
symmetryS S

Article

Towards Fire Prediction Accuracy Enhancements by Leveraging
an Improved Naïve Bayes Algorithm

Liang Shu 1, Haigen Zhang 1, Yingmin You 1,2,*, Yonghao Cui 1 and Wei Chen 1

����������
�������

Citation: Shu, L.; Zhang, H.; You, Y.;

Cui, Y.; Chen, W. Towards Fire

Prediction Accuracy Enhancements

by Leveraging an Improved Naïve

Bayes Algorithm. Symmetry 2021, 13,

530. https://doi.org/10.3390/

sym13040530

Academic Editor: Theodore E. Simos

Received: 7 February 2021

Accepted: 19 March 2021

Published: 24 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Low Voltage Apparatus Technology Research Center of Zhejiang, Wenzhou University,
Wenzhou 325027, China; shu22@wzu.edu.cn (L.S.); 17802595952@163.com (H.Z.);
15763326627@163.com (Y.C.); chenwei1989@wzu.edu.cn (W.C.)

2 State Key Laboratory for Reliability and Intelligence of Electrical Equipment, Hebei University of Technology,
Tianjin 300130, China

* Correspondence: yymfd@wzu.edu.cn; Tel.: +86-13676766483

Abstract: To improve fire prediction accuracy over existing methods, a double weighted naive Bayes
with compensation coefficient (DWCNB) method is proposed for fire prediction purposes. The fire
characteristic attributes and attribute values are all weighted to weaken the assumption that the
naive Bayes attributes are independent and equally important. A compensation coefficient was used
to compensate for the prior probability, and a five-level orthogonal testing method was employed
to properly design the coefficient. The proposed model was trained with data collected from the
National Institute of Standards and Technology (NIST) fire database. Simulation comparisons show
that the average prediction accuracy of the proposed method is 98.13%, which is 5.08% and 2.52%
higher than the methods of naive Bayes (NB) and double weighted naive Bayes (DWNB), respectively.
The experimental results show that the average accuracies of the DWCNB method for test fire and
interference sources were 97.76% and 98.24%. Prediction accuracies were 5.06% and 3.74% higher
than those of the NB and DWNB methods.

Keywords: fire prediction; double weighted naive Bayes; characteristic attributes; experimental
combustion material; five level orthogonal design

1. Introduction

Urban fires are notable threats to the safety of human lives and property. According
to the National Fire Protection Association (NFPA) research report, in 2018, US fire depart-
ments responded to an estimated 1,318,500 fires that together caused 3655 civilian deaths
and estimated losses of $25.6 billion [1]. With fast population growth and the large-scale
use of electrical appliances, potential fire threats are increasing. Efficiently collecting envi-
ronmental data and correctly predicting potential fire accidents are particularly important
to preventing deaths and damage from fire accidents [2].

Environmental parameters can change suddenly before the actual occurrence of an
accidental fire. Such parameters include the temperature, humidity, carbon monoxide
concentration, carbon dioxide concentration, and smoke concentration. Collecting such
parameters and predicting fires is an effective way to stop fire accidents.

A home fire alarm system was developed in [3] based on the temperature detection
method. The ambient temperature was detected and the alarm was triggered when the
temperature was above 40 ◦C. In the work by Jiang et al. [4], a compound fire alarm
system for detecting smoke particles and carbon monoxide was designed on the basis of
the photoacoustic spectrometry principle. The CO concentration and extinction coefficient
of smoke particles were measured, and a compound value was developed as the alarm
criterion. Implementation of these methods is usually simple. However, the prediction
accuracy is largely dependent on the threshold value. In a complex environment, false or
missed alarms could occur if the threshold is not properly designed.
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Image recognition is another method that has been studied for fire prediction [5–7].
After some basic processes, including image acquisition, image processing, and feature
extraction, fire accidents could be identified by properly designed classifiers, and thus
early fire warnings could be provided. However, this method is sensitive to environmental
disturbances, such as fog and strong light. Additionally, for environments with few stand-
out features, feature extraction and observation are usually difficult. To increase fire
prediction’s accuracy and stability, intelligent artificial-based algorithms are being studied.
The design and development of a fuzzy logic-based multi-sensor fire detection system was
discussed in [8]. A multi-sensor approach was employed whereby the outputs of three
sensors, sensing three different fire signature parameters (smoke, flame, and temperature),
contributed to the fire alert decision; this was a more reliable fire detection system, devoid
of false alarms.

Neural network algorithms [9–11] have also been used in early fire warnings. They
have strong anti-interference, high fault tolerance, and high system reliability. However,
a neural network usually requires a large number of parameters, such as initial values
of network topology, different weights, and thresholds. Proper design and collection of
such parameters is difficult. Additionally, implementing a neural network requires a large
number of calculations, and usually results in very high hardware costs.

The naive Bayes (NB) algorithm is a classification method based on probability the-
ory. The working principle is simple and easy to implement, with moderate costs. With
reasonable improvements, the prediction results could be accurate and stable, and they
have been widely used in applications such as spam email classification [12], text emo-
tion analysis [13], and fire prediction [14]. The ability to deal with uncertain evidence
can be used in fire warning prediction. The NB algorithm is based on the assumption
that naive Bayesian attributes are independent and equally important, which is usually
unsatisfied in reality and needs to be improved. In [15], a term weighting scheme was
proposed in which the weight of each term was dependent on its semantic similarity to the
text category. This method improved the algorithm’s performance by counting the word
frequency in the text and determining the weighting coefficient. Jiang et al. [16] applied
the depth feature weighting method to improve the naive Bayes algorithm. To increase
accuracy and efficiency, they proposed incorporating the learned weights into both the
formula of classification and its conditional probability estimates. These improvements
were useful to obtain better solutions for text categorization compared to the normal NB
method. However, the method takes the frequency of the characteristic attribute as the
basis to determine the weight. The inter-class attribute distribution relationship is not
considered. A similar depth feature weighting method was discussed in [17] to improve
the algorithm. The correlation-based feature selection (CFS) method was employed to
determine the weighting coefficients. The weighting coefficients corresponding to selected
and unselected characteristic attributes were set as 2 and 1, respectively. This design is able
avoid the influence of the frequency distribution of characteristic attributes, but still the
correlation between decision categories and samples is not considered.

In [18], two improved NB algorithms were proposed to improve the imbalance prob-
lem of positive and negative classification accuracy. The influences of the characteristic
attributes’ frequency and the attributes’ values were considered in the two improvements.
However, in the weighting decision process, the weights were directly chosen as constants
of 0.00001 and 0.99999, instead of calculating the weights based on the sample. Reflection
of the characteristic attributes is insufficient in the decision-making process.

To solve these problems, a double weighted naive Bayes with the compensation coeffi-
cient (DWCNB) method is proposed for fire prediction purposes. The main contributions
of this study can be summarized as follows: (1) The double weighted naive Bayes with
compensation coefficient method is proposed for fire prediction. (2) The characteristic
attributes of fire and the attribute values are both weighted to weaken the naive Bayes’ at-
tribute assumptions of independence and equal importance. (3) A compensation coefficient
is used to compensate for the prior probability, and a five-level orthogonal testing method
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was employed to properly design the compensation coefficient based on the samples. The
attributes of temperature, smoke concentration, and carbon monoxide concentration were
integrated. Based on the improved classification model, three decisions are provided,
including open flame (OF), smoldering fire (SF), and no fire (NF). The sample library is
described with a three-dimensional vector group {r s t}, where r represents the sample
number, s is the number of the characteristic vectors, and each characteristic vector has
t values. To consider the relationships among characteristic attributes, the weight of the
characteristic attribute is determined by sample fluctuations and the content. By consider-
ing the connection among the characteristic attributes, the weight value is determined by
the frequency of the characteristic attribute value. At the same time, the prior probability
compensation is employed to reduce the importance of weighting, and thus weaken the
assumption that naive Bayesian attributes are independent and equally important, to
improve prediction accuracy. This paper is organized as follows. The principle of the naive
Bayesian classifier is discussed in Section 2. The proposed model and the improvements
of the naive Bayesian algorithm are demonstrated in Section 3. In Section 4, the platform
implementation and the simulation comparisons between different methods are discussed.
Experimental verifications and conclusions are given in Sections 5 and 6, respectively.

2. Naive Bayesian Classifier

The naive Bayesian method was developed based on Bayesian decision theory. The
prior probability and conditional probability parameters are obtained from prior knowl-
edge, and then the posterior probability distribution is calculated with the Bayesian for-
mula, and the probability of certain category belongings can be predicted by comparing
the probabilities. The basic model is [19]

P(C|X) = P(C)
P(X|C)

P(X)
, (1)

where P represents probability. Here, we assume each fire dataset has n characteristic at-
tributes X = {X1, X2, . . . . . ., Xn} and m decision categories C = {C1, C2, . . . . . ., Cm}. Since
P(X) takes the same value for each decision category, according to the conditional inde-
pendence assumption, the naive Bayesian classification model [19] can be obtained as

CNB(X) = argmaxp(Ci)
n

∏
k=1

p(xk|Ci) , (2)

where p(Ci) is the prior probability of the decision category Ci, and p(xk|Ci) is the con-
ditional probability that the characteristic attribute Xk is x and the decision category is
Ci. For a certain dataset to be classified as Y= {y1, y2, . . . . . . yn}, the prior probability is
obtained from the dataset. The product of the conditional probability of each characteristic
attribute is calculated under each decision category Ci. Then, the priori probability and
the conditional probability are multiplied to obtain the posterior probability p(Ci|Y). The
class with the largest posterior probability p(Ci|Y)max is then taken as the class to which
the object belongs.

3. Practical Enhancements in the Naive Bayesian Algorithm to Augment Fire
Prediction Accuracy
3.1. Laplace Smoothing

When implementing the naive Bayesian algorithm, it is necessary to calculate the

product of multiple probabilities
n
∏

k=1
p(xk|Ci) . to obtain the classification probability. If

one of the probabilities is 0, which means the total value of the characteristic attribute is 0,
then the test data can never be classified. This phenomenon is usually observed when the
number of samples in a training set is too small to satisfy the large numbers law [20].
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To solve this problem, Laplace smoothing can be used by initializing the value of
each characteristic to be 1. When the training samples are large enough, the frequency of
each characteristic attribute is increased by 1 and the effect of the final classification value
is negligible. In this case, the zero probability problem can be effectively solved. After
Laplacian smoothing, the conditional probability that a characteristic attribute with value
xj, k is calculated as

p(xj,k|Ci) =
N(xj,k ∩ Ci) + 1

N(C i) + Sj
, (3)

where N(Ci) is the frequency of the decision category Ci, and N
(
xj, k ∩ Ci

)
is the frequency

that the characteristic attribute Xk takes the value of xj and belongs to the decision category
Ci, and Sj is the number of all the values of the characteristic attribute Xk.

3.2. Logarithmic Operation

The probabilities need to be multiplied together to get
n
∏

k=1
p(xk|Ci) . The underflow

problem could be induced if the probabilities are too small. To avoid this, the logarithmic
operation can be employed to turn multiplication into addition. The same monotonicity
and the extremum of the two calculations ensure the final classification result is not affected.
The logarithmic operation of (2) gives the following naive Bayesian classification model:

CNB(X) = argmax ln(p(Ci)
n
∏

k=1
p(xk|Ci) )

= argmax(ln p(Ci) +
n
∑

k=1
ln p(xk|Ci) )

(4)

It can be seen from (4) that the classification calculation has been turned from multi-
plication into addition, and the underflow problem can be avoided.

3.3. Double Weighting of Characteristic Attribute

The naive Bayesian classification model is based on the assumption that the attribute
values are independent from each other under the conditions of each classification feature.
Each characteristic attribute has the same decision-making importance as the others in its
corresponding category. However, in practice, these assumptions are difficult to satisfy [21].
Weighting different characteristic attributes with proper weighted coefficients is one of the
ways to weaken this assumption. In this paper, a double weighted naive Bayes with the
compensation coefficient (DWCNB) method is proposed. Weighting both characteristic at-
tributes and characteristic attribute values weakens the assumption that the naive Bayesian
attributes are independent and equally important. The improved classification model is

CNB(X) = argmaxp(Ci)
n

∏
k=1

vk ,i
N(wk,j,i · xk,j,i)

N(Ci)
(5)

where vk,i is the weight coefficient of the characteristic attribute Xk under the decision
category Ci; wk,j,i is the weight coefficient of the characteristic attribute Xk with the value
of xj under the decision category Ci. The calculation formula of the characteristic attribute
weighting coefficient vk,i is

vk,i =
σk,i

2

n
∑

k=1
σk,i

2
· xk,i (6)

where σk,i
2 is the variance of the characteristic attribute Xk under the decision category Ci,

and
n
∑

k=1
σk,i

2 is the sum of the variances of all characteristic attributes under the decision

category. Ci, σk,j
2/

n
∑

k=1
σk,j

2 is the variance contribution rate of the characteristic attribute Xk
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to the decision category Ci, and xk,i is the average value of the characteristic attribute Xk
under the decision category Ci, representing the influence of the characteristic attribute’s
content on the decision category.

The calculation formula of the characteristic attribute value weighting coefficient
wk,j,i is

wk,j,i =
N((xk = j) ∩ Ci)

N(Ci)
, (7)

where N(Ci) is the frequency of the decision category Ci, and N(( xk = j)∩Ci) is the fre-
quency of the characteristic attribute Xk with the value of xj under the decision category Ci.

3.4. Prior Probability Compensation

It can be seen from the naive Bayesian classification model (2) that the classification
result is determined by both the prior probability p(Ci) and the conditional probability
p(xk|Ci). The weighting of the characteristic attributes and the characteristic attribute
values in (5) only applies to the conditional probability, which could lead to an unbalanced
decision-making effect on the classification result. This unbalanced decision-making effect
could be magnified after the logarithm operation, resulting in incorrect classification
results. To improve accuracy, it is proposed that the different decision categories, Ci, are
compensated by introducing a prior probability compensation coefficient ξi to balance the
decision-making effect of the prior probability part and the conditional probability part.
The classification model after prior probability compensation can be written as

CNB(X) = argmaxp(Ci)
ξi

n

∏
k=1

p(xk|Ci) , (8)

After compensation, the influence caused by the uneven distribution of sample data
categories can be reduced. The value of ξi can be designed from proper experimental
testing; this will be discussed later.

4. Fire Prediction Model
4.1. Development of the Classification Model

Three variables were chosen as the characteristic attributes in the classification model:
temperature, smoke concentration, and carbon monoxide concentration. Three decision
categories were defined: open flame (OF), smoldering fire (SF), and no fire (NF). To verify
the model, the dataset from the National Institute of Standards and Technology Report
(Fire Research Division) [22] was selected, including 12 tests and 4972 fire datasets. The 12
selected tests involved four different materials: wood, cotton rope, polyurethane plastic,
and ethanol. In each test, the status of OF, SF, and NF were included. Part of the dataset
after normalization is shown in Table 1. We selected 15 instances for the table. For each
instance, there are three data points and a corresponding fire category. The three data
points represent the values of temperature, smoke concentration, and carbon monoxide
concentration.
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Table 1. Partial fire data.

Temperature Smoke
Concentration

Carbon Monoxide
Concentration Category

0.134993447 0.731509228 0.491863445 SF
0.057899902 0.11399056 0.279757662 NF
0.530814524 0.91432897 0.917676408 OF
0.051104374 0.171237491 0.408244787 SF
0.056918548 0.114881111 0.274411974 NF
0.145478375 0.586159577 0.378634151 SF
0.138925295 0.811801608 0.43573411 SF
0.054955839 0.11399056 0.249465431 NF
0.137614679 0.781443414 0.298299892 SF
0.052993131 0.089945676 0.293121882 NF
0.846657929 0.118553785 0.696103857 OF
0.056918548 0.114881111 0.285994298 NF
0.058033781 0.205166522 0.522469442 SF
0.545690775 0.840545804 0.870615962 OF
0.871559633 0.067020472 0.299467674 OF

The prediction model was implemented with Python, and the specific calculation
steps are shown in Figure 1.

Figure 1. Training and testing flowchart of the model.

In Figure 1, details of the numerical implementation and calculation procedures are
described by the following five methodological steps:

(1) Divide the dataset into two groups: the training set and the test set. Data preprocess-
ing is applied, including data discretization and normalization.

(2) Based on the samples from the training set, calculate the probability p(Ci) of the
decision category Ci, and the conditional probability p

(
xj, k

∣∣Ci
)

of the characteristic
attribute Xk with the value of xj under the decision category Ci.
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(3) Calculate the characteristic attribute weighting coefficient and the characteristic at-
tribute value weighting coefficient according to (6) and (7), respectively.

(4) Determine the prior probability compensation coefficient. The decision category
model is developed based on the weighting of characteristic attributes, and a complete
weighted naive Bayes classifier is obtained.

(5) For data point Y to be classified, apply the developed naive Bayes classifier to classify
the data.

4.2. Determination of the Compensation Coefficient ξi

In this paper, we propose compensating for the different decision categories Ci by
introducing a prior probability compensation coefficient ξi. An orthogonal test method
was developed to properly design ξi. The accuracy rate A is defined as an evaluation index,
which is expressed as

A =
Nr

N
, (9)

where Nr denotes the total number of data points that can be correctly identified as open
flames, smoldering fire, or no fire; and N is the total number of data points in the test set.
Assume that there are three factors for ξi in the first orthogonal test: ξOF, ξNF, and ξSF.
According to the empirical level, each factor has four values, 1.5, 2.5, 3.5, and 4.5, which
can be used in 3-factor and 4-level orthogonal tests. The orthogonal table was selected as
L16(43) to construct the preliminary determination test for ξi. The test results are shown in
Table 2.

Table 2. L16(43) orthogonal test results.

Number
Factor Variable Evaluation

Result

ξOF ξSF ξNF A (%)

1 1.5 1.5 1.5 95.54
2 1.5 2.5 2.5 96.56
3 1.5 3.5 3.5 95.07
4 1.5 4.5 4.5 95.07
5 2.5 1.5 2.5 94.87
6 2.5 2.5 1.5 95.07
7 2.5 3.5 4.5 95.23
8 2.5 4.5 3.5 94.97
9 3.5 1.5 3.5 94.61
10 3.5 2.5 4.5 94.67
11 3.5 3.5 1.5 94.97
12 3.5 4.5 2.5 93.43
13 4.5 1.5 4.5 92.92
14 4.5 2.5 3.5 94.10
15 4.5 3.5 2.5 92.97
16 4.5 4.5 1.5 92.30

Level
average

value

k1 95.56 94.48 94.09
k2 95.04 95.18 94.33
k3 93.98 94.18 94.69
k4 93.07 93.82 94.55

Range R 2.49 1.36 0.60

It can be seen from Table 2 that the classification accuracy is largely affected by ξOF,
and the influence from ξNF is relatively small. The optimal level of ξOF is 1, so the initial
value of ξOF was set as 1.5. The optimal level of ξSF is 2 and the initial value of ξSF was 2.5.
The optimal level of ξNF is 3 and the initial value of ξNF was 3.5.

Based on the results of L16(43), the second orthogonal test was conducted to determine
the final value of ξi. Three factors, ξOF, ξSF, and ξNF, were chosen. Each factor was divided
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into five levels, for 3-factor and 5-level orthogonal tests. The orthogonal table was selected
as L25 (53). The factor level and the test results are shown in Tables 3 and 4.

Table 3. Factor levels.

Level
Factor Variable

ξOF ξSF ξNF

1 1.1 2.1 3.1
2 1.3 2.3 3.3
3 1.5 2.5 3.5
4 1.7 2.7 3.7
5 1.9 2.9 3.9

Table 4. L25(53) orthogonal test results.

Level
Factor Variable Evaluation

Result

ξOF ξSF ξNF A (%)

1 1.1 2.1 3.1 96.87
2 1.1 2.3 3.3 96.77
3 1.1 2.5 3.5 96.82
4 1.1 2.7 3.7 97.18
5 1.1 2.9 3.9 96.72
6 1.3 2.1 3.3 96.87
7 1.3 2.3 3.5 96.77
8 1.3 2.5 3.7 96.77
9 1.3 2.7 3.9 96.82
10 1.3 2.9 3.1 96.72
11 1.5 2.1 3.5 96.72
12 1.5 2.3 3.7 96.77
13 1.5 2.5 3.9 96.77
14 1.5 2.7 3.1 96.56
15 1.5 2.9 3.3 96.56
16 1.7 2.1 3.7 95.07
17 1.7 2.3 3.9 95.43
18 1.7 2.5 3.1 96.61
19 1.7 2.7 3.3 97.02
20 1.7 2.9 3.5 96.56
21 1.9 2.1 3.9 94.92
22 1.9 2.3 3.1 95.33
23 1.9 2.5 3.3 95.38
24 1.9 2.7 3.5 95.74
25 1.9 2.9 3.7 96.10

Level
average

value

k1 96.87 96.09 96.42
k2 96.79 96.21 96.52
k3 96.68 96.47 96.52
k4 96.14 96.66 96.38
k5 95.50 96.53 96.13

Range R 0.73 0.57 0.39

It can be seen from Table 4 that the classification accuracy of the classification model is
still largely dependent on ξOF. The influence from ξNF is still small. The optimal levels of
ξOF, ξSF, and ξNF are 1, 4, and 2, respectively. Therefore, it can be determined that the ξi
values are ξOF = 1.1, ξSF = 2.7, ξNF = 3.3.

4.3. Classification Model Performance Analysis

For a two-class classification problem, with negative (class 0) and positive (class 1)
classes, the confusion matrix shown in Table 5 is needed to analyze the model’s performance.
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By using the definitions in Table 5, the proposed classification model was evaluated with
three indexes: the precision (P), the recall (R), and the F-measure (F). Precision is a
metric that quantifies the number of correct positive predictions made. Precision, therefore,
calculates the accuracy for the minority class. It is calculated as the ratio of correctly
predicted positive examples divided by the total number of positive examples that were
predicted. Recall is a metric that quantifies the number of correct positive predictions made
out of all positive predictions that could have been made. Unlike precision, which only
comments on the correct positive predictions out of all positive predictions, recall provides
an indication of missed positive predictions.

Table 5. The confusion matrix.

Positive Prediction Negative Prediction

Positive Class True Positive (TP) False Negative (FN)
Negative Class False Positive (FP) True Negative (TN)

There are three categories in our model: open flame (OF), smoldering fire (SF), and no
fire (NF). To conduct the evaluation, OF, SF, and the total fire status (TF, summation of OF
and SF) were evaluated, with the three indexes calculated with the following formulae:

P =
TP

TP + FP
, R =

TP
TP + FN

, F =
2× P× R

P + R
. (10)

We calculated the three indexes of three different models: the naive Bayesian algorithm
(NB), the double-weighted naive Bayesian algorithm (DWNB), and the proposed DWCNB
algorithm. We followed the procedure introduced in [19] to develop the NB classifier.
Weighted naive Bayes methods have been discussed in [16,17], and have been successfully
used in text classification. The DWNB method was developed by using a similar idea
for fire prediction purposes. The fire characteristic attributes and attribute values are
both weighted.

In the proposed DWCNB method, the compensation coefficient was calculated ac-
cording to the procedures demonstrated in Section 3.2. A total of 2984 data samples in
the NIST database were selected as the training set, and 1988 data samples were used
as the test set. The frequency of each category was counted, and the calculation of each
index was performed. The test results are shown in Figure 2. It can be seen from Figure 2
that, with the improvement of double weighting and the coefficient compensation, the
indexes of the three states, OF, SF and TF, of the DWCNB can achieve high values of
around 96%. The recall rate of SF was up to 97.35%, which was much higher than the
SF of NB and DWNB. Since the characteristic attribute weights and the corresponding
influences on category decision results were considered, compared with NB, the three
indexes of TF increased by 5.89%, 4.59%, and 5.25%. Compared with DWNB, the increased
rates of TF were 2.2%, 2.8%, and 2.25%. The improvements came from the consideration
of the decision-making effect of each characteristic attribute, corresponding to different
decision categories. The relationship between characteristic attributes is considered. By
introducing the weights, the influence of different values of each characteristic attribute on
the classification performance under each decision category is described. Additionally, the
decision-making effects of the prior and conditional probabilities can be balanced via the
proposed compensation coefficients. It can also be seen from Figure 2 that, for the TF state,
the recall rates of the three methods are larger than the precision rates. In practice, we hope
that the false negative results can be reduced. We would rather report false positives than
false negatives (missed alarms) in a strong interference environment, and these simulation
results are consistent with practical demands.
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Figure 2. Model simulation results before and after improvement.

By using the definition in (9), the prediction accuracies of the three methods were
compared. A total of 3480 data points were randomly selected from the NIST database for
verification. Comparison results are shown in Table 6. It can be seen from Table 6 that the
prediction accuracy demonstrated small changes for different test sets. Compared with NB,
after introducing double weighting, the average accuracy increase of DWNB was 2.56%.
The proposed DWCNB had the highest accuracy, which was 5.08% and 2.52% higher than
NB and DWNB.
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Table 6. Simulation results of the model.

Test Set
Classification Algorithms

NB (%) DWNB (%) DWCNB (%)

1 90.49 94.43 97.24
2 92.96 95.23 96.84
3 91.82 96.18 98.13
4 92.01 93.82 96.84
5 93.82 94.24 97.44

Average 92.22 94.78 97.30

5. Experimental Verification

The hardware design was based on the STM32L151 chip (Figure 3a). The proposed
DWCNB algorithm was implanted into the embedded system, and a combustion chamber
(Figure 3b) was employed for the experimental verification. As shown in Figure 3a, the
characteristic signals, including temperature, smoke concentration, and carbon monoxide
concentration, were collected with the corresponding temperature sensor DHT11, the
smoke sensor MQ-2, and the carbon monoxide sensor MQ-7. The sampling frequency
was 166.67 kHz. After pre-processing, the characteristic signals were measured and three
indicator lights of red, yellow, and green were used to indicate different prediction results,
corresponding to open flame, smoldering fire, and no fire states. A buzzer was used for
the open flame and smoldering fire states. The complexity of the proposed algorithm’s
implementation and hardware design was relatively simple compared with intelligent
artificial-based platforms. However, we needed to run the five-level orthogonal test to
determine the coefficients, and it required some work to set up the whole platform.

Figure 3. Experimental setup.

Different materials, including wood, cotton rope, polyurethane plastic, and ethanol,
were selected as the combustion materials. The fire states were set as wood smoldering
fire, cotton rope smoldering fire, polyurethane plastic open flame, and ethanol open flame.
A total of 1500 datasets were collected for each test fire, and the accuracy was calculated
based on (9). The experimental results are shown in Table 7. It can be seen from Table 7
that for different test fires, the accuracies of DWNB were higher than those of NB. There
were small accuracy differences between the different test fires. The proposed DWCNB
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method demonstrated the highest accuracies. The average accuracy was 5.06% and 3.74%
higher than the accuracies of NB and DWNB methods, respectively.

Table 7. Accuracy of the test fires.

Test Fire
Classification Algorithms

NB (%) DWNB (%) DWCNB (%)

Wood smoldering fire 92.27 94.13 97.98
Cotton rope smoldering fire 92.67 95.67 98.13

Polyurethane plastic open flame 93.33 93.27 97.53
Ethanol open flame 92.53 93.00 97.40

Average 92.70 94.02 97.76

Experimental verification of interference sources was also conducted. Cigarette
lighters, dust, and cigarette smoke were taken as the interference sources of the no-fire
state. A total of 1500 datasets were collected for each interference source, and the prediction
accuracy is shown in Table 8. It can be seen from the table that the DWCNB method has a
relatively higher anti-interference ability compared with NB and DWNB. The average ac-
curacy was 98.24–5.11% and 2.95% higher than NB and DWNB, respectively. Additionally,
the prediction accuracy of DWCNB against dust interference was the largest (99.47%). Ac-
curacies against cigarette smoke interference were the lowest for all three methods, which
means interference from the cigarette smoke was most severe among the three sources.

Table 8. Accuracy against the interference source.

Interference Source
Classification Algorithms

NB (%) DWNB (%) DWCNB (%)

Cigarette lighter 93.20 97.47 98.53
Dust 95.47 96.20 99.47

Cigarette smoke 90.73 92.20 96.73
Average 93.13 95.29 98.24

The hardware platform was developed based on the STM32L151 chip with three
external sensors: the temperature sensor, the smoke sensor, and the carbon monoxide
sensor. Implementation and installation of the device was simple. With the embedded
DWCNB algorithm, it was able to provide a simple and accurate solution for early fire
prediction.

6. Conclusions

An improved naive Bayes algorithm for fire prediction was developed in this study.
Verification showed that the average prediction accuracies of the proposed method were
5.06% and 3.74% higher than those of NB and DWNB methods, respectively. The average
accuracy against the interferences of DWCNB was 98.24%, which was 5.11% and 2.95%
higher than those of NB and DWNB, respectively. In our study, different materials, includ-
ing wood, cotton rope, polyurethane plastic, and ethanol, were selected as the combustion
materials. In the future, different materials could be used to further verify the method. Ad-
ditionally, it would be interesting to explore other strategies to determine the compensation
coefficient used in the prior probability calculations.
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Abbreviations

P Probability
X Characteristic attribute
C Categories
Sj Number of all the values of the characteristic attribute Xk
σk,i

2 Variance of the characteristic attribute Xk under the decision category Ci
xk,i Average value of the characteristic attribute Xk under the decision category Ci
ξi Prior probability compensation coefficient

Nr
Total number of data that can be correctly identified for open flame, smoldering
fire and no fire

N Total number of data in the test set
TP True Positive
FP False Positive
TN True Negative
FN False Negative
DWCNB Double weighted naive Bayes with compensation coefficient
DWNB Double weighted naive Bayesian algorithm
NB Naive Bayes
P(C|X) Basic naive Bayesian model
CNB(X) Naive Bayesian classification model
vk,i Characteristic attribute weighting coefficient
wk,j,i Weight coefficient of the characteristic attribute Xk xj value under the decision category
A Accuracy rate
P Accuracy rate of model
R Recall rate
F F-measure
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