
symmetryS S

Article

Nonequilibrium Dynamics of the Chiral Quark Condensate
under a Strong Magnetic Field

Gastão Krein *,† and Carlisson Miller †

����������
�������

Citation: Krein, G.; Miller, C.

Nonequilibrium Dynamics of the

Chiral Quark Condensate under a

Strong Magnetic Field. Symmetry

2021, 13, 551. https://doi.org/

10.3390/sym13040551

Academic Editor: Jorge Segovia

Received: 8 February 2021

Accepted: 23 March 2021

Published: 26 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Instituto de Física Teórica, Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271-Bloco II,
São Paulo, SP 01140-070, Brazil; cmc.pereira@unesp.br
* Correspondence: gastao.krein@unesp.br
† These authors contributed equally to this work.

Abstract: Strong magnetic fields impact quantum-chromodynamics (QCD) properties in several
situations; examples include the early universe, magnetars, and heavy-ion collisions. These examples
share a common trait—time evolution. A prominent QCD property impacted by a strong magnetic
field is the quark condensate, an approximate order parameter of the QCD transition between a
high-temperature quark-gluon phase and a low-temperature hadronic phase. We use the linear sigma
model with quarks to address the quark condensate time evolution under a strong magnetic field.
We use the closed time path formalism of nonequilibrium quantum field theory to integrate out
the quarks and obtain a mean-field Langevin equation for the condensate. The Langevin equation
features dissipation and noise kernels controlled by a damping coefficient. We compute the damping
coefficient for magnetic field and temperature values achieved in peripheral relativistic heavy-ion
collisions and solve the Langevin equation for a temperature quench scenario. The magnetic field
changes the dissipation and noise pattern by increasing the damping coefficient compared to the
zero-field case. An increased damping coefficient increases fluctuations and time scales controlling
condensate’s short-time evolution, a feature that can impact hadron formation at the QCD transition.
The formalism developed here can be extended to include other order parameters, hydrodynamic
modes, and system’s expansion to address magnetic field effects in complex settings as heavy-ion
collisions, the early universe, and magnetars.

Keywords: quantum chromodynamics; chiral symmetry; quark condensate; quark-gluon plasma;
nonequilibrium dynamics

1. Introduction

Strong magnetic fields impact prominent quantum-chromodynamics (QCD) phenom-
ena, notably those associated with QCD’s approximate chiral symmetry in the light-quark
sector. Special in this respect is the impact on the chiral condensate, as revealed by recent
lattice QCD calculations [1–3]. The chiral condensate is an approximate order parameter
for the finite temperature QCD transition between a high-temperature quark-gluon phase
(QGP) and a low-temperature hadronic phase. The transition likely qualifies as a crossover
(not a phase transition), in that the chiral condensate is nearly zero in the QGP phase, and
nonzero in the hadronic phase, with a rapid change (not a jump) around the pseudocritical
temperature Tpc ' 150 MeV [4]. Such a rapid change in the condensate’s value is key to
our understanding of how protons and neutrons (and other light-flavor hadrons) acquire
their masses from almost massless quarks and gluons [5,6]. Phenomenologically, QCD
matter under strong magnetic fields occurs in different settings, to name three of great
current interest—the early universe [7,8], magnetars [9,10], and relativistic heavy-ion colli-
sions [11,12]. Magnetized QCD matter in those settings evolves in time, albeit under very
different time scales. A QGP to hadron transition occurring under such circumstances typi-
fies a nonequilibrium phase change problem. In this paper, we present a first study of such
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a dynamical transition in magnetized QCD matter; to wit: we study the nonequilibrium
dynamics of the chiral condensate under a strong magnetic field.

Magnetic field strengths and space-time scales in this study concern the phenomenol-
ogy related to high-energy heavy-ion collision experiments. Relativistic heavy-ion collisions
produce QCD matter of deconfined quarks and gluons, the quark-gluon plasma (QGP).
Noncentral collisions produce the QGP under strong magnetic fields [11,12]; for example,
noncentral Pb-Pb collisions at the Large Hadron Collider (LHC) can produce fields of
strengths as large as [13] eB = 15m2

π . We conduct our study within the perspective of a
standard three-stage scenario of QGP’s time evolution [14–17]: (1) quarks and gluons are
freed from the protons and neutrons of the colliding ions and form (2) hot matter that
expands hydrodynamically until it (3) cools up to a temperature T ∼ 150 MeV, and finally
disassembles into hadrons. More specifically, we work within the perspective that local
thermodynamic properties as temperature and order parameter acquire physical meaning.

We address magnetic field effects on the chiral condensate dynamics with Langevin
field equations, equations widely used in field theory treatments of dynamical phase tran-
sitions [18,19]. A prototype dynamical transition addressed by these equations is the one of
a temperature quench in a spin system, in that a sudden drop in the system’s temperature
takes the system out from a spin-disordered phase and drives it irreversibly toward a
spin-ordered phase. The quench-induced transition just described resembles, albeit with
differences, the heavy-ion collision evolution across the crossover from a quark-gluon
phase, in which the condensate is very small, toward a hadron-dominated phase, in which
the condensate ultimately reaches its vacuum value. Indeed, for zero magnetic field, there is
a vast literature on the use of Langevin field equations in this context—References [20–39]
are a sample of this literature. The Langevin equations featured in that literature are
either postulated on phenomenological grounds [23,26,33–35,39], or derived from a micro-
scopic model through a coarse-graining procedure [20–22,24,25,27–32,36–38]. We follow
the latter approach.

We extend the semiclassical approach of Reference [29] to include magnetic field
effects on the chiral condensate dynamics. In that approach, the condensate dynamics is
governed by a Langevin field equation derived from a semiclassical two-particle irreducible
(2PI) effective action. The effective action, computed with the time path formalism of
nonequilibrium quantum field theory [40,41], refers to the Gell-Mann–Levy linear sigma
model [42] with quarks (LSMq). The LSMq features degrees of freedom associated with the
long-wavelength QCD chiral physics—constituent quarks, pseudoscalar-isoscalar mesons
(pions, pseudo-Goldstone bosons) and a scalar-isoscalar meson (the quark condensate). The
model does not describe quark confinement. Despite of this limitation, the model describes
many of the equilibrium, time-independent magnetic field effects on the QCD equation
of state, phase structure and chiral condensate [43–55] brought out by lattice calculations.
We direct the reader to References [56–59] for reviews with additional references on works
employing the LSMq and also other models.

This first study aims primarily to get insight into how a strong magnetic field affects
condensate dynamics. To fulfil this aim, we simplify the analysis by omitting physical ef-
fects peculiar to a heavy-ion collision. We address the omissions and ensuing consequences
in the course of the presentation of our work. Besides, we seek an analytical understanding
and avoid, whenever possible numerical calculations. Notwithstanding the simplifications,
our study brings new insight into a complex problem that offers enormous opportunities
to learn about QCD matter.

We organize the presentation of the paper as follows. In the next section, we define
the chiral quark model upon which we base our study and summarize its main features. In
Section 3 we define the effective action and use the closed time path formalism to derive
an equation of motion for the condensate, a Langevin equation featuring dissipation and
noise kernels. The latter require the magnetized thermal quark propagator in the real time
formalism. We derive the propagator in Section 4. We complete the calculation of the the
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damping and noise kernels in Section 5. We present explicit numerical results in Section 6
and conclude in Section 7.

2. The Model

We present the main ingredients of the model upon which we base our study of mag-
netic field effects on the chiral condensate dynamics. The condensate dynamics is governed
by a Langevin field equation derived from a semiclassical two-particle irreducible (2PI)
effective action [29]. The effective action builds on effective degrees of freedom associated
with the long wavelength chiral physics described by a Lagrangian featuring the approxi-
mate SU(2)L × SU(2)R symmetry of QCD. The Lagrangian is that of the Gell-Mann–Levy
linear sigma model [42], in which quarks replace the nucleons of the original model. As in
the Lagrangian of the original model, a fermion isodoublet field, q = (u, d)T , representing
the light u and d quarks, Yukawa-couples to pseudoscalar-isotriplet pion π field and a
scalar-isoscalar σ field. The Lagrangian density of the linear sigma model with quarks
(LSMq) is given by

L = q̄[i/∂ − g(σ + iγ5τ ·π)]q +
1
2
[
∂µσ∂µσ + ∂µπ · ∂µπ

]
−U(σ, π), (1)

where U(σ, π) is the potential

U(σ, π) =
λ

4
(σ2 + π2 − v2)2 − hqσ−U0, (2)

where U0 is an arbitrary constant setting the zero of U(σ, π). We use the metric signature
gµν = (1,−1,−1,−1) and the Bjorken-Drell [60] conventions for the Dirac γµ matrices, for
which {γµ, γν} = 2gµν.

For hq = 0, the Lagrangian density is invariant under chiral SU(2)L × SU(2)R trans-
formations. This symmetry can break spontaneously, in that σ acquires a nonzero vacuum
expectation value 〈σ〉 = v 6= 0, whereas 〈π〉 = 0 due to parity. For hq 6= 0, the term
LLSM

SB = hqσ breaks the symmetry explicitly and plays the role of the symmetry-breaking
quark mass term in the QCD Lagrangian, LQCD

m = −mq̄q. Equality between the (vac-
uum or thermal) expectation values of LLSM

SB and LQCD
m implies m 〈q̄q〉QCD = −hq〈σ〉,

and establishes the physical correspondence between 〈σ〉 and the quark condensate
in QCD—Reference [61] presents a didactic review on this and other topics relating the
LSM and QCD. One can fit the parameters of the model to chiral physics observables—a fit
at the classical level, for example, sets the parameters as: hq = fπm2

π , v2 = f 2
π −m2

π/λ2,
m2

σ = 2λ2 f 2
π + m2

π , and mq = g〈σ〉. Here fπ and mπ are the pion weak-decay constant and
mass, mσ the σ-meson mass, and mq the constituent quark mass. We chose U0 such that
U(0, 0) = 0 (Reference [29] chooses U0 such that U( fπ , 0) = 0).

The parameter g plays a very important role in the model’s equilibrium thermodynam-
ics. For example, when solving the model in the mean field approximation for zero baryon
chemical potential, one obtains a first order transition at a temperature T ' 123 MeV
with g = 5.5, a second order transition at T ' 140 MeV with g = 3.63, and a crossover
at T ' 150 MeV with g = 3.3. We restrict our study of the condensate dynamics to the
situation of a crossover, the situation seemingly relevant for QCD. The model the has
also been used to study equilibrium, time-independent magnetic field effects on the QCD
equation of state, phase structure and chiral condensate—for references, we direct the
reader to References [43–55] and the reviews in References [56–59].

We derive the LSMq effective action within the semiclassical framework developed
for zero magnetic field in Reference [29]. In that framework, the long wavelength (soft)
modes control the σ field dynamics, with the quarks providing a heat bath. In the present
case, this means that the quarks are in equilibrium at some local temperature and local
magnetic field. The magnetic field enters the LSMq Lagrangian by replacing in Equation (1)
∂µ by Dµ = ∂µ + iqAµ, where q stands for the (quark or pion) electric charge and Aµ
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the electromagnetic vector field. We neglect pion fields in this first study but discuss in
Section 6 their possible implications on our results. In this semiclassical framework, the
magnetic field is a background field, not a dynamical degree of freedom. The effective
action is then a functional of the σ(x) mean field and of the magnetic-field dependent quark
propagator S(x, y). We denote the effective action by Γ[σ, S].

3. The Effective Action and Langevin Equation

We summarize the main steps in the derivation of the Langevin equation for the σ
mean field from an effective action using the closed time path (CTP) formalism [40,41].
In the CTP formalism, one evolves the fields over the Schwinger-Keldysh contour, an
oriented time path C = C+ ∪ C−, in that the time variable t runs from an initial time −τ
to a time τ along C+ and going back to −τ along C−. One identifies fields on C+ with
an index +, whereas those on C− with −, that is, σa(x) and Sab(x, y) with a = ±. A time
instant on C− is posterior to any time instant on C+. The fields on C+ and those on C− are
not independent fields; they couple through a CTP boundary condition in that they coincide
at large τ for all values of the spatial coordinate [40]. To set notation and make the paper
self-contained, we mention that we set the speed of light c, the reduced Planck constant
h̄ = h/2π, and the Boltzmann constant kB to unity, and define Sab(x, y) as

S++(x, y) = 〈q(x)q(y)〉 θ(x0 − y0)− 〈q(y)q(x)〉 θ(y0 − x0), (3)

S−−(x, y) = 〈q(x)q(y)〉 θ(y0 − x0)− 〈q(y)q(x)〉 θ(x0 − y0), (4)

S+−(x, y) = S<(x, y) = −〈q(y)q(x)〉, (5)

S−+(x, y) = S>(x, y) = 〈q(x)q(y)〉, (6)

where 〈· · · 〉 stands for averaging with respect to a density matrix specifying the initial state.
The propagator S++(x, y) is nothing else the causal Feynman propagator and S−−(x, y)
the corresponding anti-causal propagator; from the above definitions, one has:

S++(x, y) = S−+(x, y) θ(x0 − y0) + S+−(x, y) θ(y0 − x0), (7)

S−−(x, y) = S+−(x, y) θ(x0 − y0) + S−+(x, y) θ(y0 − x0). (8)

The semiclassical action is given by

Γ[σ, S] = Γcl[σ] + i Tr ln S− i Tr(i /D−m0)S + Γ2[σ, S], (9)

where Γcl is the classical action, m0 = gσ0, and Γ2[σ, S] contains the sum of 2PI diagrams.
Here, Tr stands for a spatial integration over the Schwinger-Keldysh contour and sums
over Dirac, color and flavor indices. Although one deals with two fields, σ+ and σ−, as
mentioned above they are not independent, there is a single mean field σ(x), and a single
equation of motion [40]:

δΓ[σ, S]
δσ+(x)

∣∣∣∣∣
σ−=σ+=σ

= − δΓ[σ, S]
δσ−(x)

∣∣∣∣∣
σ+=σ−=σ

= 0. (10)

We need also the equation of motion for Sab(x, y):

δΓ[σ+, σ−, S]
δSab(x, y)

= 0, (11)

or, equivalently:

(i /D−m0)Sab(x, y)−
∫
C

d4z
δΓ2[σ, S]
δSac(x, z)

Scb(z, y) = iδabδ(4)(x− y), (12)



Symmetry 2021, 13, 551 5 of 21

here C indicates that the integration runs over the Schwinger-Keldysh contour. Only one
2PI diagram contributes to Γ2[σ, S], a single one-loop diagram that involves the trace over
the magnetic field dependent quark propagator, namely:

Γ2[σ, S] = g
∫
C

d4x trCDF
[
S++(x, x)σ+(x) + S−−(x, x)σ−(x)

]
, (13)

where trDc f indicates trace over Dirac, color and flavor indices.
Replacing Equation (13) into Equations (9) and (12), the last two terms in Equation (9)

cancel; but to complete the derivation of Γ[σ, S], one still needs to solve Equation (12) for
Sab. However, to solve Equation (12) for Sab is not an easy task, even for the zero magnetic
field case due to the spatiotemporal dependence of σ(x). Fortunately, the problem with
magnetic field is still tractable within the spirit of the semiclassical approach we use here.
Specifically, by assuming that long wavelength modes dominate the σ(x) dynamics [29],
in that dynamical fluctuations δσ build on a σ0 background mean field, with σ0 governed
by a locally equilibrated quark heath bath described by a thermomagnetic quark prop-
agator Sthm. The propagator Sthm depends on a local temperature and magnetic field,
quantities that also drive a spatiotemporal dependence for the σ0 mean field. In practice,
this amounts to split σa(x) as follows:

σa(x) = σa
0 (x) + δσa(x), (14)

and write Sab as a functional power series in δσa(x), with Sab
thm the zeroth order term:

Sab(x, y) = Sab
thm(x, y) + δSab(x, y) + δ2Sab(x, y) + · · · . (15)

When one replaces these expansions into Equation (12) and takes into account Equa-
tion (13), one determines δSab(x, y), δ2Sab(x, y), · · · recursively. Specifically, the zeroth
order propagator Sab

thm obeys the equation

[i /D−m0 − g σ0(x)]Sab
thm(x, y) = −iδabδ(4)(x− y), (16)

whereas the fluctuating contributions, up to the second order in δσ, read:

δSab(x, y) = −ig
∫

SK
d4z Sac

thm(x, z)δσc(z)Scb
thm(z, y), (17)

δ2Sab(x, y) = −g2
∫

SK
d4zd4z′ Sac

thm(x, z)δσc(z)Scd
thm(z, z′)δσd(z′)Sdb

thm(z′, y). (18)

Equation (16) evinces the role played by the σ0(x) background field, it gives quarks a
local effective mass mq(x) = gσ0(x) determined by local temperature and magnetic field.
To obtain the equation of motion for the mean field, one can now replace Equations (14)–(18)
into Equation (9) and trail the steps in Reference [29]. Although the magnetic field intro-
duces new features into the Langevin dynamics, the generic form of the equation is the
same as for zero magnetic field, in that Sab

thm contains all the effects of the magnetic field on
the σ dynamics. Therefore, for now, we do not need the explicit expression for Sab

thm to write
down the Langevin equation—we obtain the explicit form of Sab

thm in the following section.
But before writing down the Langevin equation for the σ mean field, we comment

on two points in the derivation of the equation, namely: the lack of independence of
the fields on C+ from those on C−, and the appearance of the noise source in the δσ
equation of motion. To account for the first point, one performs a change of basis [40], a.k.a.
Keldysh rotation [62]. We apply the Keldysh rotation to σ = σ0 + δσ, which implies for the
fluctuating δσ field needed here:

δσ̄(x) =
1
2
(
δσ+(x) + δσ−(x)

)
, ∆σ(x) = δσ+(x)− δσ−(x). (19)
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This transformation makes transparent the physics behind the doubling of fields: it
reflects the need for both response (∆σ) and fluctuating (δσ̄) fields to describe time-dependent
fluctuating phenomena [63]. The second point refers to the fact that Γ[σ, S] contains an
imaginary part associated with dissipation, a feature that obstructs the straightforward
variation implied by Equation (10). A way to obtain a real action uses the Feynman-Vernon
trick [64], in that one replaces the imaginary part of the action by a noise source coupling
linearly to the field; this turns the equation of motion into a stochastic equation—we refer
to the book of Reference [40] for a thorough discussion on this and other aspects of the CTP
formalism. In summary, after using Equations (14)–(18) into Equation (9) and rewriting
the action in terms of the Keldysh-rotated fields, replacing the resulting imaginary part in
the action by a noise source, and varying w.r.t. ∆σ and setting σ̄(x) = σ(x) as implied by
Equation (10), one obtains a stochastic differential equation for σ(x), namely [29]:

∂µ∂µσ(x) +
δU[σ]

δσ(x)
+ gρs(σ0)− Dσ(x) = ξσ(x), (20)

where ρs(σ0) is the scalar density:

ρs(σ0) = trDc f S++
thm(x, x), (21)

and Dσ(x) the dissipation kernel:

Dσ(x) = ig2
∫

d4y θ(x0 − y0) M(x, y) δσ̄(y), (22)

with
M(x, y) = trDc f

[
S+−

thm(x, y)S−+thm(y, x)− S−+thm(x, y)S+−
thm(y, x)

]
, (23)

and ξσ(x) is a colored-noise field with the properties:

〈ξσ(x)〉ξ = 0, 〈ξσ(x)ξσ(y)〉ξ = N(x, y), (24)

with the noise kernel N(x, y) given by:

N(x, y) = −1
2

g2trDc f
[
S+−

thm(x, y)S−+thm(y, x) + S−+thm(x, y)S+−
thm(y, x)

]
. (25)

In Equation (24), 〈· · · 〉ξ means functional average with the probability distribution

P[ξ] = exp
[
−1

2

∫
d4xd4y ξ(x)N−1(x, y) ξ(y)

]
. (26)

Our summary on the the derivation of the Langevin equation ends here. To proceed
with the study of magnetic field effects on the σ dynamics, we need the explicit form of the
thermomagnetic quark propagator Sab

thm—we derive Sab
thm in the next section.

4. The Thermomagnetic Quark Propagator

One can obtain the CTP thermomagnetic quark propagator at temperature T from
the corresponding T = 0 propagator through a Bogoliubov transformation, much in the
same way as done in thermofield dynamics (TFD) [65–68]. Let Sm(x, y) be the causal, zero
temperature quark propagator in a constant magnetic field of strength B pointing along the
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ẑ direction. Sm(x, y) can be written as the product of a gauge-dependent Schwinger phase
φ(x, y) and a gauge-independent, translation invariant propagator Sm(x− y), namely [69]:

Sm(x, y) = θ(x0 − y0)〈q(x)q̄(y)〉 − θ(y0 − x0)〉q̄(y)ψ(y)〉 = S++
m (x, y) (27)

= θ(x0 − y0)S−+m (x, y) + θ(y0 − x0)S+−
m (y, x) (28)

= φ(x, y) Sm(x− y) = φ(x, y)
∫ d4 p

(2π)4 e−ip·(x−y) S++
m (p). (29)

The phase factor is irrelevant for us since it cancels out in all terms appearing in
the Langevin equation in Equation (20) due to the properties φ(x, z)φ(z, y) = φ(x, y) and
φ(x, x) = 1. We can also choose the symmetric gauge, Aµ = (0,−y, x, 0) B/2, for which
φ(x, y) = 1. In any case, one can focus on the translation invariant piece of the propagator
which, from now on will be the object of interest.

We use the Landau level representation of Sm(p) and work with the lowest level
contribution, the dominant contribution for strong fields. The lowest Landau level (LLL)
contribution to Sm(p) can be written as [58]:

S++
m (p) = i e−p2

⊥/|q f B|
2
(

/p‖ + mq

)
p2
‖ −m2

q + iε
P+, (30)

where p2
⊥ = p2

x + p2
y, p2
‖ = p2

0 − p2
z , /p‖ = γ0 p0 − γ3 pz, and P+ = [1 + iγ1γ2sign(qB)]/2.

The presence of the operator P+ in Equation (30) reflects the spin-polarized nature of the
lowest Landau level, as P+ projects out one of the two spin directions. From this result, one
obtains the off-diagonal CTP components S+−

m and S−+m by using Equations (7) and (28)
and the identity:

i
∫ ∞

−∞
dp0

/p‖ + mq

p2
‖ −m2

q + iε
e−ip0(x0−y0) = θ(x0 − y0)

∫ ∞

−∞
dp0(/p‖ + mq)2πδ(p2

‖ −m2
q)θ(p0) e−ip0(x0−y0)

+ θ(y0 − x0)
∫ ∞

−∞
dp0(/p‖ + mq)2πδ(p2

‖ −m2
q)θ(−p0)e−ip0(x0−y0). (31)

Therefore, the CTP components Sab
m (p) of the zero-temperature propagator can be

written as:

S++
m (p) = e−p2

⊥/|q f B| A(p)
i

p2
‖ −m2

q + iε
, (32)

S+−
m (p) = e−p2

⊥/|q f B| A(p) 2πδ(p2
‖ −m2

q) θ(−p0), (33)

S−+m (p) = e−p2
⊥/|q f B| A(p) 2πδ(p2

‖ −m2
q) θ(p0), (34)

S−−m (p) = e−p2
⊥/|q f B| A(p)

−i
p2
‖ −m2

q − iε
, (35)

where, to lighten the notation, we defined

A(p) = 2(/p‖ + mq) P+ = (/p‖ + mq)
[
1 + iγ1γ2sign(qB)

]
. (36)

One obtains the thermal propagator Sab
thm(p) from Sab

m (p) through the Bogoliubov
transformation,(

S++
thm(p) S+−

thm(p)

S−+thm(p) S−−thm(p)

)
= VCTP(T, p)

(
S++

m (p) S+−
m (p)

S−+m (p) S−−m (p)

)
VCTP(T, p). (37)
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A possible CTP transformation matrix VCTP(T, p) is the following:

VCTP(T, p) =
1

2
√

sinh |p0|/T

(
e|p0|/2T −e−|p0|/2T

−e−|p0|/2T e|p0|/2T

)
. (38)

VCTP is the fermionic counterpart to the bosonic Bogoliubov transformation matrix in
Reference [70], denoted UCT(T, p) in that reference. The individual Sab

thm(p) components
are then given by:

S++
thm(p) = e−p2

⊥/|q f B| A(p)

[
i

p2
‖ −m2

q + iε
− 2πnF(p0)δ(p2

‖ −m2
q)

]
, (39)

S+−
thm(p) = e−p2

⊥/|q f B| A(p)2πδ(p2
‖ −m2

q)[θ(−p0)− nF(p0)], (40)

S−+thm(p) = e−p2
⊥/|q f B| A(p)2πδ(p2

‖ −m2
q)[θ(p0)− nF(p0)], (41)

S−−thm(p) = e−p2
⊥/|q f B| A(p)

[
−i

p2
‖ −m2

q − iε
− 2πnF(p0)δ(p2

‖ −m2
q)

]
, (42)

where nF(p0) is the Fermi-Dirac distribution:

nF(p0) =
1

e|p0|/T + 1
. (43)

Here, qu = 2e/3, qd = −e/3, and e = 1/
√

137 (we use Gaussian units). We note that
one obtains the same result for Sab

thm with the more standard TFD Bogoliubov transforma-
tion, by multiplying the off-diagonal elements of TFD propagator, S12(p) and S21(p), by
e−p0/2T and e+p0/2T , respectively. The diagonal elements of CTP and TFD propagators are
the same, of course.

We note that the LLL approximation is suitable for strong magnetic fields only. There-
fore, one cannot extrapolate B 6= 0 results to recover B = 0 results. Such an extrapolation is
possible when performing the sum over all Landau levels or using an alternative represen-
tation of the propagator—see, for example, Appendix A of Reference [58].

This completes the derivation of Sab(x, y). In the next section we compute the different
pieces entering the Langevin equation in Equation (20), namely, the scalar density ρs and
the dissipation D(x) and noise N(x, y) kernels. As mentioned before, our interest in on
the long-wavelength physics of the σ mean field dynamics, thereby we neglect vacuum
contributions to these quantities.

5. The Scalar Density, Dissipation and Noise Kernels

We start with the scalar density ρs(σ0). Although we have flavor symmetry at the
level of the quark masses, mu = md = mq = gσ0, we still need to make explicit the flavor
content of the propagator because of the quark electric charges. After taking the trace over
Dirac, color and flavor indices, one can write ρs(σ0) as the sum of two contributions [71,72],
ρs(σ0) = ρB

s (σ0) + ρBT
s (σ0), where ρB

s (σ0) depends only on B:

ρB
s (σ0) = −

Nc

2π2 mq ∑
f=u,d

|q f B|
[

ln Γ(x f )−
1
2

ln 2π + x f −
1
2
(2x f − 1) ln x f

]
, (44)

and ρBT
s (σ0) that depends on B and T:

ρBT
s (σ0) = −

Nc

π2 mq(|quB|+ |qdB|)
∫ ∞

0
dpz

nF(Eq(pz))

Eq(pz)
, (45)
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where Nc = 3 is the number of colors, x f = m2
q/2|q f B|, Γ(x) the Euler gamma function,

and Eq(pz) =
√

p2
z + m2

q.

Next, we consider the dissipation D(x) and noise N(x, y) kernels, Equations (22)
and (25). To compute D(x), we need the function M(x, y), given in Equation (23). The
Schwinger phase φ(x, y) cancels out in Equation (22); as a result, M(x, y) becomes a function
of x− y:

M(x− y) = tr f

∫ d4 p
(2π)4

d4q
(2π)4 e−i(p−q)·(x−y) trDc

[
S+−

thm(p)S−+thm(q)− S−+thm(p)S+−
thm(q)

]
=

∫ d4 p
(2π)4 e−ip·(x−y) M(p), (46)

where

M(p) = ∑
f=u,d

∫ d4q
(2π)4 trDc

[
S+−

thm(p + q)S−+thm(q)− S−+thm(p + q)S+−
thm(q)

]
f ≡ ∑

f=u,d
M f (p). (47)

The Schwinger phase also cancels out in Equation (25) and N(x, y) = N(x− y) can be
written as:

N(x− y) =
∫ d4 p

(2π)4 e−ip·(x−y) N(p), (48)

where

N(p) = −1
2

g2 ∑
f=u,d

∫ d4q
(2π)4 trDc

[
S+−

thm(p + q)S−+thm(q) + S−+thm(p + q)S+−
thm(q)

]
f ≡ ∑

f=u,d
N f (p). (49)

Next, we use M’s translation invariance to write the dissipation kernel D(x) as [29]:

D(x) = D(t, x) = ig2
∫ d4 p

(2π)4 M(p0, p)
∫

d3ydy0 θ(x0 − y0)e−ip0(x0−y0)+ip·(x−y) δσ(y0, y)

= ig2
∫ d3 p

(2π)3 eip·x
∫ ∞

−∞

dp0

2π
M(p0, p)

∫ ∞

0
dτ e−ip0τ δσ(t− τ, p). (50)

Here, we made the change of variable x0 − y0 = τ and defined the spatial Fourier
transform of the σ mean field:

δσ(t− τ, p) =
∫

d3y e−ip·y δσ(t− τ, y). (51)

Equation (50) exposes the presence of memory in the σ dynamics, in that the value
of σ at time t depends upon the values of σ at earlier times t− τ. This feature imposes
technical difficulties to the analysis of the Langevin equation as it requires numerical
techniques to proceed. To maintain the pace with an analytically tractable analysis, we
follow References [22,24,29] and use a linear harmonic approximation, whereby the dynamics
memory is captured by soft-mode harmonic oscillations around the mean field σ0(t, p).
This approximation amounts to assume an harmonic τ dependence for σ̄(t− τ, p), namely:
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σ(t− τ, p) = a(t) cos(Eσ(p)τ) + b(t) sin(Eσ(p)τ)

= σ0(t, p) cos(Eσ(p)τ)− 1
Eσ(p)

sin(Eσ(p)τ)
∂σ(t, p)

∂t

≡ σ0(t, p) + δσ(t, p)

= σ0(t, p) +
{

σ0(t, p)[cos(Eσ(p)τ)− 1]− 1
Eσ(p)

sin(Eσ(p)τ)
∂σ(t, p)

∂t

}
, (52)

where Eσ(p) ≈
√

p2 + m2
σ is a characteristic soft-mode frequency, where mσ is the σ

field mass. The functions a(t) and b(t) were determined using as initial conditions σ(t−
τ, p)|τ=0 = σ0(t, p) and ∂σ(t − τ, p)/∂τ|τ=0 = −∂σ(t, p)/∂t. The first term within the
curly brackets in Equation (52), being linear in σ0 is a leading-order correction to gρs and,
since cos(Eσ(p)τ)− 1 oscillates around zero, it is neglected; as such, one obtains for D(t, x):

D(t, x) = −
∫ d3 p

(2π)3 eip·x η(p)
∂σ(t, p)

∂t
, (53)

where η(p) is the momentum-dependent damping coefficient:

η(p) = g2 1
2Eσ(p)

M(p). (54)

To lighten the notation, we denoted η(Eσ(p), p) by η(p) and M(Eσ(p), p) by M(p)—
from this point on, this notation will be used throughout the paper.

The harmonic approximation rendered the dissipation kernel local in time and in a
form appropriate to work with the Langevin equation in momentum-space:

∂2σ(t, p)
∂t2 + p2 σ(t, p) + η(p)

∂σ(t, p)
∂t

+ Fσ(t, p) = ξσ(t, p), (55)

where η(p) was defined in Equation (54), and

Fσ(t, p) =
∫

d3x e−ip·x
[

δU[σ]

δσ(t, x)
+ g ρs(σ0)

]
. (56)

The momentum space colored noise field has zero mean 〈ξσ(t, p)〉ξ = 0 and correla-
tion:

〈ξσ(t, p)ξσ(t, p)〉ξ = (2π)3δ(p + p′)N(t− t′, p), (57)

where
N(t− t′, p) =

∫ ∞

−∞

dp0

2π
e−ip0(t−t′) N(p0, p). (58)

Although Equation (55) involves colored noise, it can be solved efficiently by iteration
on a discrete momentum lattice using fast Fourier transformation to switch back and forth
between coordinate space and momentum space to compute the nonlinear term Fσ(t, p) [73].
As our aim is to get analytic understanding as much as possible, we leave for a future pub-
lication the study of numerical solutions of Equation (55). But we need to simplify further
the analysis to proceed with an analytical treatment. A common simplification restricts the

dynamics to a constant soft-mode frequency Eσ(p) ≈
√

p2 + m2
σ ≈ mσ [24,30,36,38]. We

adopt another simplification, one motivated by the dimensional reduction brought out by
the magnetic field: we restrict the dynamics to the plane orthogonal to the magnetic field,
namely σ(t, p) = σ(t, px, py, pz) → σ(t, px, py, pz = 0) ≡ σ(t, p⊥). Therefore, we need
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to compute the kernel M f (p) for p = (p⊥, pz = 0). We use Equations (40) and (41) into
Equation (47), take the traces over Dirac and color indices and integrate over the transverse
momentum q⊥, to obtain for M f (p⊥, pz = 0) ≡ M f (p⊥) the result:

M f (p⊥) =
2Nc

π2

(
π|q f |B

2

)
e−p2

⊥/2|q f B| IM(Eσ(p⊥)), (59)

where IM(Eσ(p⊥)) is the integral

IM(Eσ(p⊥)) =
∫ ∞

−∞
dqz

∫ ∞

−∞
dq0

{
δ((p + q)2

‖ −m2
q)δ(q

2
‖ −m2

q)
[
q0(p0 + q0)− qz(pz + qz) + m2

q

]
×
(
[θ(q0)− nF(q0)][θ(−p0 − q0)− nF(p0 + q0)]

−[θ(−q0)− nF(q0)][θ(p0 + q0)− nF(p0 + q0)]
)}

p0=Eσ(p⊥)
. (60)

Here and in the following we suppress the explicit reference to the fact that pz = 0
in p-dependent functions. We first use the delta function δ(q2

‖ −m2
q) = δ(q2

0 − q2
z −m2

q) to
integrate over q0, then use the other delta function to integrate over qz to obtain:

IM(Eσ(p⊥)) = [1− 2nF(Eσ(p⊥)/2)]

(
E2

σ(p⊥)− 4m2
q

4E2
σ(p⊥)

) ∫ ∞

−∞
dqz δ(Eq(qz)− Eσ(p⊥)/2)

= [1− 2nF(Eσ(p⊥)/2)]

(
E2

σ(p⊥)− 4m2
q

4E2
σ(p⊥)

)
2Eσ(p⊥)√

E2
σ(p⊥)− 4m2

q

= [1− 2nF(Eσ(p⊥)/2)]
1

2Eσ(p⊥)

√
E2

σ(p⊥)− 4m2
q. (61)

Therefore:

M f (p⊥) =
Nc

π

(
|q f |B

)
[1− 2nF(Eσ(p⊥)/2)]

1
2Eσ(p⊥)

√
E2

σ(p⊥)− 4m2
q e−p2

⊥/2|q f B|. (62)

From this, one obtains for the momentum-dependent noise coefficient η(p⊥):

η(p⊥) = g2 Nc

4π
[1− 2nF(Eσ(p⊥)/2)]

1
E2

σ(p⊥)

√
E2

σ(p⊥)− 4m2
q ∑

f=u,d
|q f B| e−p2

⊥/2|q f B|. (63)

Next, we compute the noise kernel N(x, y) with the same simplifications used for
M(x). We use Equations (40) and (41) into Equation (25), take the traces over Dirac and
color indices, and integrate over the transverse momentum q⊥ to obtain:

N f (p⊥) = −1
2

g2 2Nc

π2

(
π|q f |B

2

)
e−p2

⊥/2|q f B| IN(Eσ(p⊥)), (64)

with

IN(Eσ(p⊥)) = −[1− 2nF(Eσ(p⊥)/2)] coth(Eσ(p⊥)/2T)
1

2Eσ(p⊥)

√
E2

σ(p⊥)− 4m2
q. (65)

Taking into account Equation (62), one can write:

N f (p⊥) =
1
2

g2 coth(Eσ(p⊥)/2T) M f (p⊥). (66)
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Therefore, after summing over flavor and using the result in Equation (63), one can
write for the momentum space noise kernel N(p⊥):

N(p⊥) = η(p⊥) Eσ(p⊥) coth(Eσ(p⊥)/2T). (67)

Finally, replacing this result into Equation (58), the p0 integration leads to the Dirac
delta δ(t− t′) and ξσ becomes a white noise field.

This concludes the derivation of the main ingredients entering the Langevin equation:
ρs, D(x) and N(x, y). In the next section, we examine the effects of a nonzero magnetic
field on these quantities. There we also need the equilibrium mean field σ0 and mass mσ,
which we discuss in the following.

We close this section deriving the equilibrium (constant and uniform) mean field
solution by putting to zero the time and space derivatives and the dissipation and noise
kernels in the Langevin equation in Equation (20), so that σ = σ0 + δσ→ σ0 and:

δU[σ0]

δσ0
+ gρs(σ0) = 0. (68)

This equation is nothing else than the equation one obtains from the minimization of
the equilibrium effective potential Veff[σ0]:

Veff[σ0] = U[σ0] + ΩB[σ0] + ΩBT [σ0], (69)

with [43,71,74]

ΩB[σ0] = − Nc

2π2 ∑
f=u,d

(
|q f B|

)2
[

ζ ′(−1, x f )−
1
2

(
x2

f − x f

)
ln x f +

1
4

x2
f

]
, (70)

ΩBT [σ0] = −Nc

π2 T ∑
f=u,d

|q f B|
∫ ∞

0
dpz ln

(
1 + e−Eq(pz)/T

)
, (71)

where ζ ′(−1, x) = dζ(s, x)/ds|s=−1 and ζ(s, x) the Riemann-Hurwitz zeta function. That is:

gρB
s (σ0) =

δΩB[σ0]

δσ0
and gρBT

s (σ0) =
δΩBT [σ0]

δσ0
. (72)

We used the result dζ ′(−1, x)/dx = −1/2 + x + ln Γ(x) − 1/2 ln 2π to obtain the
expression for gρB

s (σ0). We obtain the temperature and magnetic field dependent mean
field mass mσ from:

m2
σ =

δ2Veff[σ]

δσ2

∣∣∣∣∣
σmin

. (73)

In the next section we present explicit results. We explore the dynamics under a
magnetic field in a temperature range around the B = 0 crossover temperature of the model,
Tpc ' 150 MeV. We choose this region of temperature because of its phenomenological
interest in a heavy-ion collision setting. The LSMq B = 0 crossover, in the mean field
approximation, occurs for the parameter values g = 3.3 and λ = 20. The corresponding
(tree-level) vacuum values of the σ and quark masses are mσ = 604 MeV and mq = 290 MeV.
With a nonzero B, the chiral transition becomes a first order transition, with a critical
temperature close to TB

c = 180 MeV; the precise value of TB
c depends on the value of B.

Since we stay away from such a critical point, these issues do not impact our results. In
connection to the transition temperature, we note that at the mean field level, the model
does not realize a feature first observed by the lattice simulations of References [75,76],
in that the condensate has a nonmonotonic behavior as a function of B around T = Tpc.
But for temperatures below to Tpc, the LSMq in mean field approximation model does
reproduce the qualitative features of the lattice results [59].
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To orientate the discussion of results in the next section, we show in Figure 1 the
effective potential Veff[σ0] for B = 15m2

π , Equation (69), and B = 0, and temperatures
around T = 150 MeV. The effective potential for zero magnetic field, VB=0

eff [σ0], is given
by [29]:

VB=0
eff [σ0] = U[σ0]− 24T

∫ d3 p
(2π)3 ln

[
1 + e−E(p)/T

]
, (74)

where E(p) =
√

p2 + m2
σ. The figure reveals that |Veff| < |VB=0

eff | for |σ0| ≤ 100 MeV,

a feature due to a partial cancellation between ΩBT [σ0] and ΩB[σ0], with the latter being
positive for those values of σ0.
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Figure 1. Effective potential for temperatures close to the B = 0 crossover temperature.

6. Dissipation and Noise, Short-Time Dynamics

We start examining the magnetic field impact on the damping coefficient η, the key
quantity controlling the fluctuations in the σ mean field dynamics. The zero magnetic field

η is given in Reference [24,29] for the zero mode only, p = 0, for which Eσ ≈
√

p2 + m2
σ =

mσ:

η0 = g2 2Nc

π
[1− 2nF(mσ/2)]

1
m2

σ

(
m2

σ − 4m2
q

)3/2
. (75)

Putting Eσ = mσ and p⊥ = 0 in Equation (54), one obtains for the magnetic field
dependent damping coefficient:

ηB = g2 Nc

4π
[1− 2nF(mσ/2)] (eB)

1
m2

σ

√
m2

σ − 4m2
q. (76)

We obtain mσ from Equation (73). To have a real η, we must have mσ > 2mq in
Equations (75) and (76), a constraint that reflects the kinematical limit for the σ decay (at
rest) into a quark-antiquark pair, σ→ qq̄, the only source of dissipation in the model under
the present approximations. We note that η0 = 0 for T < 150 MeV in this calculation due
to the absence of pions; in the presence of pions, the decay σ → 2π leads to a nonzero η.
We recall that our results are valid for strong magnetic fields only. Therefore, one cannot
extrapolate our results to B = 0; for weak magnetic fields, one needs to use a different
representation for the magnetized quark propagator, as the LLL approximation is not valid
in this case [58]. But, since weak fields (of strengths

√
eB� ΛQCD) have little impact on

chiral properties, we do not need alternative representations for the quark propagator.
Figure 2 displays the temperature dependence of the zero mode damping coefficient

for B = 0 and three B 6= 0 values. The magnetic field changes the qualitative temperature
dependence of η close to T = 150 MeV. In a temperature quench scenario, T � TB

c → T �
TB

c , the nonzero value of ηB for T < TB
c delays the start off of the condensate evolution

after the quench. We extend the discussion on this issue at the end of this section, where
we study explicit short-time solutions of the Langevin equation.
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Figure 2. Temperature and magnetic field dependence of the zero mode damping coefficient. Tem-
perature range chosen to include the B = 0 pseudocritical temperature, Tpc = 150 MeV.

The magnetic field enters the expression for η, Equation (76), in two ways: through
the multiplicative eB term, and through the values of mσ and mq. The latter dependence
is subtle, B affects mσ and mq and thereby affects the inequality mσ > 2mq. The magnetic
field modifies not only the position of the minimum of Veff (which determines mq) but also
its curvature around the minimum (which determines mσ)—compare the B 6= 0 and B = 0
effective potentials in Figure 1. To appreciate this B-dependence of mσ and mq, we show in
Figure 3 the temperature dependence of these masses for the values of B used in Figure 2.
It is important to notice the different temperature dependence of mσ and mq: the former
increases faster as the temperature decreases. This faster increase of mσ explains the ηB
increase at low temperatures.
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Figure 3. Temperature and magnetic field dependence of the σ and quark masses.

Continuing with the aim of gaining analytic understanding, we consider σ’s dynamics
in a temperature quench scenario. Before continuing, we spell out the required simplifica-
tions here. We neglect expansion of the system. Expansion is perhaps the most relevant
trait of a heavy-ion collision that needs to be taken into account when simulating a real
laboratory event. But such a simulation is out of the scope of this work. We also assume a
constant magnetic field in the course of the condensate evolution. As such, we do not con-
sider the complex magnetohydrodynamics that governs the magnetic field in the medium
expansion course. The magnetic field weakens as the system expands, but it also induces
electric currents that can sustain a magnetic field of sizeable strength while the system
exists [77–79]. This feature, to some extent, justifies the assumption of a constant field.
Finally, we do no consider reheating, that is, energy transfer between the condensate and
the background. Reheating changes the local temperature of the background and, as for
zero magnetic fields, can effect the dynamics [30]. We reserve for a separate study the
inclusion of the neglected effects.

In a quench scenario, a sudden drop in the temperature drives the system out of a high
temperature phase, in which σ ≈ 0, and forces the system to evolve to a lower temperature
phase in which σ 6= 0. One gets insight on how a nonzero B impacts such a quench by
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examining the time scale controlling the short-time dynamics. That time scale, which we
denote by τs, determines how quickly the system leaves the initial state. It depends, of
course, on η, and also on the nature of the lower temperature phase, which the magnetic
field affects as well. This interplay between η and the nature of the low temperature phase
in a quench scenario is well known [18,19]. We take as lower temperature phase one around
the B = 0 pseudocritical temperature; that is, at t = 0 the system is brought to one of the
local maxima of the Veff in Figure 1.

At short times, when σ ≈ 0, one can linearize the Langevin equation, neglect the
second-order time derivative, and solve the equation analytically. It is convenient [24] to
rescale the fields by the volume V = L3, namely σ = σ/L3 and ξσ = ξσ/L3. The Langevin
equation for σ can be written as:

η(p⊥)
∂σ(t, p⊥)

∂t
−
(

µ2 − p2
⊥

)
σ(t, p⊥) + gρs(σ0)− fπm2

π = ξσ(t, p⊥), (77)

where

µ2 = λ

(
f 2
π −

m2
π

λ

)
, (78)

and ξσ has zero mean, 〈ξσ(t, p⊥)〉ξ = 0, and correlation

〈ξσ(t, p⊥)ξσ(t′, p′⊥)〉ξ = (2π)2δ(p⊥ + p′⊥) L δ(t− t′)N(p⊥), (79)

where N(p⊥) = N(p⊥)/L6. We compute the equal-time correlation function (variance) of
the field, 〈 σ2(t, p2

⊥) 〉ξ . Taking as initial condition σ(0, p⊥) = 0, one obtains:

〈 σ2(t, p2
⊥) 〉ξ =

[
gρs(σ0)− fπm2

π

]2
(µ2 − p⊥)2

(
e λ(p⊥) t/τs − 1

)2

+
E(p⊥) coth(E(p⊥))

L3(µ2 − p2
⊥)

(
e 2 λ(p⊥) t/τs − 1

)
, (80)

where

τs =
ηB

µ2 and λ(p⊥) =
1− p2

⊥/µ2

η(p⊥)/ηB
, (81)

with ηB given by Equation (76).
From the definition of λ(p⊥) one sees that the exponentials in Equation (80) increase

with time for long wavelength modes, p2
⊥ < µ2, and decrease for short wavelengths, p2

⊥ >
µ2. That is, long wavelength modes explode at short times, akin to the familiar phenomenon
of spinodal decomposition [18,19]. We recall that the quench we are considering brings the
system to one of the local maxima of the effective potential Veff in Figure 1; there are no
barriers to overcome. The explosion is controlled by the time scale τs, which depends on
η (fluctuations) and µ2 (state). The first term in Equation (80) exposes the role played by
the low temperature phase; it comes from δVeff[σ]/δσ. Notice that for small σ, that term
is nothing else δVeff[σ]/δσ = 0: (gρs − fπm2

π)/µ2 ≡ σ2
s , where σs stands for small σ. The

second term comes from the noise source.
We present results for the (square root of the) equal-time correlation function for two

values of p⊥; the zero mode p⊥ = 0, and a thermal average value 〈p⊥〉th. =
√
〈p2
⊥〉th.,

where 〈p2
⊥〉th. is the average:

〈p2
⊥〉th. =

∫
d2 p⊥ p2

⊥ nB(p⊥)∫
d2 p⊥ nB(p⊥)

, where nB(p) =
1

eEσ(p)/T − 1
, (82)
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with Eσ(p) =
√

p2 + m2
σ. We take a volume of dimension L3 = (10 fm)3. Figure 4 shows

results for 〈σ〉(t, p⊥)/σs, where we defined 〈σ〉(t, p⊥) =
√
〈 σ2(t, p⊥) 〉ξ . The zero mode’s

fast exponential growth stands out in the two panels of the figure. The magnetic field
impact on the short-time growth also stands out, notably the explosion delay alluded to
previously. Since our calculation does not take into account expansion of the system, it is
difficult to assess the phenomenological impact of such a delay, for example, on the QGP
disassemble into hadrons. However, the delay does not seem irrelevant in this respect,
as it can reach 1 fm (right panel of Figure 4), being of the order of 10% of the total time
the QGP takes to disassemble into hadrons. We recall that the latter is on the average of
the order of 10 fm, time over which the temperature varies between Tch ∼ 150 MeV and
TK ∼ 100 MeV [80,81]. Here, Tch and TK are respectively the chemical and kinetic freeze
out temperatures; the former signals the end of inelastic collisions and fixes the observed
hadron abundances and the latter signals the end of elastic hadron collisions and leads to
the disassemble of the system into hadrons. Given that a magnetic field also affects hadron
masses, there seems to be room for optimism for a possible experimental signal in hadron
emission spectra from noncentral collisions. Certainly these results warrant further studies.
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Figure 4. Square root of the equal-time correlation function, normalized to σs—see text for definitions.
Notice the different vertical axes ranges in two panels. There is no dashed-red curve for p⊥ = 0 in
the left panel because η is zero for eB/m2

π = 15 and T = 150 MeV (see Figure 2).

Will pions change qualitatively the overall picture? Probably not. For B = 0, pions
have a significant effect on the σ dynamics only close to the first-order transition of the
LSMq [82]. The results we have shown here refer to temperatures away from the first order
transition temperature, which we recall, T ≥ 180 MeV. Moreover, results from lattice
QCD [83] and phenomenological models [58,84,85] predict that a background magnetic
field leaves unchanged the π0 mass and increases the π± masses, as expected on general
grounds, features that will not change the results of Reference [82]. An instance where pions
will change quantitatively our results is in the value of η: pions bring further dissipation
with the σ → 2π channel, which implies a positive contribution to τs, that is, the delay
increases. However, the question will be answered only with a detailed calculation.

7. Conclusions and Perspectives

We studied the impact of a strong magnetic field on the chiral quark condensate
dynamics. We built on the semiclassical framework developed for zero magnetic field
developed in Reference [29]. That framework bases the dynamics on a mean field Langevin
equation derived from a microscopic chiral quark model. We extended that Langevin
equation to include the effects of a magnetic field. The Langevin equation we derived
features damping and noise modified by the magnetic field. Damping and noise reflect
the condensate’s interactions with an effective magnetized quark background in local
thermal equilibrium. The background results from integrating out quarks from a mean-
field effective action defined by the linear sigma model. To integrate out quarks, we used
the closed time path formalism of nonequilibrium quantum field theory. We obtained
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numerical results using values of magnetic field strengths and space-time scales related
to high-energy heavy-ion collision experiments. We presented results for the short-time
condensate dynamics under temperature quenches. The quenches we used were from a
high temperature, for which the condensate is zero, to lower temperatures close to the zero
magnetic field crossover temperature, T ∼ 150 MeV. The results we showed revealed that
the magnetic field changes the dissipation pattern as compared to the zero magnetic field
case, retarding condensate’s short-time evolution substantially, a feature that can impact
hadron formation at the QCD transition.

Our study was a first incursion into a complex many-body problem. Our primary
aim in this study was to get insight into how a strong magnetic field affects condensate
dynamics. We simplified the analysis, and sought an analytical understanding whenever
possible. We also omitted physical effects peculiar to a heavy-ion collision. As such, before
one can draw conclusions on phenomenological consequences in a realist heavy-ion setting,
one needs to extend the theoretical framework to include the omitted features. These
include pions, expansion, reheating, magnetohydrodynamics modes, and coupling to other
order parameters. As in the case of zero magnetic field [29], the formalism developed here
is flexible enough to tackle the more complex problem. Another extension of our study is
to incorporate a confinement mechanism. A possibility is to couple a color dielectric field
to the chiral σ and π fields of the LSMq, a possibility very much explored in the context
of bag and soliton models [86]. Such models can be extended to include explicit gluon
degrees of freedom to realize dynamical chiral symmetry breaking and describe asymptotic
freedom [87,88].

The framework developed in this paper can be adapted to study magnetic field effects
on the QCD phase transition in the early universe and in the interior of magnetized compact
stars (magnetars). Several mechanisms of strong magnetic field generation in the early
universe have been suggested [7,8]; a very recent, connected with the QCD phase transition,
involves the collapse of domain walls related to the confinement order parameter [89].
A marked difference between the early universe and heavy-ion collision settings concerns
the rate of change of the temperature d ln T/dt during expansion of the system. In the
early universe, this rate is given by Hubble constant H ∼ 10−18 s−1, which is much slower
than that in a heavy-ion collision. Therefore, the primordial chiral condensate evolves in a
slowly changing effective potential as the system expands. Such an evolution characterizes
an annealing scenario for the phase change, rather than of a quench, but it can be studied
equally well with the Langevin equation framework of the present paper [90]. Regarding
magnetars, the inner-core magnetic field can reach strengths varying between eB ' m2

π

and eB ' 50m2
π [91]. In this setting, the temperatures are very low, lower than 50 MeV, and

the phase conversion is driven by high baryon density. An issue of interest relates to the
time scales associated with the phase conversion during the early stages of the magnetar
formation after a core-collapsing supernova process. In this case, the formalism used in
this paper needs to be extended to nonzero baryon density [92].
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