
symmetryS S

Article

Heavy Quark Expansion of Λb→ Λ∗(1520) Form Factors
beyond Leading Order

Marzia Bordone 1,2

����������
�������

Citation: Bordone, M. Heavy Quark

Expansion of Λb → Λ∗(1520) Form

Factors beyond Leading Order.

Symmetry 2021, 13, 531. https://

doi.org/10.3390/sym13040531

Academic Editors: Ayan Paul and

Maxim Yu. Khlopov

Received: 5 February 2021

Accepted: 6 March 2021

Published: 24 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dipartimento di Fisica, Università di Torino & INFN, Sezione di Torino, I-10125 Torino, Italy;
marzia.bordone@to.infn.it

2 Theoretische Physik 1, Naturwissenschaftlich-Technische Fakultät, Universität Siegen, Walter-Flex-Straße 3,
D-57068 Siegen, Germany

Abstract: I review the parametrisation of the full set of Λb → Λ∗(1520) form factors in the framework
of Heavy Quark Expansion, including next-to-leading-order O(αs) and, for the first time, next-to-
leading-power O(1/mb) corrections. The unknown hadronic parameters are obtained by performing
a fit to recent lattice QCD calculations. I investigate the compatibility of the Heavy Quark Expansion
and the current lattice data, finding tension between these two approaches in the case of tensor and
pseudo-tensor form factors, whose origin could come from an underestimation of the current lattice
QCD uncertainties and higher order terms in the Heavy Quark Expansion.
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1. Introduction

The flavour changing neutral current (FCNC)-mediated b→ s`+`− transition plays
an important role in the search for physics beyond the Standard Model (SM). Its potential
has been extensively studied through the B→ K(∗)`+`− decays. Interestingly, the LHCb
experiment found some discrepancies with respect to the SM predictions in a few observ-
ables: RK and RK∗ , which test universality between the muon and electron final states
and the angular coefficient P′5 in the B→ K∗µ+µ− angular distribution [1–6]. These hints,
together with all available b→ s`+`− data, form a coherent pattern of discrepancies. They
can be addressed by introducing New Physics (NP) effects. Low-energy fits point toward a
breaking of lepton flavour universality with a combined significance for the NP hypothesis
higher than 5σ [7–10]. Whether these data show without doubt first signs of NP is not clear
yet. Only further measurements with higher statistics or measurements of new processes
able to corroborate these data will give a final answer.

A possibility to better understand these data is studying further b→ s`+`−-mediated
decays, among which baryon decays are promising candidates. The decay channel in-
volving ground-state baryons Λb → Λµ+µ− has already received attention both from
the experimental and theoretical point of view. The LHCb experiment measured the
Λb → Λµ+µ− angular distribution [11,12], finding good agreement between the measured
values of the angular observables and thieir SM predictions [13–15] for the angular ob-
servables. Even though this result might be discouraging for NP searches, Refs. [14,15]
showed that this is still consistent with the NP hypothesis. In fact, angular distributions
describing baryon decays are very different from those in the meson cases, and NP affects
them differently.

Another possibility is studying excited Λ∗ states. The LHCb experiment used the
decay chain Λb → Λ∗(→ pK−)`+`− to measure R(pK), the universality ratio between
muons and electrons, finding results consistent with both the SM expectation and the
measured values of RK(∗) [16]. In this analysis, the various Λ∗ resonances below a certain
mass threshold are not distinguished. However, in Ref. [17] it is shown that the Λ∗(1520)
is expected to be the most frequent among the Λ∗ resonances, with quite narrow mass
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distribution. Therefore, it is motivated to study in detail the Λb → Λ∗(1520)`+`− decay
from both experimental and theoretical point of view, the latter being the main focus of
this paper.

The determination of the form factors of the Λb → Λ∗(1520) decays had already
been object of study in the literature [18–22]. The Heavy Quark Expansion (HQE) of
the form factors up to next-to-leading (NLO) order in αs and leading power in 1/mb
has been employed [20,21], using Quark Models to constrain the unknown hadronic
parameters [19]. Recently, a lattice QCD determination of the full base of form factors has
become available [22], but constrained to the low-recoil region.

In this work, I investigate the compatibility between the HQE form factors and the
recent lattice QCD determination. At this scope, I perform a HQE of form factors including
NLO αs and next-to-leading power (NLP) 1/mb corrections, the latter being not known
so far in the literature. The results are then matched onto the lattice QCD calculation. In
the HQE the number of independent, hadronic parameters is reduced compared to the
lattice QCD case, introducing strict correlations among the form factors. I perform a fit to
the lattice QCD results to obtain the central values, uncertainties, and correlations among
the HQE parameters. The comparison between lattice QCD results and HQE predictions
shows a tension between the two methods for tensor and pseudo-tensor form factors,
whose origin is not yet completely determined.

This paper is organised as follows: in Section 2 I present the HQE of the form factors;
in Section 3 I discuss the fit to lattice data; in Section 4 I conclude. Appendix A and
Appendix B report details on the calculation of the form factors and Appendix C contains
the covariance matrix for the fitted values of the HQE parameters.

2. Setup

In the following, I investigate the form factors mediating the transition Λb(p, sb)→
Λ∗(1520)(k, η(λΛ), sΛ), where p and k are the momenta of the initial and final states,
respectively, sb and sΛ are the rest-frame helicities of the two baryons and η(λΛ) is the
polarisation vector of the Λ∗ for each polarisation state λΛ. Since in this work I refer to
the Λ∗(1520), only, I denote this state as Λ∗ in the following. It is worth noticing that
the Λ∗ is considered stable in this discussion. The subsequent Λ∗ decay has to be taken
into account when comparing to experimental data. In Refs. [20,21] the Λ∗ → NK̄( The
Λ∗ → NK̄ is the Λ∗ decay mode with larger branching fraction and the one that will
be employed by the LHCb collaboration to reconstruct the Λ∗ in future experimental
analysis.)decay is discussed, and the four-dimensional differential decay width of the
decay chain Λb → Λ∗(→ NK̄)`+`− is presented.

I define the helicity form factors for Λb(p, sb)→ Λ∗(k, η(λΛ), sΛ) as

〈Λ∗(k, η(λΛ), sΛ)| s̄γµb |Λb(p, sb)〉 = +ūα(k, η(λΛ), sΛ)

[
∑

i
Fi(q2)Γαµ

V,i

]
u(p, sb) ,

〈Λ∗(k, η(λΛ), sΛ)| s̄γµγ5b |Λb(p, sb)〉 = −ūα(k, η(λΛ), sΛ)

[
∑

i
Gi(q2)γ5Γαµ

A,i

]
u(p, sb) ,

〈Λ∗(k, η(λΛ), sΛ)| s̄iσµνqνb |Λb(p, sb)〉 = −ūα(k, η(λΛ), sΛ)

[
∑

i
Ti(q2)Γαµ

T,i

]
u(p, sb) ,

〈Λ∗(k, η(λΛ), sΛ)| s̄iσµνqνγ5b |Λb(p, sb)〉 = −ūα(k, η(λΛ), sΛ)

[
∑

i
T5

i (q
2)γ5Γαµ

T5,i

]
u(p, sb) ,

(1)

where ūα is the spin 3/2 projector of a Rarita-Schwinger object [23]. The Dirac structures
Γαµ

L,i, with L = V, A, T, T5 are given in Appendix A. In the cases L = V, A I adopt the
parametrisation in Ref. [24], while for L = T, T5 I follow and adapt the parametrisation in
Refs. [20,22]. In the following I use the convention σµν = i

2 (γ
µγν − γνγµ).
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The Heavy Quark Expansion

In the low-recoil limit, a HQE of the Λb → Λ∗ form factors can be performed. At
leading power in 1/mb and leading order in αs, the hadronic matrix element for Λb → Λ∗

transitions reads:

〈Λ∗(k, η, sΛ)|s̄Γµb|Λb(p, sb)〉 =
√

4ūα(k, η, sΛ)ζ
α(k, η, sΛ)Γµu(mΛb v, sb) , (2)

where v is the velocity of the initial state and Γµ denotes a Dirac structure. In the following,
I focus on the cases Γµ = γµ, γµγ5, iσµνqν, iσµνqνγ5. The most general decomposition for
the leading-order and leading-power contribution ζα reads

ζα = vα[ζ1 + ζ2/v] , (3)

where ζ1 and ζ2 are the leading Isgur-Wise (IW) functions.
The discussion of 1/mb and αs corrections closely follows Refs. [25–27]. In this spirit, I

replace the (axial-)vector and (pseudo-)tensor currents with:

s̄γµb 7→ s̄ Jµ

V(A)
hv = (1 + C(v)

0 )s̄γµ(γ5)hv ± C(v)
1 vµ s̄(γ5)hv +

1
2mb

s̄∆Jµ

V(A)
hv , (4)

s̄(γ5)iσµνqνb 7→ s̄ Jµ

T(5)hv = (1 + C(t)
0 )s̄(γ5)iσµνqνhv +

1
2mb

s̄∆Jµ

T(5)hv . (5)

The matching coefficients at NLO read [25,26]

C(v)
0 (µ) =− αsCF

4π

[
3 log

(
µ

mb

)
+ 4
]
+O(α2

s ) ,

C(v)
1 (µ) = +

αsCF
2π

+O(α2
s ) ,

C(t)
0 (µ) =− αsCF

4π

[
5 log

(
µ

mb

)
+ 4
]
+O(α2

s ) .

(6)

For numerical purposes, the scale of the Wilson coefficients is set to µ ∼ 2 GeV. The
NLP 1/mb corrections due to the expansion of the current are parametrised as

〈Λ∗(k, η, sΛ)|s̄∆Jµ

V(A,T,T5)b|Λb(p, sb)〉 =
√

4 ∑
i

ūα(k, η, sΛ)ζ
αβ[OV(A,T,T5)

i ]
µ
βu(mΛb v, sb) , (7)

where
ζαβ = gαβ

[
ζSL

1 + /vζSL
2

]
+ vαvβ

[
ζSL

3 + /vζSL
4

]
+ vαγβ

[
ζSL

5 + /vζSL
6

]
. (8)

The functions ζSL
1...6 are the subleading Isgur-Wise functions, and they correspond to

all the independent Dirac structures that can appear in ζαβ. The possible operators Oµβ
i are

listed in Ref. [25]. Out of the possible six of them, only the operator [OΓ
1 ]

µ
β arises at order

1/mb, while the others are suppressed byO(αs/mb) and therefore are beyond the precision
here required. Therefore, the only contributions that I consider for this analysis come from:[

OV
1

]µ

β
=+ γµγβ ,

[
OA

1

]µ

β
=− γ5γµγβ ,[

OT
1

]µ

β
=+ iσµνqνγβ ,

[
OT5

1

]µ

β
=+ iγ5σµνqνγβ ,

(9)

By means of Dirac algebra, and using the properties of Rarita-Schwinger objects in
Ref. [23], inserting Equation (9) in Equation (8) yields

〈Λ∗(k, η, sΛ)|s̄∆Jµ
Vb|Λb(p, sb)〉 = 2

{
2ūα(k, η, sΛ)u(mΛb v, sb)gαµ(ζSL

1 + ζSL
2 )

+ ūα(k, η, sΛ)γ
µ(mΛb v, sb)vα(ζSL

3 − ζSL
4 − 2ζSL

2 − 2ζSL
5 )
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+ 2ūα(k, η, sΛ)u(mΛb v, sb)vαvµ(ζSL
4 + 2ζSL

6 )

}
, (10)

〈Λ∗(k, η, sΛ)|s̄∆Jµ
Ab|Λb(p, sb)〉 = 2

{
2ūα(k, η, sΛ)γ5u(mΛb v, sb)gαµ(−ζSL

1 + ζSL
2 )

− ūα(k, η, sΛ)γ5γµ(mΛb v, sb)vα(ζSL
3 + ζSL

4 + 2ζSL
2 + 2ζSL

5 )

+ 2ūα(k, η, sΛ)γ5u(mΛb v, sb)vαvµ(ζSL
4 − 2ζSL

6 )

}
, (11)

〈Λ∗(k, η, sΛ)|s̄∆Jµ
Tb|Λb(p, sb)〉 = 2

{
− ūα(k, η, sΛ)γ

µu(mΛb v, sb)vα ×
[

2mΛb ζSL
1 + 2mΛ∗ζ

SL
2

+ (mΛb + mΛ∗)(ζ
SL
3 + 2ζSL

6 ) + s
m2

Λ∗ + mΛb mΛ∗ − q2

mΛb

ζSL
4

]
+ 2ūµ(k, η, sΛ)u(mΛb v, sb)×[
(mΛb −mΛ∗)ζ

SL
1 −

m2
Λ∗ −mΛ∗mΛb − q2

mΛb

ζSL
2

]
+ 2ūα(k, η, sΛ)γ

µu(mΛb v, sb)kα(ζSL
1 − ζSL

2 )

+ ūα(k, η, sΛ)u(mΛb v, sb)vαkµ(ζSL
3 + 2ζSL

2 + ζSL
4 + 2ζSL

6 )

+ 4ūα(k, η, sΛ)u(mΛb v, sb)vµkαζSL
2

+ ūα(k, η, sΛ)u(mΛb v, sb)vαvµ×[
mΛb ζSL

3 − 2mΛb ζSL
2 + (2mΛ∗ −mΛb)ζ

SL
4 + 2mΛb ζSL

6

]}
, (12)

〈Λ∗(k, η, sΛ)|s̄∆Jµ
T5b|Λb(p, sb)〉 = 2

{
− ūα(k, η, sΛ)γ5γµu(mΛb v, sb)vα

[
2mΛb ζSL

1 + 2mΛ∗ζ
SL
2

+ (mΛb −mΛ∗)(ζ
SL
3 + 2ζSL

6 )−
m2

Λ∗ −mΛb mΛ∗ − q2

mΛb

ζSL
4

]
+ 2ūµ(k, η, sΛ)γ5u(mΛb v, sb)×[
(mΛb + mΛ∗)ζ

SL
1 +

m2
Λ∗ + mΛ∗mΛb − q2

mΛb

ζSL
2

]
+ 2ūα(k, η, sΛ)γ5γµu(mΛb v, sb)kα(ζSL

1 + ζSL
2 )

+ ūα(k, η, sΛ)γ5u(mΛb v, sb)vαkµ(ζSL
3 − 2ζSL

2 − ζSL
4 + 2ζSL

6 )

− 4ūα(k, η, sΛ)γ5u(mΛb v, sb)vµkαζSL
2

+ ūα(k, η, sΛ)γ5u(mΛb v, sb)vαvµ×[
mΛb ζSL

3 + 2mΛb ζSL
2 + (2mΛ∗ + mΛb)ζ

SL
4 + 2mΛb ζSL

6

]}
. (13)

The number of independent subleading IW functions can be reduced by using equa-
tions of motions. In particular, for this decay, the relation vβζαβ = 0 gives the following
conditions:

ζSL
1 + ζSL

3 + ζSL
6 = 0 , (14)

ζSL
2 + ζSL

4 + ζSL
5 = 0 . (15)

I choose to retain as independent quantities the subleading IW functions ζSL
1 , ζSL

2 , ζSL
3 and ζSL

4 .
Corrections to the form factors arise also by non-local insertions of the heavy quark

Lagrangian at order 1/mb. Following the discussions in Refs. [25,28,29], non-local insertion
of the kinetic operator yields a universal shift proportional to the tree-level matrix elements.
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Hence I reabsorb such shift in a redefinition of the leading order IW function ζ1. Non-local
insertion of the chromomagnetic operator can be parametrised as [30]

Rα
µνūα(k, η, sΛ)Γ

1 + /v
2

iσµνu(mΛb v, sb) , (16)

where the object Rα
µν is an antisymmetric tensor in the indices µ and ν and contains

the velocity v. Γ symbolises all the possible Dirac structures which mediate Λb → Λ∗

transitions. Using equations of motion, it can be shown that no possible form of Rα
µν gives

a non-zero contribution for the chromomagnetic operator.
The expressions of the form factors in terms of the leading and subleading IW functions

are obtained by matching the helicity amplitudes with their HQE expansion. For the vector
current, by comparing Equations (A17)–(A20) to Equations (A33)–(A36), I get

F1/2,0 =

√
s+

2m3/2
Λb

m3/2
Λ∗

{
ζ1s−

[
(1 + C(v)

0 ) + C(v)
1

s+
2mΛb(mΛb + mΛ∗)

]

+ζ2s−

[
(1 + C(v)

0 )
m2

Λ∗ + mΛ∗mΛb − q2

mΛb(mΛb + mΛ∗)
+ C(v)

1
s+

2mΛb(mΛb + mΛ∗)

]

−ζSL
1

λ + m2
Λb
(m2

Λ∗ −m2
Λb

+ q2)

m2
Λb
(mΛ∗ + mΛb)

− ζSL
2

(m2
Λ∗ −m2

Λb
+ q2)

(mΛ∗ + mΛb)

−s−

[
ζSL

3

(2m2
Λ∗ + 3mΛ∗mΛb + m2

Λb
− 2q2)

2m2
Λb
(mΛ∗ + mΛb)

− ζSL
4

(m2
Λ∗ + 3mΛ∗mΛb + 2m2

Λb
− q2)

2m2
Λb
(mΛ∗ + mΛb)

]}
, (17)

F1/2,t =

√
s−s+

2m3/2
Λb

m3/2
Λ∗

{
ζ1

[
(1 + C(v)

0 )− C(v)
1

m2
Λ∗ −m2

Λb
− q2

2mΛb(mΛb −mΛ∗)

]

−ζ2
1

2mΛb(mΛb −mΛ∗)

[
2(1 + C(v)

0 )(m2
Λ∗ −mΛ∗mΛb − q2) + C(v)

1 (m2
Λ∗ −m2

Λb
− q2)

]
− 1

mΛb −mΛ∗

[
s−m2

Λ∗

m2
Λb

ζSL
1 − ζSL

2

]

+

[
2m2

Λ∗ −mΛ∗mΛb −m2
Λb
− 2q2

2m2
Λb
(mΛb −mΛ∗)

ζSL
3 −

m2
Λ∗ + mΛ∗mΛb − 2m2

Λb
− q2

2m2
Λb
(mΛb −mΛ∗)

ζSL
4

]
, (18)

F1/2,⊥ =

√
s+

2m3/2
Λb

m3/2
Λ∗

{
s−(1 + C(v)

0 )(ζ1 − ζ2)−mΛ∗(ζ
SL
1 + ζSL

2 ) +
s−

2mΛb

(ζSL
3 + ζSL

4 )

}
, (19)

F3/2,⊥ =−
√

s+
2m3/2

Λb
m1/2

Λ∗

{
ζSL

1 + ζSL
2

}
, (20)

and for the axial vector current, by matching Equations (A21)–(A24) to Euqationa (A37)–
(A40) I obtain

G1/2,0 =

√
s−

2m3/2
Λb

m3/2
Λ∗

{
ζ1s+

[
(1 + C(v)

0 ) + C(v)
1

s−
2mΛb(mΛb −mΛ∗)

]

−ζ2s+

[
(1 + C(v)

0 )
m2

Λ∗ −mΛ∗mΛb − q2

mΛb(mΛb −mΛ∗)
− C(v)

1
s−

2mΛb(mΛb −mΛ∗)

]

−ζSL
1

λ + m2
Λb
(m2

Λ∗ −m2
Λb

+ q2)

m2
Λb
(mΛb −mΛ∗)

+ ζSL
2

(m2
Λ∗ −m2

Λb
+ q2)

(mΛb −mΛ∗)

−s+

[
ζSL

3

(2m2
Λ∗ − 3mΛ∗mΛb + m2

Λb
− 2q2)

2m2
Λb
(mΛb −mΛ∗)

+ ζSL
4

(m2
Λ∗ − 3mΛ∗mΛb + 2m2

Λb
− q2)

2m2
Λb
(mΛb −mΛ∗)

]}
, (21)
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G1/2,t =

√
s+s−

2m3/2
Λb

m3/2
Λ∗

{
ζ1

[
(1 + C(v)

0 )− C(v)
1

m2
Λ∗ −m2

Λb
− q2

2mΛb(mΛb + mΛ∗)

]

+ζ2
1

2mΛb(mΛb + mΛ∗)

[
2(1 + C(v)

0 )(m2
Λ∗ + mΛ∗mΛb − q2)− C(v)

1 (m2
Λ∗ −m2

Λb
− q2)

]
− 1

mΛb + mΛ∗

[
s−m2

Λ∗

m2
Λb

ζSL
1 + ζSL

2

]

+

[
2m2

Λ∗ + mΛ∗mΛb −m2
Λb
− 2q2

2m2
Λb
(mΛb + mΛ∗)

ζSL
3 +

m2
Λ∗ −mΛ∗mΛb − 2m2

Λb
− q2

2m2
Λb
(mΛb + mΛ∗)

ζSL
4

]
, (22)

G1/2,⊥ =

√
s−

2m3/2
Λb

m3/2
Λ∗

{
s+
[
(1 + C(v)

0 )(ζ1 + ζ2)
]
+ mΛ∗(ζ

SL
1 − ζSL

2 ) +
s+

2mΛb

(ζSL
3 − ζSL

4 )

}
, (23)

G3/2,⊥ =−
√

s−
2m3/2

Λb
m1/2

Λ∗

{
ζSL

1 − ζSL
2

}
. (24)

For the tensor current, the comparison between Equations (A25)–(A27) and Equations (A41)–
(A43) yields

T1/2,0 =

√
s+

m3/2
Λb

m1/2
Λ∗

{
(1 + C(t)

0 )(ζ1 − ζ2)s− −
m2

Λ∗ + m2
Λb
− q2

mΛb

(ζSL
1 − ζSL

2 )

− s−
2mΛb

(ζSL
4 + ζSL

3 )

}
, (25)

T1/2,⊥ =

√
s+

m3/2
Λb

m1/2
Λ∗

{
(1 + C(t)

0 )

[
ζ1 +

mΛ∗(mΛb + mΛ∗)− q2

mΛb(mΛ∗ + mΛb)
ζ2

]
s−

+mΛ∗
mΛ∗(mΛb −mΛ∗) + q2

mΛb(mΛ∗ + mΛb)
ζSL

1 +
mΛ∗(mΛb −mΛ∗)

mΛ∗ + mΛb

ζSL
2

+
s−

2mΛb

[
−ζSL

3 +
mΛ∗(mΛb + mΛ∗)− q2

mΛb(mΛ∗ + mΛb)
ζSL

4

]}
, (26)

T3/2,⊥ =+

√
s+

m3/2
Λb

m1/2
Λ∗

{
− ζSL

1 (mΛb −mΛ∗) +
m2

Λ∗ −mΛb mΛ∗ − q2

mΛb

ζSL
2

}
, (27)

while for the axial-tensor form factors the comparison between Equations (A29)–(A31) and
Equations (A44)–(A46) gives

T5
1/2,0 =

√
s−

m3/2
Λb

m1/2
Λ∗

{
(1 + C(t)

0 )(ζ2 + ζ1)s+ −
m2

Λ∗ + m2
Λb
− q2

mΛb

(ζSL
1 − ζSL

2 )

− s+
2mΛb

(ζSL
3 − ζSL

4 )

}
, (28)

T5
1/2,⊥ =

√
s−

m3/2
Λb

m1/2
Λ∗

{
(1 + C(t)

0 )

[
ζ1 −

mΛ∗(−mΛb + mΛ∗)− q2

mΛb(mΛb −mΛ∗)
ζ2

]
s+

+mΛ∗
mΛ∗(+mΛb + mΛ∗)− q2

mΛb(mΛb −mΛ∗)
ζSL

1 +
mΛ∗(mΛb + mΛ∗)

mΛb −mΛ∗
ζSL

2

− s+
2mΛb

[
ζSL

3 +
mΛ∗(−mΛb + mΛ∗)− q2

mΛb(mΛb −mΛ∗)
ζSL

4

]}
, (29)

T5
3/2,⊥ =−

√
s−

m3/2
Λb

m1/2
Λ∗

{
ζSL

1 (mΛb + mΛ∗) +
m2

Λ∗ + mΛb mΛ∗ − q2

mΛb

ζSL
2

}
. (30)
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The expressions in Equations (17)–(30) have been checked against the results in
Ref. [21], where the HQE for the form factors including NLO αs corrections is presented. I
find agreement with the expressions reported in Ref. [21], apart from a sign flip in the term
proportional to C(v)

1 ζ2 in G1/2,t. This misalignment is not expected to invalidate the analysis
in Ref. [21] since it appears in a term that is αs suppressed. In the following analysis, I stick
to my findings and adopt the signs in Equation (22).

3. Form Factors Relations and Comparison with Lattice QCD Results

The first lattice QCD calculation for the full basis of Λb → Λ∗ form factors is presented
in Ref. [22]. The calculation is performed in the low-recoil region, very close to the zero-
recoil point q2

max = (mΛb −mΛ∗)
2. Two lattice points per form factor are obtained, allowing

to determine the normalisation and the slope of each form factor. In the kinematical limit
where the lattice QCD computation is valid, it is more convenient to substitute the variable
q2 with the adimensional variable w = p · k/(2mΛb mΛ∗) = (m2

Λb
+ m2

Λ∗ − q2)/(2mΛb mΛ∗),
where the zero-recoil point corresponds to w = 1. The continuum extrapolation of the
results in Ref. [22] is performed using the following functional form for each of the form
factor fi:

fi = Fi + Ai(w− 1) . (31)

Values for the coefficients Fi and Ai and their covariance matrix are given in ancillary
files of Ref. [22].

Given that both the results in Ref. [22] and the parametrisation based on HQE in
Section 2 are valid in the low-recoil region, the former is suitable to extract the unknown,
hadronic parameters for the leading and sub-leading IW functions introduced in Section 2.
I want to stress that it is not possible to extrapolate these results to the large-recoil region
without any further information on the form factors valid at low q2.

The form factor base employed in Ref. [22] differs from the one presented in Section 2
and the matching between the two is given in Appendix B. In the following, I denote with
capital letters the HQE base and with lower cases the base of Ref. [22].

3.1. Relations in the Zero-Recoil Point

I study the form factors first at the zero-recoil point. At this particular kinematical con-
figuration, all the axial-vector and pseudo-tensor HQE form factors become zero because
they are weighted by the factor s−. The remainder is further simplified since the terms
associated with ζ1, ζ2, ζSL

3 , ζSL
4 , are always proportional to s−, hence vanish, leaving only

ζSL
1 and ζSL

2 to determine the form factors in the zero-recoil point. Even more interestingly,
from Equations (17)–(30) it can be seen that only the combination ζSL

1 + ζSL
2 appears, with

different weights for each of the form factor. Therefore, HQE provides predictions for ratios
of form factors at zero-recoil independent of the IW functions. They read:

F1/2,0

F1/2,⊥
=

F1/2,0

F3/2,⊥
= −2

mΛb −mΛ∗

mΛb + mΛ∗
= −1.15 ,

F1/2,⊥
F3/2,⊥

= 1 ,

T1/2,0

T1/2,⊥
=− 2

mΛb + mΛ∗

mΛb −mΛ∗
= −3.48 ,

T1/2,0

T3/2,⊥
=

2mΛ∗

mΛb −mΛ∗
= 0.74 ,

T1/2,⊥
T3/2,⊥

=− mΛ∗

mΛb + mΛ∗
= −0.21 ,

(32)

where errors on the baryon masses have been neglected. These predictions have to be
compared with the results in Ref. [22]. Extracting pseudodata for the parameters entering
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the lattice QCD form factors, according to their central values and covariance matrix, I find
(in the HQE basis)

Flatt
1/2,0

Flatt
1/2,⊥

=− 0.63± 1.82 ,
Flatt

1/2,0

Flatt
3/2,⊥

=− 0.94± 0.14 ,
Flatt

1/2,⊥
Flatt

3/2,⊥
= 1.48± 0.39 ,

Tlatt
1/2,0

Tlatt
1/2,⊥

=− 5.62± 7.86 ,
Tlatt

1/2,0

Tlatt
3/2,⊥

=+ 1.03± 0.20 ,
Tlatt

1/2,⊥
Tlatt

3/2,⊥
=− 0.18± 0.05 .

(33)

The central values showed above are the medians of the distributions and the errors
correspond to the 68% intervals. Concerning the ratios Flatt

1/2,0/Flatt
1/2,⊥ and Tlatt

1/2,0/Tlatt
1/2,⊥, I

stress that their uncertainties are very large to reflect the fact that their distributions are
highly non gaussian. For the other ratios, the gaussian approximation well describes lattice
data. The predictions for the ratios obtained in the HQE framework and using the lattice
QCD results agree within ∼ 1.1σ.

3.2. Form Factors Parametrisation and Fit

The HQE of the Λb → Λ∗ form factors presented in Section 2 depends on 6 unknown
IW functions. The HQE does not predict the w dependence of the IW functions, and it
has to be inferred from other principles. Since the formalism of HQE is valid mainly in
the low-recoil region for b→ s transitions, the form factors can be expanded around the
zero-recoil point. Substituting q2 with w, the IW functions ζi can be expanded as

ζi =
N

∑
n=0

ζ
(n)
i
n!

(w− 1)n . (34)

The truncation order N of the expansion depends on the precision required and how
far from w = 1 the form factors are evaluated. The parameters ζ

(n)
i are unknown and have

to be fixed using some dynamical information. Notice that since the Λ∗ is not a ground
state baryon, the HQE does not predict any normalisation for the leading IW functions.

For convenience, I perform a fit to the lattice QCD data using the base in Ref. [22],
using the chiral and continuum extrapolation there provided to obtain pseudo-points for
the form factors. Since the lattice QCD data do not provide information on the curvature of
the form factors, it is useful to express the HQE form factors as in the form of Equation (31).
At this scope, I use the parametrisation in Equation (34) up to N = 1 and then re-expand
the full form factors up to the first order in w− 1. After this procedure, it can be noticed
that (i) the parameters ζ

(1)
1 and ζ

(1)
2 appear always in the combination ζ

(1)
1 + ζ

(1)
2 and (ii) the

parameters ζ
SL,(1)
3 and ζ

SL,(1)
4 appear always in the combination ζ

SL,(1)
4 − ζ

SL,(1)
3 . Therefore

these parameters cannot be determined on their own, but only the combinations ζ
(1)
1 + ζ

(1)
2

and ζ
SL,(1)
4 − ζ

SL,(1)
3 are determined. This makes the number of independent, unknown

HQE parameters 10.
Before discussing the fit results, a couple of technical comments are in order:

1. Given the available information in Ref. [22], it is possible to use two pseudo-points
for each form factor. I choose to evaluate them at w = 1.02 and w = 1.04. Given that
the HQE parametrisation depends on fewer parameters than the lattice QCD one, it
is possible to perform a fit to only a subset of the lattice QCD data. In particular, I
choose to employ the data on the vector and axial-vector form factors and provide
predictions for the tensor and pseudo-tensor form factors based on the fit results. I
comment on the consequences of this choice in the following. I stress that this is a
common procedure and has been already employed in Ref. [31].

2. The HQE based form factors are affected by uncertainties due to the unknown con-
tributions from higher orders of expansion. By naive dimensional arguments these
contributions are expected to be roughly O(few %). Hence, I introduce an uncorre-
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lated 1% uncertainty on all HQE expressions of the form factors to take these effects
into account. Comments on this choice can be found later in the text.

The fit is performed with a χ2 minimisation, yielding at the minimum χ2
min/d.o.f. ∼

0.25. This low value is a direct consequence of the poor current knowledge of the exact
size of the theory uncertainties and their correlations. If the theory uncertainties were
uncorrelated, the fit procedure would indicate that their natural size is smaller than the one
inferred from HQE. However, such a low value for the χ2

min/d.o.f. could also indicate that
strong correlations among unknown higher-order terms in the HQE have been neglected.
At the current status, it is not possible to obtain a more precise estimation of theory
uncertainties and their correlations. Therefore, I retain the conservative choice of an
uncorrelated 1% uncertainty on all the form factors in the analysis.

The best-fit point for the hadronic parameters and their uncertainties is shown in
Table 1, and the correlation matrix among the parameters is given in Appendix C. With this
result, I compare the HQE form factors to the lattice QCD ones. The comparison is given in
Figure 1, showing excellent agreement between the two parametrisations.

Table 1. Best fit points for the HQE parameters.

Parameter Best Fit Point

ζ
(0)
1

0.454± 0.070

ζ
(0)
2

−0.0303± 0.0552

ζ
(1)
1 + ζ

(1)
2

0.113± 0.024

ζ
SL,(0)
1

0.125± 0.038

ζ
SL,(1)
1

0.0487± 0.0614

ζ
SL,(0)
2

0.0110± 0.0363

ζ
SL,(1)
2

0.00362± 0.06184

ζ
SL,(0)
3

0.228± 0.190

ζ
SL,(0)
4

0.0883± 0.185

ζ
SL,(1)
4 − ζ

SL,(1)
3

−0.0267± 0.0773

I use the results of the fit to obtain predictions for the tensor and pseudo-tensor form
factors. The comparison between them and the lattice QCD computation is shown in
Figure 2 ( The lattice QCD results employed here for tensor and pseudo-tensor form factors
differ by a global sign with respect to the first version of Ref. [22]. This sign inconsistency
will be fixed in a forthcoming update of Ref. [22].). The form factors h⊥′ and h̃⊥′ show a
tension between lattice QCD data and HQE predictions. This tension manifests itself also
when introducing the tensor and pseudo-tensor form factors in the fit. This procedure
increases the χ2/d.o.f., making it much higher than 1. This corroborates the choice of
excluding them from the fit procedure.
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Figure 1. Comparison between the lattice results in Ref. [22] (grey band) and the fit results for the HQE form factors (red
band) for the vector and axial-vector form factors. The two bands represent the 68% interval.

Sources of these tensions can be looked for in the lattice QCD data and HQE frame-
work. The hypotheses are mainly two: (i) the uncertainties on the lattice QCD parameters
describing tensor and pseudo-tensor form factors are underestimated, and (ii) missing
corrections in the HQE cause a shift in the hadronic parameters. In the case of (i), I checked
explicitly the result of inflating lattice QCD uncertainties by 20% for h⊥′ and h̃⊥′ . In Figure 3
the results of this test are shown, proving that the compatibility slightly improves, even
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if it is still poor in the case of h̃⊥′ . Concerning (ii), the most important corrections in the
HQE, beside the ones already discussed in this work, arise at order O(αs/mb), and could
produce a O(few %) shift in the central value of the form factors parameters. However,
assessing the quantitative impact of these corrections requires understanding how they
affect the form factors in a correlated way.

From these estimates, it seems that neither (i) nor (ii) can explain the tension on their
own. Most likely, a combination of the two effects might help to reconcile the HQE for the
tensor and pseudo-tensor form factors with the current lattice QCD data.

Figure 2. Comparison between the lattice results in Ref. [22] (grey band) and the predictions for tensor and pseudo-tensor
form factors based on the fir results in Table 1 (red band). The two bands represent the 68% interval.
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Figure 3. Comparison between the lattice QCD results in Ref. [22] (grey band) and the predictions
for tensor and pseudo-tensor form factors based on the fir results in Table 1 (red band) with lattice
QCD uncertainties inflated of 20%. The two bands represent the 68% interval.

4. Conclusions

I revisit the Heavy Quark Expansion of the Λb → Λ∗(1520) form factors including
next-to-leading order αs corrections and for the first time next-to-leading power 1/mb
corrections. In this framework, form factors depend on unknown hadronic parameters
which are obtained by fitting the form factor parametrisation here discussed to a recent
lattice QCD computation [22]. I perform the fit using data for vector and axial-vector form
factors, finding good agreement between the lattice QCD calculation and the Heavy Quark
Expansion predictions. The fit results are used to predict tensor and pseudo-tensor form
factors, showing tensions between the Heavy Quark Expansion-based predictions and
the lattice QCD data. I discuss two possible sources of the tensions: an underestimation
of the uncertainties on the lattice QCD parameters involved in these form factors and
missing higher-order terms in the Heavy Quark Expansion, e.g. at order O(αs/mb). Most
likely, only a combination of these two effects could reconcile lattice QCD determination
and Heavy Quark Expansion based parametrisation of tensor and pseudo-tensor form
factors. Until then, it is not possible to claim high precision in the Heavy Quark Expansion
parametrisation of Λb → Λ∗(1520) form factors.

Besides this, I want to point out the need to extend the calculation of the Λb →
Λ∗(1520) form factors to the high-recoil region. Quark models [19] are available, although
without a consistent treatment of uncertainties. It is therefore needed to perform up-to-date
calculations of the Λb → Λ∗(1520) form factors using e.g. sum rules at q2 ≤ 0. Estimates
of this type will allow to extrapolate the form factors to the high-recoil region and to assess
the magnitude of their curvature. These studies will be crucial for future LHCb analysis of
Λb → Λ∗(1520)`+`− decays.
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Appendix A. Details on the Form Factor Parametrisation

Concerning the vector and the axial vector currents, we follow the notation of Ref. [24].
For the vector current we have:

Γαµ

V,(1/2,t) =

√
4mΛb mΛ∗√

s+
2mΛ∗√

s+s−
pα mΛb −mΛ∗√

q2

qµ√
q2

, (A1)

Γαµ

V,(1/2,0) =

√
4mΛb mΛ∗√

s−
2mΛ∗√

s+s−
pα mΛb + mΛ∗

s+

[
(p + k)µ −

m2
Λb
−m2

Λ∗

q2 qµ

]
, (A2)

Γαµ

V,(1/2,⊥) =

√
4mΛb mΛ∗√

s−
2mΛ∗√

s+s−
pα

[
γµ − 2mΛ∗

s+
pµ −

2mΛb

s+
kµ

]
, (A3)

Γαµ

V,(3/2,⊥) =

√
4mΛb mΛ∗√

s−
−4iεαµpk
√

s+s−
γ5 + ΓV,(1/2,⊥) , (A4)

while for the axial vector current:

Γαµ

A,(1/2,t) =

√
4mΛb mΛ∗√

s−
2mΛ∗√

s+s−
pα mΛb + mΛ∗√

q2

qµ√
q2

, (A5)

Γαµ

A,(1/2,0) =

√
4mΛb mΛ∗√

s+
2mΛ∗√

s+s−
pα mΛb −mΛ∗

s−

[
(p + k)µ −

m2
Λb
−m2

Λ∗

q2 qµ

]
, (A6)

Γαµ

A,(1/2,⊥) =

√
4mΛb mΛ∗√

s+
2mΛ∗√

s+s−
pα

[
γµ +

2mΛ∗

s−
pµ −

2mΛb

s−
kµ

]
, (A7)

Γαµ

A,(3/2,⊥) =

√
4mΛb mΛ∗√

s+
−4iεαµpk
√

s+s−
γ5 − ΓA,(1/2,⊥) . (A8)

Concerning the tensor currents, we modify the parametrisation in Ref. [20] by rescaling
each structure with suitable factors. We have:

Γαµ

T,(1/2,0) =

√
4mΛb mΛ∗√

s+
q2

s+s−
pα

[
(p + k)µ −

m2
Λb
−m2

Λ∗

q2 qµ

]
, (A9)

Γαµ

T,(1/2,⊥) =

√
4mΛb mΛ∗√

s+

mΛb + mΛ∗

s−
pα

[
γµ − 2

mΛ∗

s+
pµ − 2

mΛb

s+
kµ

]
, (A10)

Γαµ

T,(3/2,⊥) =

√
4mΛb mΛ∗√

s+

[
gαµ +

mΛ∗

s−
pα

(
γµ − 2

1
mΛ∗

kµ + 2
mΛ∗

s+
pµ + 2

mΛb

s+
kµ

)]
, (A11)

and

Γαµ

T5,(1/2,0) =

√
4mΛb mΛ∗√

s−
q2

s+s−
pα

[
(p + k)µ −

m2
Λb
−m2

Λ∗

q2 qµ

]
, (A12)

Γαµ

T5,(1/2,⊥) =

√
4mΛb mΛ∗√

s−

mΛb −mΛ∗

s+
pα

[
γµ + 2

mΛ∗

s−
pµ − 2

mΛb

s−
kµ

]
, (A13)

Γαµ

T5,(3/2,⊥) =

√
4mΛb mΛ∗√

s−

[
gαµ − mΛ∗

s+
pα

(
γµ + 2

1
mΛ∗

kµ − 2
mΛ∗

s−
pµ + 2

mΛb

s−
kµ

)]
. (A14)

I define the helicity amplitudes as

AΓ(sb, sΛ, λΛ, λq) = 〈Λ∗(sΛ, η(λΛ))| s̄Γµε∗µ(λq)b |Λb(sb)〉 , (A15)

where ε∗µ(λq) are a basis of polarisation vectors for the virtual W exchange with polarisation
states λq = {t, 0,+1,−1}. For details see Ref. [24]. The physical helicity amplitudes are
identified by the following set:
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AΓ(+1/2,+3/2,+1) ≡ AΓ(+1/2,+1/2,+1,+1) ,

AΓ(+1/2,+1/2, 0) ≡
√

2
3
AΓ(+1/2,+1/2, 0, 0) +

√
1
3
A(3/2)

Γ (+1/2,−1/2,+1, 0) ,

AΓ(+1/2,+1/2, t) ≡
√

2
3
AΓ(+1/2,+1/2, 0, t) +

√
1
3
A(3/2)

Γ (+1/2,−1/2,+1, t) ,

AΓ(+1/2,−1/2,−1) ≡
√

2
3
AΓ(+1/2,−1/2, 0,−1) +

√
1
3
A(3/2)

Γ (+1/2,+1/2,−1,−1) ,

(A16)

where Γ represents the four possible currents. In the case of the vector and axial vector
current, the helicity amplitudes are already calculated in Ref. [24]. For convenience, I adapt
them to this case and report them here:

AV(+1/2,+3/2,+1) = −4
√

mΛb mΛ∗F3/2,⊥ , (A17)

AV(+1/2,+1/2, 0) = 2

√
2 mΛb mΛ∗

3 q2 (mΛb + mΛ∗)F1/2,0 , (A18)

AV(+1/2,+1/2, t) = 2

√
2 mΛb mΛ∗

3 q2 (mΛb −mΛ∗)F1/2,t , (A19)

AV(+1/2,−1/2,−1) = − 4√
3

√
mΛb mΛ∗F1/2,⊥ , (A20)

and for the axial vector current:

AA(+1/2,+3/2,+1) = −4
√

mΛb mΛ∗G3/2,⊥ , (A21)

AA(+1/2,+1/2, 0) = 2

√
2 mΛb mΛ∗

3 q2 (mΛb −mΛ∗)G1/2,0 , (A22)

AA(+1/2,+1/2, t) = 2

√
2 mΛb mΛ∗

3 q2 (mΛb + mΛ∗)G1/2,t , (A23)

AA(+1/2,−1/2,−1) =
4√
3

√
mΛb mΛ∗G1/2,⊥ . (A24)

In the case of tensor currents, with the definitions in Equations (A11)–(A14), I find

AT(+1/2,+3/2,+1) = −2
√

mΛb mΛ∗ T3/2,⊥ , (A25)

AT(+1/2,+1/2, 0) = −
√

2
3

√
mΛb

mmΛ∗
q2 T1/2,0 , (A26)

AT(+1/2,−1/2,−1) = +
2√
3

√
mΛb

mΛ∗
(mΛb + mΛ∗)T1/2,⊥ , (A27)

AT(+1/2,+1/2, t) = 0 , (A28)

and

AT5(+1/2,+3/2,+1) = +2
√

mΛb mΛ∗ T5
3/2,⊥ , (A29)

AT5(+1/2,+1/2, 0) = +

√
2
3

√
mΛb

Λ∗
q2 T5

1/2,0 , (A30)

AT5(+1/2,−1/2,−1) = +
2√
3

√
mΛb

mΛ∗
(mΛb −mΛ∗)T1/2,⊥ , (A31)

AT5(+1/2,+1/2, t) = 0 . (A32)

In the heavy quark expansion, the helicity amplitudes concerning the vector cur-
rent read:
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AV(+1/2,+3/2,+1) =2
s+

mΛb

(ζSL
1 + ζSL

2 ) , (A33)

AV(+1/2,+1/2, 0) =
√

2s+
mΛb mΛ∗

√
3q2

{
s−

mΛb

[
(1 + C(v)

0 )(m2
Λ∗ + mΛ∗mΛb − q2) +

1
2

C(v)
1 s+

]
ζ2

+ s−

[
(1 + C(v)

0 )(mΛ∗ + mΛb) +
1

2mΛb

C(v)
1 s+

]
ζ1

−
[
m2

Λb
(m2

Λ∗ −m2
Λb

+ q2) + s−s+
]
ζSL

1 − (m2
Λ∗ −m2

Λb
+ q2)ζSL

2

− s−
2m2

Λb

[
(2m2

Λ∗ + 3mΛ∗mΛb + m2
Λb
− 2q2)ζSL

3

− (m2
Λ∗ + 3mΛ∗mΛb + 2m2

Λb
− q2)ζSL

4

]}
, (A34)

AV(+1/2,+1/2, t) =
√

2s−s+
mΛb mΛ∗

√
3q2

{
1

mΛb

[
(1 + C(v)

0 )(−m2
Λ∗ + mΛ∗mΛb + q2)

+
1
2

C(v)
1 (−m2

Λ∗ + m2
Λb

+ q2)

]
ζ2 +

[
(1 + C(v)

0 )(mΛb −mΛ∗)

+ C(v)
1

−m2
Λ∗ + m2

Λb
+ q2

2mΛb

]
ζ1 +

[
m2

Λ∗ − q2

m2
Λb

ζSL
1 + ζSL

2

]

+
1

2m2
Λb

[
(2m2

Λ∗ −mΛ∗mΛb −m2
Λb
− 2q2)ζSL

3

− (m2
Λ∗ + mΛ∗mΛb − 2m2

Λb
− q2)ζSL

4

]}
, (A35)

AV(+1/2,−1/2,−1) =
2
√

s+√
3mΛb mΛ∗

{
s−(1 + C(v)

0 )(ζ2 − ζ1) + mΛ∗(ζ
SL
1 + ζSL

2 )

− s−
2mΛb

(ζSL
3 + ζSL

4 )

}
, (A36)

and for the axial vector current:

AA(+1/2,+3/2,+1) =2
s−

mΛb

(ζSL
1 − ζSL

2 ) , (A37)

AA(+1/2,+1/2, 0) =
√

2s−√
3q2mΛb mΛ∗

{
s+

mΛb

[
(1 + C(v)

0 )(−m2
Λ∗ + mΛ∗mΛb + q2)

+
s−
2

C(v)
1

]
ζ2 + s+

[
(mΛb −mΛ∗)(1 + C(v)

0 ) +
s−

2mΛb

C(v)
1

]
ζ1

+
m2

Λb
(m2

Λb
−m2

Λ∗ − q2)− s+s−
m2

Λb

ζSL
1 + (m2

Λ∗ −m2
Λb

+ q2)ζSL
2 ,

− s+
2m2

Λb

[
(2m2

Λ∗ − 3mΛ∗mΛb + m2
Λb
− 2q2)ζSL

3

+ (m2
Λ∗ − 3mΛ∗mΛb + 2m2

Λb
− q2)ζSL

4

]}
(A38)

AA(+1/2,+1/2, t) =
√

2s+s−√
3q2mΛb mΛ∗

{
1

mΛb

[
(m2

Λ∗ + mΛ∗mΛb − q2)(1 + C(v)
0 )

+
1
2
(m2

Λb
−m2

Λ∗ + q2)C(v)
1

]
ζ2 +

[
(mΛb + mΛ∗)(1 + C(v)

0 )
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+
m2

Λb
−m2

Λ∗ + q2

2mΛb

C(v)
1

]
ζ1 +

m2
Λ∗ − q2

m2
Λb

[ζSL
1 − ζSL

2 ]

+
1

2m2
Λb

(
2m2

Λ∗ + mΛ∗mΛb −m2
Λb
− 2q2)ζSL

3

+ (m2
Λ∗ −mΛ∗mΛb − 2m2

Λb
− q2)ζSL

4

]
(A39)

AA(+1/2,−1/2,−1) =
2
√

s−√
3mΛb mΛ∗

{
s+(1 + C(v)

0 )(ζ1 + ζ2)

+ mΛ∗(ζ
SL
1 − ζSL

2 ) +
s+

2mΛb

(ζSL
3 − ζSL

4 )

}
. (A40)

In the case of the tensor current, the non-zero helicity amplitudes in the heavy quark
limit are

AT(+1/2,+3/2,+1) =
2
√

s+
mΛb

{
(mΛb −mΛ∗)ζ

SL
1 +

mΛ∗mΛb −m2
Λ∗ + q2

mΛb

ζSL
2

}
, (A41)

AT(+1/2,+1/2, 0) =

√
2q2s+√

3mΛb mΛ∗

{
s−(ζ2 − ζ1) +

m2
Λ∗ + m2

Λb
− q2

mΛb

(ζSL
2 + ζSL

1 )

+
s−

2mΛb

(ζSL
3 + ζSL

4 )

}
, (A42)

AT(+1/2,−1/2,−1) =
2
√

s+√
3mΛb mΛ∗

{
s−

[
(mΛ∗ + mΛb)ζ1 +

m2
Λ∗ + mΛ∗mΛb − q2

mΛb

ζ2

]

+
mΛ∗(mΛ∗mΛb −m2

Λ∗ + q2)

mΛb

ζSL
1 + mΛ∗(mΛb −mΛ∗)ζ

SL
2

+
s−

2mΛb

[
(mΛb + mΛ∗)ζ

SL
3 +

m2
Λ∗ + mΛ∗mΛb − q2

mΛb

ζSL
4

]
, (A43)

and for the tensor axial current:

AT5(+1/2,+3/2,+1) =−
2
√

s−
mΛb

{
(mΛb + mΛ∗)ζ

SL
1 +

m2
Λ∗ + mΛ∗mΛb − q2

mΛb

ζSL
2

}
, (A44)

AT5(+1/2,+1/2, 0) =

√
2q2s−√

3mΛb mΛ∗

{
s+(ζ1 + ζ2) +

m2
Λ∗ + m2

Λb
− q2

mΛb

(−ζSL
1 + ζSL

2 )

+
s+

2mΛb

(−ζSL
3 + ζSL

4 )

}
, (A45)

AT5(+1/2,−1/2,−1) =
2
√

s−√
3mΛb mΛ∗

{
s+

[
(mΛb −mΛ∗)ζ1 +

mΛ∗mΛb −m2
Λ∗ + q2

mΛb

ζ2

]

+
mΛ∗(m2

Λ∗ + mΛ∗mΛb − q2)

mΛb

ζSL
1 + mΛ∗(mΛ∗ + mΛb)ζ

SL
2

+
s+

2mΛb

[
−(mΛb −mΛ∗)ζ

SL
3 +

mΛ∗mΛb −m2
Λ∗ + q2

mΛb

ζSL
4

]
. (A46)
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Appendix B. Relations with Lattice Form Factors

The definitions of the form factors here employed differ from other conventions in
the literature. In particular, the translation with the Lattice determination in Ref. [22] is
needed. I find

F1/2,t =
1
2

√
s−

4mΛb mΛ∗
f0 , F1/2,0 =

1
2

√
s+

4mΛb mΛ∗
f+ ,

F1/2,⊥ =
1
2

√
s+

4mΛb mΛ∗
f⊥ , F3/2,⊥ = − 1

2

√
s+

4mΛb mΛ∗
f⊥′ ,

G1/2,t =
1
2

√
s+

4mΛb mΛ∗
g0 , F1/2,0 =

1
2

√
s−

4mΛb mΛ∗
g+ ,

G1/2,⊥ =
1
2

√
s−

4mΛb mΛ∗
g⊥ , G3/2,⊥ =

1
2

√
s−

4mΛb mΛ∗
g⊥′ ,

T1/2,0 = s1/2
+

√
mΛ∗

4mΛb

h+ ,

T1/2,⊥ = s1/2
+

√
mΛ∗

4mΛb

h⊥ , T3/2,⊥ =

√
s+

4mΛb mΛ∗
(mΛb + mΛ∗)h⊥′ ,

T5
1/2,0 = s1/2

−

√
mΛ∗

4mΛb

h̃+ ,

T5
1/2,⊥ = s1/2

−

√
mΛ∗

4mΛb

h̃⊥ , T5
3/2,⊥ = −

√
s−

4mΛb mΛ∗
(mΛb −mΛ∗)h̃⊥′ .

(A47)

Appendix C. Correlations between the Fit Parameters

The correlation matrix for the HQE parameters is reported in Table A1. The order of
the various correlation coefficients is the same as in Table 1.

Table A1. Correlation matrix for the HQE parameters.

1 −0.879 0.440 0.0458 0.0460 −0.120 −0.0619 0.363 0.337 0.0312
−0.879 1 −0.160 0.0109 −0.0585 0.130 0.0936 −0.325 −0.343 −0.121
0.440 −0.160 1 −0.00723 −0.00712 0.0101 0.0465 0.211 0.139 −0.218

0.0458 0.0109 −0.00723 1 0.861 −0.512 −0.382 −0.221 −0.0500 0.611
0.0460 −0.0585 −0.00712 0.861 1 −0.406 −0.435 −0.214 −0.0603 0.707
−0.120 0.130 0.0101 −0.512 −0.406 1 0.887 0.0941 −0.119 −0.783
−0.0619 0.0936 0.0465 −0.382 −0.435 0.887 1 0.160 −0.0287 −0.871

0.363 −0.325 0.211 −0.221 −0.214 0.0941 0.160 1 0.966 −0.164
0.337 −0.343 0.139 −0.0500 −0.0603 −0.119 −0.0287 0.966 1 0.0606
0.0312 −0.121 −0.218 0.611 0.707 −0.783 −0.871 −0.164 0.0606 1
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