for the Nonlocal Reverse Space-time Nonlinear Schrödinger Equation. Theoret. Math. Phys. 2018, 196, 1241–1267. [Google Scholar] [CrossRef]
- Ma, W.X. Inverse Scattering for Nonlocal Reverse-time Nonlinear Schrödinger Equations. Appl. Math. Lett. 2020, 102, 106161. [Google Scholar] [CrossRef]
- Yang, J. General N-solitons and Their Dynamics in Several Nonlocal Nonlinear Schrödinger Equations. Phys. Lett. A 2019, 383, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Ma, L.Y.; Zhu, Z.N. Nonlocal Nonlinear Schrödinger Equation and Its Discrete Version: Soliton Solutions and Gauge Equivalence. J. Math. Phys. 2016, 57, 083507. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Ling, L. Soliton Solutions for the Nonlocal Nonlinear Schrödinger Equation. Eur. Phys. J. Plus 2016, 131, 148. [Google Scholar] [CrossRef]
- Vinayagam, P.S.; Radha, R.; Al-Khawaja, U.; Ling, L. New Classes of Solutions in the Coupled PT Symmetric Nonlocal Nonlinear Schrödinger Equations with Four Wave Mixing. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 387–395. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.Y.; Sun, W.R. Rational Solutions for the Nonlocal Sixth-order Nonlinear Schrödinger Equation. Appl. Math. Lett. 2018, 84, 63–69. [Google Scholar] [CrossRef]
- Yang, Y.Q.; Suzuki, T.; Cheng, X.P. Darbourx Transformations and Exact Solutions for the Integrable Nonlocal Lakshmanan-Porsezian-Daniel Equation. Appl. Math. Lett. 2020, 99, 105998. [Google Scholar] [CrossRef]
- Gürses, M.; Pekcan, A. Nonlocal Nonlinear Schrödinger Equations and Their Soliton Solutions. J. Math. Phys. 2018, 59, 051501. [Google Scholar] [CrossRef] [Green Version]
- Gürses, M.; Pekcan, A. Nonlocal Modified KdV Equations and Their Soliton Solutions by Hirota Method. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 427–448. [Google Scholar] [CrossRef]
- Fokas, A.S. Integrable Multidimensional Versions of the Nonlocal Nonlinear Schrödinger Equation. Nonlinearity 2016, 29, 319–324. [Google Scholar] [CrossRef]
- Song, C.Q.; Xiao, D.M.; Zhu, Z.N. Solitons and Dynamics for a General Integrable Nonlocal Coupled Nonlinear Schrödinger Equation. Commun. Nonlinear Sci. Numer. Simul. 2017, 45, 13–28. [Google Scholar] [CrossRef]
- Novikov, S.P.; Manakov, S.V.; Pitaevskii, L.P.; Zakharov, V.E. Theory of Solitons: The Inverse Scattering Method; Consultants Bureau: New York, NY, USA, 1984. [Google Scholar]
- Wang, D.S.; Zhang, D.J.; Yang, J. Integrable Properties of the General Coupled Nonlinear Schrödinger Equations. J. Math. Phys. 2010, 51, 023510. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.; Fan, E.G. A Riemann-Hilbert Approach to the Harry-Dym Equation on the Line. Chin. Ann. Math. Ser. B 2016, 37, 373–384. [Google Scholar] [CrossRef] [Green Version]
- Geng, X.G.; Wu, J.P. Riemann-Hilbert Approach and N-soliton Solutions for a Generalized Sasa-Satsuma Equation. Wave Motion 2016, 60, 62–72. [Google Scholar] [CrossRef]
- Ma, W.X. Riemann-Hilbert Problems and N-soliton Solutions for a Coupled mKdV System. J. Geom. Phys. 2018, 132, 45–54. [Google Scholar] [CrossRef]
- Ma, W.X. Application of the Riemann-Hilbert Approach to the Multicomponent AKNS Integrable Hierarchies. Nonlinear Anal. Real World Appl. 2019, 47, 1–17. [Google Scholar] [CrossRef]
- Gakhov, F.D. Boundary Value Problems; Elsevier Science: London, UK, 2014. [Google Scholar]
- Ma, W.X.; Zhou, R.G. Adjoint Symmetry Constraints of Multicomponent AKNS Equations. Chin. Ann. Math. Ser. B 2002, 23, 373–384. [Google Scholar] [CrossRef]
- Ablowitz, M.J.; Kaup, D.J.; Newell, A.C.; Segur, H. The Inverse Scattering Transform-Fourier Analysis for Nonlinear Problems. Stud. Appl. Math. 1974, 53, 249–315. [Google Scholar] [CrossRef]
- Tu, G.Z. On Liouville Integrability of Zero-curvature Equations and the Yang Hierarchy. J. Phys. A Math. Gen. 1989, 22, 2375–2392. [Google Scholar]
- Ma, W.X.; Chen, M. Hamiltonian and Quasi-Hamiltonian Structures Associated with Semi-direct Sums of Lie Algebras. J. Phys. A Math. Gen. 2006, 39, 10787–10801. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.X.; Zhou, R.G. Adjoint Symmetry Constraints Leading to Binary Nonlinearization. J. Nonlinear Math. Phys. 2002, 9 (Suppl. 1), 106–126. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.X. Riemann-Hilbert Problems and Soliton Solutions of a Multicomponent mKdV System and Its Reduction. Math. Meth. Appl. Sci. 2019, 42, 1099–1113. [Google Scholar] [CrossRef]
- Gerdjikov, V.S. Geometry, Integrability and Quantization. In Proceedings of the 6th International Conference, Varna, Bulgaria, 3–10 June 2004; Softex: Sofia, Bulgaria, 2005; pp. 78–125. [Google Scholar]
- Doktorov, E.V.; Leble, S.B. A Dressing Method in Mathematical Physics; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Ma, W.X.; Yong, X.L.; Qin, Z.Y.; Gu, X.; Zhou, Y. A Generalized Liouville’s Formula. Appl. Math. Ser. B 2017. preprint. [Google Scholar]
- Beals, R.; Coifman, R.R. Scattering and Inverse Scattering for First Order Systems. Comm. Pure Appl. Math. 1984, 37, 39–90. [Google Scholar] [CrossRef]
- Kawata, T. Riemann Spectral Method for the Nonlinear Evolution Equation. In Advances in Nonlinear Waves; Pitman: Boston, MA, USA, 1984; Volume I, pp. 210–225. [Google Scholar]
- Yang, J. Nonlinear Waves in Integrable and Nonintegrable Systems; SIAM: Philadelphia, PA, USA, 2010. [Google Scholar]
- Fokas, A.S.; Lenells, J. The Unified Method: I. Nonlinearizable Problems on the Half-line. J. Phys. A Math. Theor. 2012, 45, 195201. [Google Scholar] [CrossRef] [Green Version]
- Fokas, A.S.; Lenells, J. The Unified Method: III. Nonlinearizable Problems on the Interval. J. Phys. A Math. Theor. 2012, 45, 195203. [Google Scholar] [CrossRef] [Green Version]
- Freeman, N.C.; Nimmo, J.J.C. Soliton Solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili Equations: The Wronskian Technique. Phys. Lett. A 1983, 95, 1–3. [Google Scholar] [CrossRef]
- Ma, W.X.; You, Y. Solving the Korteweg-de Vries Equation by Its Bilinear Form: Wronskian Solutions. Trans. Am. Math. Soc. 2005, 357, 1753–1778. [Google Scholar] [CrossRef] [Green Version]
- Hirota, R. The Direct Method in Soliton Theory; Cambridge University Press: New York, NY, USA, 2004. [Google Scholar]
- Ma, W.X. Generalized Bilinear Differential Equations. Stud. Nonlinear Sci. 2011, 2, 140–144. [Google Scholar]
- Matveev, V.B.; Salle, M.A. Darboux Transformations and Solitons; Springer: Berlin, Germany, 1991. [Google Scholar]
- Ma, W.X.; Zhang, Y.J. Darboux Transformations of Integrable Couplings and Applications. Rev. Math. Phys. 2018, 30, 1850003. [Google Scholar] [CrossRef]
- Zafar, A.; Seadawy, A.R. The Conformable Space-time Fractional mKdV Equations and Their Exact Solutions. J. King Saud Univ. Sci. 2019, 31, 1478–1484. [Google Scholar] [CrossRef]
- Matveev, V.B. Generalized Wronskian Formula for Solutions of the KdV Equations: First Applications. Phys. Lett. A 1992, 166, 205–208. [Google Scholar] [CrossRef]
- Ma, W.X. Complexiton Solutions to the Korteweg-de Vries Equation. Phys. Lett. A 2002, 301, 35–44. [Google Scholar] [CrossRef]
- Ma, W.X.; Zhou, Y. Lump Solutions to Nonlinear Partial Differential Equations via Hirota Bilinear Forms. J. Differ. Equ. 2018, 264, 2633–2659. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.X.; Zhang, L.Q. Lump Solutions with Higher-order Rational Dispersion Relations. Pramana J. Phys. 2020, 94, 43. [Google Scholar] [CrossRef]
- Belokolos, E.D.; Bobenko, A.I.; Enol’skii, V.Z.; Its, A.R.; Matveev, V.B. Algebro-Geometric Approach to Nonlinear Integrable Equations; Springer: Berlin, Germany, 1994. [Google Scholar]
- Ma, W.X. Trigonal Curves and Algebro-geometric Solutions to Soliton Hierarchies I, II. Proc. R. Soc. A 2017, 473, 20170232–20170233. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.X. Long-time Asymptotics of a Three-component Coupled mKdV System. Mathematics 2019, 7, 573. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.X. Long-time Asymptotics of a Three-component Coupled Nonlinear Schrödinger System. J. Geom. Phys. 2020, 153, 103669. [Google Scholar] [CrossRef]
- Boiti, M.; Leon, J.J.P.; Martina, L.; Pempinelli, F. Scattering of Localized Solitons in the Plane. Phys. Lett. A 1988, 132, 432–439. [Google Scholar] [CrossRef]
- Hietarinta, J. One-dromion Solutions for Generic Classes of Equations. Phys. Lett. A 1990, 149, 113–118. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, L.; Ma, W.-X. Inverse Scattering and Soliton Solutions of Nonlocal Complex Reverse-Spacetime Modified Korteweg-de Vries Hierarchies. Symmetry 2021, 13, 512. https://doi.org/10.3390/sym13030512
Ling L, Ma W-X. Inverse Scattering and Soliton Solutions of Nonlocal Complex Reverse-Spacetime Modified Korteweg-de Vries Hierarchies. Symmetry. 2021; 13(3):512. https://doi.org/10.3390/sym13030512
Chicago/Turabian StyleLing, Liming, and Wen-Xiu Ma. 2021. "Inverse Scattering and Soliton Solutions of Nonlocal Complex Reverse-Spacetime Modified Korteweg-de Vries Hierarchies" Symmetry 13, no. 3: 512. https://doi.org/10.3390/sym13030512
APA StyleLing, L., & Ma, W. -X. (2021). Inverse Scattering and Soliton Solutions of Nonlocal Complex Reverse-Spacetime Modified Korteweg-de Vries Hierarchies. Symmetry, 13(3), 512. https://doi.org/10.3390/sym13030512