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Abstract: The concepts of terms and tree languages are significant tools for the development of
research works in both universal algebra and theoretical computer science. In this paper, we es-
tablish a strong connection between semigroups of terms and tree languages, which provides the
tools for studying monomorphisms between terms and generalized hypersubstitutions. A novel
concept of a seminearring of non-deterministic generalized hypersubstitutions is introduced and
some interesting properties among subsets of its are provided. Furthermore, we prove that there
are monomorphisms from the power diagonal semigroup of tree languages and the monoid of
generalized hypersubstitutions to the power diagonal semigroup of non-deterministic generalized
hypersubstitutions and the monoid of non-deterministic generalized hypersubstitutions, respectively.
Finally, the representation of terms using the theory of n-ary functions is defined. We then present
the Cayley’s theorem for Menger algebra of terms, which allows us to provide a concrete example
via full transformation semigroups.
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1. Introduction and Preliminaries

In the classical theory of theoretical computer science, an automaton is a finite state
machine which accepts certain strings of letters from a fixed base alphabet. Such strings
are usually called words, and sets of words are called languages. Formal language theory
is the study of properties of languages and automata. One of a generalized study of
formal languages is the study of tree languages, i.e., the words of the classical case can
be considered as a particular kind of terms. Since terms are commonly represented by
tree diagrams, such formal languages are also called tree languages. For more details in
this background, see [1–3]. We now recall the fundamental notion of terms as follows: Let
Xn = {x1, . . . , xn}, for n a natural number, be a finite set which elements are called variables
and X = {x1, . . . , xn, . . .} be countably infinite. The variable xi in Xn is an alphabet of
formal languages. To define terms from this alphabet, we use a set { fi | i ∈ I} of operation
symbols, indexed by the set I. The type is the sequence τ = (ni)i∈I of the natural numbers
which are arities of the operation symbols fi. An n-ary term of type τ is defined inductively
by: Every variable xj ∈ Xn is an n-ary term of type τ and fi(t1, . . . , tni ) is an n-ary term
of type τ where t1, . . . , tni are n-ary terms of type τ and fi is an ni-ary operation symbol.
The set of all n-ary terms of type τ is denoted by Wτ(Xn). Let Wτ(X) :=

⋃
n∈N+ Wτ(Xn)

be the set of all terms of type τ. See [4–10] for other related topics of terms.
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Every term can be represented by a tree diagram, i.e., we consider term as a rooted
tree whose vertices correspond to the operation symbols and variables that occur in it.
We call this tree the tree representation of a term t. For instance, a tree representation of a term

f (x4, g(h(x1, x2)), h(x9, x5))

can be shown in the below diagram.

x4

f

h

x5x9

g

h

x1 x2

Substituting the variables that appear in a term by the other terms, one obtains a new
term. This can be described by the (n + 1)-generalized superpostion Sn, n ≥ 1,

Sn : Wτ(X)n+1 →Wτ(X)

defined inductively by the following steps: for t, t1, . . . , tn ∈Wτ(X)

(1) If t = xi; 1 ≤ i ≤ n, then Sn(xi, t1, . . . , tn) := ti.
(2) If t = xi; n < i, then Sn(xi, t1, . . . , tn) := xi.
(3) If t = fi(s1, . . . , sni ), then

Sn(t, t1, . . . , tn) := fi(Sn(s1, t1, . . . , tn), . . . , Sn(sni , t1, . . . , tn)).

Then, we can form the algebraic structure, (n + 1)-ary algebra (Wτ(X), Sn) consisting
the universe Wτ(X) together with one (n + 1)-ary operation Sn. In [11], the algebra in this
form is known as a Menger algebra with infinitely many nullary operations. It is not hard
to show that this algebra satisfies the superassociative law:

Sn(Sn(t, t1, . . . , tn), s1, . . . , sn) = Sn(t, Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn))

for all arbitrary terms t, t1, . . . , tn, s1, . . . , sn ∈Wτ(X).
Using the concepts of terms and generalized superposition, the following ideas are es-

sentially recalled. It was known from [12] that a formal definition of a strong hyperidentity
and a strong solid variety can be given using the concept of a generalized hypersubstitution.
We now recall such concept as follows: Let { fi | i ∈ I} be an indexed set of operation
symbols of type τ where fi is ni-ary, ni is a natural number. Let HypG(τ) be the set of all
arbitrary mappings σ : { fi | i ∈ I} → Wτ(X), which is called a generalized hypersubstitu-
tion of type τ. To define a binary operation on this set, the essential defining is necessary.
Any σ ∈ HypG(τ) can be uniquely extended to a mapping

σ̂ : Wτ(X)→Wτ(X),

which is defined by

(1) σ̂[xi] := xi ∈ X,
(2) σ̂[ fi(t1, . . . , tni )] := Sni (σ( fi), σ̂[t1], . . . , σ̂[tni ]) where σ̂[tj], 1 ≤ j ≤ ni are already

defined.

Using the extension of generalized hypersubstitution of type τ, the binary operation
◦G is defined by σ1 ◦G σ2 := σ̂1 ◦ σ2 where ◦ denotes the usual composition of mappings.
The generalized hypersubstitution σid, which sends each fi to the term fi(x1, x2, . . . , xni ),
is an identity element for ◦G. Then, (HypG(τ), ◦G, σid) is a monoid. See the following
references for the research topics and current trends in this direction [13–18].
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Let P(Wτ(X)) be the power set of all the set of all terms of type τ. An inductive
definition of an (n + 1)-ary operation on P(Wτ(X)) is completely defined in [19]. Let n
be a natural number, B, B1, . . . , Bn are arbitrary subsets of Wτ(X). Then, an (n + 1)-ary
generalized superposition operation

Ŝn : P(Wτ(X))n+1 → P(Wτ(X))

is defined inductively by

(1) If B = {xi}; 1 ≤ i ≤ n, then Ŝn({xi}, B1, . . . , Bn) := Bi.
(2) If B = {xi}; n < i, then Ŝn({xi}, B1, . . . , Bn) := {xi}.
(3) If B = { fi(t1, . . . , tni )}, and suppose that Ŝn({tk}, B1, . . . , Bn) for all k = 1, . . . , ni

are already defined, then Ŝn({ fi(t1, . . . , tni )}, B1, . . . , Bn) := { fi(r1, . . . , rni ) | rk ∈
Ŝn({tk}, B1, . . . , Bn), 1 ≤ k ≤ ni}.

(4) If B is an arbitrary nonsingleton subset of Wτ(X), then

Ŝn(B, B1, . . . , Bn) :=
⋃

b∈B

Ŝn({b}, B1, . . . , Bn).

If one of the sets B, B1, . . . , Bn is empty, we define Ŝn(B, B1, . . . , Bn) := ∅. It turns out
that the following algebra of type (n + 1), (P(Wτ(X)), Ŝn) is a Menger algebra and called a
power Menger algebra with infinitely many nullary operations. Then, it was proved that
this algebra satisfies the superassociative law [19].

A non-deterministic generalized hypersubstitution of type τ [19] is a mapping σ :
{ fi | i ∈ I} → P(Wτ(X)). The set of all such mappings is denoted by Hypnd

G (τ). It is
well-known that every σ generates a mapping σ̂ which takes a tree language into itself by
the following inductive way:

(1) σ̂[∅] := ∅,
(2) σ̂[{xi}] := {xi} where xi is a variable from X,
(3) σ̂[{ fi(t1, . . . , tni )}] := Ŝni (σ( fi), σ̂[{t1}], . . . , σ̂[{tni}]) if σ̂[{tk}], 1 ≤ k ≤ ni are already

defined,
(4) σ̂[B] :=

⋃
b∈B

σ̂[{b}] if B is an arbitrary nonsingleton subset of Wτ(X).

The algebraic properties of σ̂ were proved in [19] that every extension σ̂ of non-deterministic
generalized hypersubstitution σ is an endomorphism of the algebra (P(Wτ(X)), Ŝn). Applying
an extension σ̂, in [20], the binary operation ◦nd

G : Hypnd
G (τ)2 → Hypnd

G (τ) was introduced
by setting σ1 ◦nd

G σ2 := σ̂1 ◦ σ2. Moreover, the non-deterministic generalized hypersubsti-
tution σid was defined to be an identity element where σid( fi) := { fi(x1, . . . , xni )} for all
i ∈ I. As a consequence, the structure (Hypnd

G (τ), ◦nd
G , σid) forms a monoid.

As we mentioned above, there are many authors who studied the concepts of terms
and tree languages in various structures. The lack of relationships among the algebras of
terms and tree languages allows us to study in this paper. Thus, two potential questions
natually arise: Firstly, are there interactions between several algebras of terms and tree lan-
guages? Secondly, how can these connections be described in terms of embedding, if any?
In the present paper, these problems are answered in Section 2. Particularly, in Section 3,
we define another binary operation for the set of all non-deterministic generalized hyper-
substitutions and provide their interesting properties. An embedding theorem of a Menger
algebra with infinitely many nullary operations in a suitable algebra is studied in Section 4.
We also give a concrete example of this representation.

2. Monomorphisms between Semigroups of Terms and Tree Languages

In any Menger algebra (G, ◦), i.e., the structure consisting of a nonempty set with an (n +
1)-operation satisfying the superassociative law, a binary operation + on G can be defined by
a+ b := ◦(a, b, . . . , b︸ ︷︷ ︸

n times

). It is not difficult to see that + is associative. The algebra (G,+) is called
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the diagonal semigroup. Moreover, on the Cartesian power Gn, one can define a binary operation
∗ by ((x1, . . . , xn) ∗ (y1, . . . , yn)) := (◦(x1, y1, . . . , yn), . . . , ◦(xn, y1, . . . , yn)). It turns out
that (Gn, ∗) forms a semigroup, which is called the binary comitant. In 2006, Denecke and
Jampachon [11] defined these two semigroups for the set of terms and characterized the
regularity and Green’s relations. The situation for tree languages was studied in [21].

In order to study the connection between the semigroups of terms and tree languages,
we need the following lemma:

Lemma 1. For any terms t, s1, . . . , sn ∈Wτ(X), we have

{Sn(t, s1, . . . , sn)} = Ŝn({t}, {s1}, . . . , {sn}).

Proof. We give a proof by induction on the complexity of the term t. The proof is easy to
verify if t is a variable. Assume that t = fi(t1, . . . , tni ) and

{Sn(tk, s1, . . . , sn)} = Ŝn({tk}, {s1}, . . . , {sn})

for every k = 1, . . . , ni. Then,
{Sn(t, s1, . . . , sn)}

= {Sn( fi(t1, . . . , tni ), s1, . . . , sn)}
= { fi(Sn(t1, s1, . . . , sn), . . . , Sn(tni , s1, . . . , sn))}
= { fi(r1, . . . , rni ) | rk ∈ {Sn(tk, s1, . . . , sn)}, 1 ≤ k ≤ ni}
= { fi(r1, . . . , rni ) | rk ∈ Ŝn({tk}, {s1}, . . . , {sn}), 1 ≤ k ≤ ni}
= Ŝn({ fi(t1, . . . , tni )}, {s1}, . . . , {sni})
= Ŝn({t}, {s1}, . . . , {sni}).

Let I be a nonempty indexed set. The symbol τ
|I|
n means a fixed n-ary type with

operation symbols ( fi)i∈I . That is, τ
|I|
n is a sequence of |I|-tuple of fixed n-ary operation

symbols. For instance, if |I| = 3, τ3
2 = (2, 2, 2). This means that we have three binary

operation symbols.
On the set W

τ
|I|
n
(X), the binary operation +g can be defined by s +g t = Sn(s, t, . . . , t)

for all s, t ∈W
τ
|I|
n
(X). Similarly, the binary operation⊕g on P(W

τ
|I|
n
(X) is defined by setting

A⊕g B = Ŝn(A, B, . . . , B) for all A, B ∈ P(W
τ
|I|
n
(X). Then, we have

Proposition 1. The diagonal semigroup (W
τ
|I|
n
(X),+g) can be embedded into the diagonal power

semigroup (P(W
τ
|I|
n
(X)),⊕g).

Proof. It follows immediately from the superassociativity of Sn and Ŝn that (W
τ
|I|
n
(X),+g)

and (P(W
τ
|I|
n
(X)),⊕g) are semigroups. For any term t in W

τ
|I|
n
(X), we define a map-

ping ϕ : W
τ
|I|
n
(X) → P(W

τ
|I|
n
(X)) by ϕ(t) = {t}. Obviously, ϕ is injective. Moreover,

the homomorphism property is also true by applying Lemma 1. Since, for all s, t ∈
W

τ
|I|
n
(X), we have ϕ(s+g t) = ϕ(Sn(s, t . . . , t)) = {Sn(s, t . . . , t)} = Ŝn({s}, {t}, . . . , {t}) =

Ŝn(ϕ(s), ϕ(t), . . . , ϕ(t)) = ϕ(s)⊕g ϕ(t).

Proposition 2. The binary comitant semigroup (W
τ
|I|
n
(X)n, ∗g) where ∗g on W

τ
|I|
n
(X)n is defined

by
((s1, . . . , sn) ∗g (t1, . . . , tn)) := (Sn(s1, t1, . . . , tn), . . . , Sn(sn, t1, . . . , tn))

can be embedded into the semigroup (P(W
τ
|I|
n
(X))n,⊗g) where the operation ∗g on P(W

τ
|I|
n
(X))n

is defined by

((A1, . . . , An)⊗g g(B1, . . . , Bn)) := (Ŝn(A1, B1, . . . , Bn), . . . , Ŝn(An, B1, . . . , Bn)).
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Proof. Clearly, (W
τ
|I|
n
(X)n, ∗g) and (P(W

τ
|I|
n
(X))n,⊗g) are semigroups since the operations

Sn and Ŝn satisfy the superassociative law, respectively. A mapping ϕ : W
τ
|I|
n
(X)n →

P(W
τ
|I|
n
(X))n can be defined by ϕ((t1, . . . , tn)) = ({t1}, . . . , {tn}) for all terms t1, . . . , tn

of type τ
|I|
n . It is clearly that ϕ is injective. To prove that ϕ is homomorphism, we let

s1, . . . , sn, t1, . . . , tn be elements in W
τ
|I|
n
(X). Then, by Lemma 1, we obtain

ϕ((s1, . . . , sn) ∗g (t1, . . . , tn))

= ϕ((Sn(s1, t1, . . . , tn), . . . , Sn(sn, t1, . . . , tn)))
= ({Sn(s1, t1, . . . , tn)}, . . . , {Sn(sn, t1, . . . , tn)})
= (Ŝn({s1}, {t1}, . . . , {tn}), . . . , Ŝn({sn}, {t1}, . . . , {tn}))
= ({s1}, . . . , {sn}) ∗g ({t1}, . . . , {tn})
= ϕ((s1, . . . , sn))⊗g ϕ((t1, . . . , tn)).

This finishes the proof.

A relationship between the diagonal semigroup (W
τ
|I|
n
(X),+g) and the binary comi-

tant semigroup (W
τ
|I|
n
(X)n, ∗g) is now provided.

Proposition 3. Let ϕ : W
τ
|I|
n
(X)→W

τ
|I|
n
(X)n be a mapping which is defined by ϕ(t) = (t, . . . , t)

for all t ∈ W
τ
|I|
n
(X). Then, ϕ is a monomorphism from (W

τ
|I|
n
(X),+g) into (W

τ
|I|
n
(X)n, ∗g), i.e.,

it satisfies the identity ϕ(s +g t) = ϕ(s) ∗g ϕ(t) for all s, t ∈W
τ
|I|
n
(X).

Proof. Injectivity of ϕ is clearly obtained. In addition, ϕ is homomorphism since ϕ(s +g
t) = ϕ(Sn(s, t, . . . , t)) = (Sn(s, t, . . . , t), . . . , Sn(s, t, . . . , t)) = (s, . . . , s) ∗g (t, . . . , t) = ϕ(s) ∗g
ϕ(t).

Using the generalized superposition Sn for every 1 ≤ i ≤ n, we define a binary
operation ·xi on W

τ
|I|
n
(X) in the following way:

s ·xi t := Sn(s, x1, . . . , xi−1, t, xi+1, . . . , xn)

for all s, t ∈W
τ
|I|
n
(X). Then, we have

Proposition 4. The set W
τ
|I|
n
(X) with a binary operation ·xi forms a monoid.

Proof. Because the generalized superposition Sn satisfies the superassociative law, then a binary
operation ·xi is associative. We see that a variable xi acts as the identity element, by the property
of the generalized superposition Sn, we have s ·xi xi = Sn(s, x1, . . . , xi−1, xi, xi+1, . . . , xn) =
s = Sn(xi, x1, . . . , xi−1, s, xi+1, . . . , xn) = xi ·xi s.

The situation for tree languages was already defined in [22], i.e., for any subsets A, B
of W

τ
|I|
n
(X), the binary operation ·xi on P(W

τ
|I|
n
(X)) is defined by

A�xi B := Ŝn(A, {x1}, . . . , {xi−1}, B, {xi+1}, . . . , {xn}).

Furthermore, (P(W
τ
|I|
n
(X)),�xi ) is a monoid, since the singleton {xi} is an identity

with respect to ·xi .

Proposition 5. The monoid (W
τ
|I|
n
(X), ·xi ) can be embedded into (P(W

τ
|I|
n
(X)),�xi ).

Proof. Firstly, we define a mapping ϕ : (W
τ
|I|
n
(X), ·xi )→ (P(W

τ
|I|
n
(X)),�xi ) by ϕ(t) = {t}

for all t ∈W
τ
|I|
n
(X). Clearly, ϕ is injective. It can be shown straightforwardly that a mapping

ϕ is a homomorphism.
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3. The Left Seminearring of Non-Deterministic Generalized Hypersubstitutions

In this section, we investigate the structural properties of non-deterministic gener-
alized hypersubstitutions. One of the algebraic structures that we are interested in is a
seminearring.

Definition 1. A left (right) seminearring is a triple of a nonempty set R together with two binary
operations, denoted by + and ·, respectively, such that + and · is associative on R, and satisfying
the left (right) distributive law, i.e., for all a, b, c ∈ R, a · (b + c) = a · b + a · c ((a + b) · c =
a · c + b · c).

It was proved in [23] that, under suitable two binary operations, i.e., ◦G and +G, which
are defined by (σ1 +G σ2)( fi) := Sni (σ2( fi), σ1( fi), . . . , σ1( fi)) for all σ1, σ2 ∈ HypG(τ);
the set of all generalized hypersubstitutions of type τ forms a left seminearring.

On the diagonal semigroup (W
τ
|I|
n
(X),+g) as we mentioned in the previous section,

we now establish the relationship between the diagonal semigroup and the semigroup
(HypG(τ),+G). To do this, we improve a definition of a binary operation +g by the fol-
lowing

s +′g t := Sn(t, s, . . . , s).

It can be proved by a direct calculation and the superassociativity of the generalized
superposition Sn that this defining operation is associative. Then, we have that

Proposition 6. (W
τ
|I|
n
(X),+′g) is a semigroup.

A strong connection between the diagonal semigroup and the semigroup of all gener-
alized hypersubstitutions is provided in the following theorem:

Theorem 1. The diagonal semigroup (W
τ
|I|
n
(X),+′g) can be embedded into (HypG(τ

|I|
n ),+G).

Proof. For any generalized hypersubstitution of type τ
|I|
n σ and any term t, the mapping

σt is defined by σt( fi) = t, where fi is an n-ary operation symbol. To prove this theorem,
we define a mapping ϕ which takes each n-ary term t to a generalized hypersubstitution of
type τ

|I|
n by ϕ(t) = σt for all t ∈ W

τ
|I|
n
(X). It is obvious that ϕ is injective. Now, let s, t ∈

W
τ
|I|
n
(X). Then, ϕ(s +′g t) = ϕ(Sn(t, s, . . . , s)) = σSn(t,s,...,s) = σs +G σt = ϕ(s) +G ϕ(t).

In fact, we have σSn(t,s,...,s)( fi) = Sn(t, s, . . . , s) = Sn(σt( fi), σs( fi), . . . , σs( fi)) = (ϕ(s) +G
ϕ(t))( fi).

The next purpose of this section is to define another binary operation on the set
of all non-deterministic generalized hypersubstitutions. This leads us to form a novel
semigroup. Now, we introduce a novel definition of the binary operation +nd

G on the set of
all non-deterministic generalized hypersubstitutions of type τ by setting

(σ1 +
nd
G σ2)( fi) := Ŝni (σ2( fi), σ1( fi), . . . , σ1( fi)).

Then, Hypnd
G (τ) forms a semigroup with respect to the binary operation +nd

G , which is
presented in the following proposition:

Proposition 7. (Hypnd
G (τ),+nd

G ) is a semigroup.

Proof. Let σnd
1 , σnd

2 and σnd
3 be elements in Hypnd

G (τ). Because of the superassociativity of
the generalized superposition Ŝn, we have
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((σ1 +
nd
G σ2) +

nd
G σ3)( fi) = Ŝni (σ3( fi), (σ1 +

nd
G σ2)( fi), . . . , (σ1 +

nd
G σ2)( fi))

= Ŝni (Ŝni (σ3( fi), σ2( fi), . . . , σ2( fi)), σ1( fi), . . . , σ1( fi))

= Ŝni ((σ2 +
nd
G σ3)( fi), σ1( fi), . . . , σ1( fi))

= (σ1 +
nd
G (σ2 +

nd
G σ3))( fi).

The proof is finished.

Then, we have

Theorem 2. (Hypnd
G (τ),+nd

G , ◦nd
G ) is a left seminearring.

Proof. It is well known that (Hypnd
G (τ), ◦nd

G ) is a semigroup and by Proposition 7 (Hypnd
G (τ),

+nd
G ) is also a semigroup. Now, we show the left distributivity. For this, let σ1, σ2 and σ3 be

non-deterministic generalized hypersubstitutions of type τ
|I|
n . Then, by the fact that any ex-

tension of non-deterministic generalized hypersubstitutions of type τ
|I|
n is endomorphism

on the set of tree languages, we have
(σ1 ◦nd

G (σ2 +
nd
G σ3))( fi) = σ̂1[(σ2 +

nd
G σ3)( fi)]

= σ̂1[Ŝn(σ3( fi), σ2( fi), . . . , σ2( fi))]

= Ŝn(σ̂1[σ3( fi)], σ̂1[σ2( fi)], . . . , σ̂1[σ2( fi)])

= Ŝn((σ1 ◦nd
G σ3)( fi), (σ1 ◦nd

G σ2)( fi), . . . , (σ1 ◦nd
G σ2)( fi))

= ((σ1 ◦nd
G σ2) +

nd
G (σ1 ◦nd

G σ3))( fi).

This shows that the left distributive law is valid.

The following counterexample shows that the right distributive law is not satisfied.

Example 1. Let I be a singleton and the type τ1
2 = (2) with one binary operation symbol f . Define

non-deterministic generalized hypersubstitutions of type τ1
2 , say σ1, σ2 and σ3 by

σ1( f ) = { f (x1, f (x2, x5))}, σ2( f ) = {x4, f (x3, x2)}, σ3( f ) = { f (x2, x1)}.

Consider

((σ1 +
nd
G σ2) ◦nd

G σ3)( f ) = (σ1 +
nd
G σ2 )̂[{ f (x2, x1)}]

= Ŝ2((σ1 +
nd
G σ2)( f ), {x2}, {x1})

= Ŝ2({x4, f (x3, f (x1, f (x2, x5)))}, {x2}, {x1})
= {x4, f (x3, f (x2, f (x1, x5)))}

and
((σ1 ◦nd

G σ3) +
nd
G (σ2 ◦nd

G σ3))( f )
= Ŝ2((σ2 ◦nd

G σ3)( f ), (σ1 ◦nd
G σ3)( f ), (σ1 ◦nd

G σ3)( f ))
= Ŝ2({x4, f (x1, x5)}, { f (x2, f (x1, x5))}, { f (x2, f (x1, x5))})
= {x4, f ( f (x2, f (x1, x5)), x5)}.
Thus, ((σ1 +

nd
G σ2) ◦nd

G σ3) 6= ((σ1 ◦nd
G σ3) +

nd
G (σ2 ◦nd

G σ3)). This means that the right
distributive law is not true.

Based on the monoid (HypG(τ), ◦G, σid), various algebraic structural properties of
some submonoids were investigated by Leeratanavalee in [24]. Now, we extend these
concepts to non-deterministic generalized hypersubstitutions and study some interesting
relationships.

Definition 2. Let τ = (ni)i∈I be a type with operation symbols fi having the arity ni for each
i ∈ I. A non-deterministic generalized hypersubstitution σ is said to be

(1) projection non-deterministic generalized hypersubstitution if the image σ( fi) is a nonempty
subset of X. Let Pnd

G (τ) be the set of all projection non-deterministic generalized hypersubsti-
tutions of type τ.
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(2) a pre-non-deterministic generalized hypersubstitution if σ( fi) is a nonempty subset of Wτ(X) \
X. Let Prend

G (τ) be the set of all pre-non-deterministic generalized hypersubstitutions of
type τ.

Theorem 3. Pnd
G (τ) ∪ {σid} and Prend

G (τ) are submonoids of (Hypnd
G (τ), ◦nd

G , σid).

Proof. Obviously, the identity non-deterministic generalized hypersubstitution σid belongs
to the sets Pnd

G (τ) ∪ {σid} and Prend
G (τ). Now, we let σ1, σ2 ∈ Pnd

G (τ) ∪ {σid}. To prove that
σ1 ◦G σ2 ∈ Pnd

G (τ) ∪ {σid}, we consider the following four cases:
Case 1: σ1 ∈ Pnd

G (τ) and σ2 = σid. Then, σ1( fi) = B where ∅ 6= B ⊆ X. Consider
(σ1 ◦G σid)( fi) = σ̂1[σid( fi)] = Ŝni (σ1( fi), {x1}, . . . , {xni}). By the assumption, we have
(σ1 ◦G σid)( fi) = Ŝni (B, {x1}, . . . , {xni}) =

⋃
b∈B

Ŝn({b}, {x1}, . . . , {xni}) ⊆ X. Thus, σ1 ◦nd
G

σ2 ∈ Pnd
G (τ) ∪ {σid}.

Case 2: σ1 = σid and σ2 ∈ Pnd
G (τ). Then, σ2( fi) = B where ∅ 6= B ⊆ X. Thus,

(σid ◦G σ2)( fi) = σ̂id[σ2( fi)] = σ̂id[B] = B.
Case 3: σ1 = σid = σ2. Obvious.
Case 4: σ1, σ2 ∈ Pnd

G (τ). Then, both σ1( fi) and σ2( fi) are nonempty subsets of X. Thus,
(σ1 ◦G σ2)( fi) = σ̂1[σ2( fi)] = σ̂1[B] = B for some ∅ 6= B ⊆ X and σ2( fi) = B.

Finally, it is not difficult to verify that the composition of two pre-non-deterministic
generalized hypersubstitutions is again a pre-non-deterministic generalized hypersubstitu-
tion:

Theorem 4. Pnd
G (τ) and Prend

G (τ) form sub-left seminearrings of (Hypnd
G (τ),+nd

G , ◦nd
G ).

Proof. Our goal is to show that the sets Pnd
G (τ) and Prend

G (τ) are closed under the binary
operation +nd

G . Let σ1, σ2 ∈ Pnd
G (τ). Then, the images of them are nonempty subsets

of X. Since (σ1 +
nd
G σ2)( fi) = Ŝni (σ2( fi), σ1( fi), . . . , σ1( fi)) and σ1( fi), σ2( fi) are nonempty

subsets of X, (σ1 +
nd
G σ2)( fi) is also a set of some variables from X. Thus, σ1 +

nd
G σ2 ∈ Pnd

G (τ).
Next, let σ1, σ2 ∈ Prend

G (τ). Then, the images of them are nonempty subsets of Wτ(X) \
X. Since (σ1 +

nd
G σ2)( fi) := Ŝni (σ2( fi), σ1( fi), . . . , σ1( fi)) and σ1( fi), σ2( fi) are nonempty

subsets of Wτ(X) \ X, (σ1 +
nd
G σ2)( fi) is a nonempty subset of Wτ(X) \ X. This shows that

σ1 +
nd
G σ2 is a pre-non-deterministic generalized hypersubstitution.

Similar to Theorem 1, the situation for tree languages is given. To do this, the following
tool is needed. For every subsets A, B of terms of type τ

|I|
n , a binary operation ⊕′g :

P(W
τ
|I|
n
(X))× P(W

τ
|I|
n
(X))→ P(W

τ
|I|
n
(X)) is defined by

A⊕′g B := Ŝn(B, A, . . . , A).

Using the fact that the generalized superposition Ŝn over tree languages satisfies the
superassociative law, then we get

Lemma 2. (P(W
τ
|I|
n
(X)),⊕′g) forms a semigroup, and called the diagonal power semigroup.

We now investigate the relationship between the diagonal power semigroup which is
constructed in Proposition 2 and the semigroup (Hypnd

G (τ
|I|
n ),+nd

G ).

Theorem 5. The diagonal power semigroup (P(W
τ
|I|
n
(X)),⊕′g) can be embedded into (Hypnd

G (τ
|I|
n ),

+nd
G ).
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Proof. Let σ be a non-deterministic generalized hypersubstitution of type τ
|I|
n and B be a sub-

set of W
τ
|I|
n
(X). Then, we associate a mapping σB : { fi | i ∈ I} → P(W

τ
|I|
n
(X)) by σB( fi) = B,

where fi is an n-ary operation symbol. Then, a mapping ϕ from the powerset of n-ary terms
to the non-deterministic generalized hypersubstitution of type τ

|I|
n is defined by ϕ(B) = σB

for all B ⊆W
τ
|I|
n
(X). It is commonly seen that ϕ is injective. Now, let A, B ⊆W

τ
|I|
n
(X). Then,

ϕ(A +′g B) = ϕ(Ŝn(B, A, . . . , A)) = σŜn(B,A,...,A) = σA +nd
G σB = ϕ(A) +nd

G ϕ(B). In fact,

σŜn(B,A,...,A)( fi) = Ŝn(B, A, . . . , A) = Ŝn(σB( fi), σA( fi), . . . , σA( fi)) = (ϕ(A) +nd
B ϕ(t))( fi).

Now, the proof is completed.

We complete this section by giving a significant connection between generalized
hypersubstitutions and non-deterministic generalized hypersubstitutions. For convenient,
a non-deterministic generalized hypersubstitution will be denoted by σnd.

Lemma 3. For any term t, a generalized hypersubstitution of type τ σ, and a non-deterministic
generalized hypersubstitution σnd,

{σ̂[t]} = σ̂nd[{t}].

Proof. We give a proof on the complexity of the term t. If t is a variable, we are done.
The‘proof follows directly from Lemma 1 if t = fi(t1, . . . , tni ) :

Theorem 6. (HypG(τ), ◦G, σid) can be embedded into (Hypnd
G (τ), ◦nd

G , σid).

Proof. Let fi be an ni-ary operation symbol and σ a generalized hypersubstitution of type
τ. Then, we define σnd : { fi | i ∈ I} → P(Wτ(X)) by σnd( fi) = {σ( fi)}. It is clear that σnd

belongs to Hypnd
G (τ). In order to prove that there is a monomorphism from HypG(τ) to

Hypnd
G (τ), we define a mapping θ : HypG(τ)→ Hypnd

G (τ) by

θ(σ) = σnd

for all σ ∈ HypG(τ). Clearly, the mapping θ is injective. Next, we let σ1, σ2 be two elements
in HypG(τ). Then, by Lemma 3, we have θ(σ1 ◦G σ2) = (σ1 ◦G σ2)nd = σnd

1 ◦nd
G σnd

2 =

θ(σ1) ◦nd
G θ(σ2). This shows that θ is a homomorphism.

Corollary 1. The left seminearring (HypG(τ),+G, ◦nd
G ) can be embedded into the left seminear-

ring (Hypnd
G (τ),+nd

G , ◦nd
G ).

A significant consequence of Theorem 6 is that a mapping σt in HypG(τ) corresponds
to the idempotent or a regular non-deterministic generalized hypersubstitution σnd

{t} in

(Hypnd
G (τ), ◦nd

G , σid).

4. Representation of Menger Algebra with Infinitely Many Nullary Operations by
n-Ary Functions

Firstly, we recall some preliminaries and background notions of n-ary functions,
see [25–27]. Let An be the n-th Cartesian product of a nonempty set A. Any mapping from
An to A is called a full n-ary function or an n-ary operation. The set of all such mapping is
denoted by T(An, A). One can consider the Menger’s composition on the set T(An, A), i.e.,
an (n + 1)-operation

O : T(An, A)n+1 → T(An, A)

defined by

O( f , g1, . . . , gn)(a1, . . . , an) = f (g1(a1, . . . , an), . . . , gn(a1, . . . , an)),
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where f , g1, . . . , gn ∈ T(An, A), a1, . . . , an ∈ A. The set T(An, A) is said to be an algebra of
full functions or algebra of operations if the composition of (n + 1) functions from this set is
also in this set, i.e., closed with respect to Menger’s composition. We can remark here that
the Menger’s composition can be reduced to the usual composition of functions if n = 1.

A Menger algebra of all full n-ary functions or Menger algebra of all n-ary operations is a pair
of the set T(An, A) of all full n-ary functions defined on A and the Menger composition of
full n-ary functions satisfying the superassociative law. Each subalgebra of this algebra
will be called a Menger algebra of full n-ary functions or Menger algebra of n-ary operations.

For each term t of the algebra (Wτ(X), Sn), we associate the full n-ary function λt :
Wτ(X)n →Wτ(X) by putting

λt(s1, . . . , sn) = Sn(t, s1, . . . , sn)

for all s1, . . . , sn ∈Wτ(X), where Sn is an (n + 1)-ary generalized superposition operation
defined on Wτ(X). The full n-ary function λt is an element of T(Wτ(X)n, Wτ(X)), which is
called an inner left translation of Wτ(X) corresponding to the term t of Wτ(X).

In order to prove our main theorem, the following lemmas are primarily essential.

Lemma 4. Let (Wτ(X), Sn) be a Menger algebra. Then,

λSn(t,s1,...,sn) = O(λt, λs1 , . . . , λsn)

for all t, s1, . . . , sn ∈Wτ(X), where Sn andO are generalized superposition operation and Menger’s
composition, respectively.

Proof. Let t, s1, . . . , sn, v1, . . . , vn be arbitrary elements in Wτ(X). Then, we have

λSn(t,s1,...,sn)(v1, . . . , vn) = Sn(Sn(t, s1, . . . , sn), v1, . . . , vn)

= Sn(t, Sn(s1, v1, . . . , vn), . . . , Sn(sn, v1, . . . , vn))
= λt(Sn(s1, v1, . . . , vn), . . . , Sn(sn, v1, . . . , vn))
= λt(λs1(v1, . . . , vn), . . . , λsn(v1, . . . , vn))
= O(λt, λs1 , . . . , λsn)(v1, . . . , vn).

The proof is completed.

Now, we let Λ′ = {λt | t ∈ Wτ(X)}. Our next aim is to show that (Λ′,O) forms a
Menger subalgebra of (T(Wτ(X)n, Wτ(X)),O).

Lemma 5. The set Λ′ forms a subalgebra of (T(Wτ(X)n, Wτ(X)),O) and thus (Λ′,O) is a
Menger algebra of full n-ary functions.

Proof. Obviously, ∅ 6= Λ′ ⊆ (T(Wτ(X)n, Wτ(X)),O). Let λt, λs1 , . . . , λsn be arbitrary full
n-ary functions in T(Wτ(X)n, Wτ(X)). It follows immediately from Lemma 4 that the
composition of such mappings again a full n-ary function.

We now establish the Cayley’s theorem of a Menger algebra with infinitely many
nullary operations as follows:

Theorem 7. Let (Wτ(X), Sn) be a Menger algebra with infinitely many nullary operations. Define
a mapping ψ : Wτ(X)→ Λ′ by

ψ(t) = λt

for all t ∈Wτ(X). Then, ψ is an isomorphism from Wτ(X) to Λ′ and so Wτ(X) ∼= Λ′.

Proof. Clearly, ψ is surjective. By Lemma 4, we have ψ(Sn(t, s1, . . . , sn)) = λSn(t,s1,...,sn) =
O(λt, λs1 , . . . , λsn) = O(ψ(t), ψ(s1), . . . , ψ(sn)) and thus ψ is a homomorphism. Further-
more, φ is injective. Indeed, suppose that λt = λs. Then, we obtain λt(v1, . . . , vn) =
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λs(v1, . . . , vn). By the definition of generalized superposition Sn, we conclude that t and
s are the same term. Hence, φ is injective. Therefore, φ is an isomorphism from Wτ(X)
to Λ′.

Finally, an interesting concrete example is demonstrated by considering an indexed
set I is singleton and setting the type τ

|I|
2 with a binary operation symbol f and a nat-

ural number n equal to 1. This means that we have the algebra (Wτ1
2
(X), S1) where

S1 : Wτ1
2
(X)×Wτ1

2
(X) → Wτ1

2
(X). Moreover, the full n-ary function also reduces to the

usual full transformation with one composition of functions.

Example 2. Consider a semigroup A = {x1, x2, f (x2, x3), f (x4, f (x5, x3))} with respect to a
binary operation S1 which is defined by the following table:

S1 x1 x2 f (x2, x3) f (x4, f (x5, x3))
x1 x1 x2 f (x2, x3) f (x4, f (x5, x3))
x2 x2 x2 x2 x2

f (x2, x3) f (x2, x3) f (x2, x3) f (x2, x3) f (x2, x3)
f (x4, f (x5, x3)) f (x4, f (x5, x3)) f (x4, f (x5, x3)) f (x4, f (x5, x3)) f (x4, f (x5, x3))

It is observed that A is a semigroup containing an identity element x1. We now illustrate
that A is isomorphic to some sets of the full transformation semigroups. To do this, we first
demonstrate the process to establish a full transformation by considering a mapping λx1 : A →
A such that λx1(x1) = S1(x1, x1) = x1, λx1(x2) = S1(x1, x2) = x2 , λx1( f (x2, x3)) =
S1(x1, f (x2, x3)) = f (x2, x3) and λx1( f (x4, f (x5, x3))) = f (x4, f (x5, x3)). Thus, x1 7→ λx1 =(

x1 x2 f (x2, x3) f (x4, f (x5, x3))
x1 x2 f (x2, x3) f (x4, f (x5, x3))

)
. Furthermore, a mapping λx2 : A → A is defined by

λx2(x1) = x2, λx2(x2) = x2 , λx2( f (x2, x3)) = x2 and λx2( f (x4, f (x5, x3))) = x2. Thus, the
full transformation which corresponding to a term x2 in A is

λx2 =

(
x1 x2 f (x2, x3) f (x4, f (x5, x3))
x2 x2 x2 x2

)

and so x2 7→ λx2 =

(
x1 x2 f (x2, x3) f (x4, f (x5, x3))
x2 x2 x2 x2

)
. For other terms in A, we obtain

f (x2, x3) 7→ λ f (x2,x3)
=

(
x1 x2 f (x2, x3) f (x4, f (x5, x3))

f (x2, x3) f (x2, x3) f (x2, x3) f (x2, x3)

)
,

f (x4, f (x5, x3)) 7→ λ f (x4, f (x5,x3))
=(

x1 x2 f (x2, x3) f (x4, f (x5, x3))
f (x4, f (x5, x3)) f (x4, f (x5, x3)) f (x4, f (x5, x3)) f (x4, f (x5, x3))

)
.

By Theorem 7, A ∼= {λx1 , λx2 , λ f (x2,x3)
, λ f (x4, f (x5,x3))

}. Furthermore, the table for these
representations is just like the original table with a term t renamed by λt, as seen in the following
table:

O λx1 λx2 λ f (x2,x3)
λ f (x4, f (x5,x3))

λx1 λx1 λx2 λ f (x2,x3)
λ f (x4, f (x5,x3))

λx2 λx2 λx2 λx2 λx2

λ f (x2,x3)
λ f (x2,x3)

λ f (x2,x3)
λ f (x2,x3)

λ f (x2,x3)

λ f (x4, f (x5,x3))
λ f (x4, f (x5,x3))

λ f (x4, f (x5,x3))
λ f (x4, f (x5,x3))

λ f (x4, f (x5,x3))

We can comment here that, if we put Wτ1
2
(X) \ {x1}, then this set is also an infinite sub-

semigroup of (Wτ1
2
(X), S1) and then every term in this set is a left zero and idempotent. Hence,

Wτ1
2
(X) \ {x1} forms a left zero band. We also have that it is a right ideal of (Wτ1

2
(X), S1) and

thus (Wτ1
2
(X), S1) is not a right simple semigroup.
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5. Conclusions

The paper was established to study a potential connection between terms, tree lan-
guages, and full n-ary functions. We prove in Section 2 that there exists a monomorphism
from the semigroup of terms to the semigroup of tree languages in a natural way by
defining an image of a mapping to be a singleton of term. In Section 3, the most significant
knowledge and some elementary results concerning a mapping which is called a non-
deterministic generalized hypersubstitution are provided. We completely define a second
binary operation for such mappings and construct a left seminearring. Some submomoids
of non-deterministic generalized hypersubstitutions are given and interesting structural
properties of them are studied. Other kinds of submonoids are challenging questions
for study:

It is widely accepted that the representation by functions is one of the most important
keys in the study of classical algebras that describes the relationship between the original
algebras and the algebras of functions. For this reason, in the final section, we also make
an attempt to establish an n-ary function corresponding to each term t. We also construct
the Cayley’s theorems for a Menger algebra with infinitely many nullary operations. It
observed that our main results are also noticeable foundations and practical applications in
mathematical study, theoretical computer sciences, and various categories of sciences. For
the exact applications of our works, semigroups and groups are algebras of type τ1

2 = (2)
if I is a singleton. If an indexed set I has two elements, then our results can be applied to
varieties of semirings, rings, or lattices, which are varieties of type τ2

2 = (2, 2).
Finally, we provide some open problems for future research works. Firstly, attempt to

apply the idea of Menger hyperalgebra, which was introduced in [28] to terms and tree
languages. Secondly, determine a relationship between hypersubstitutions for algebraic
systems and Nd-hypersubstitutions for algebraic systems.
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