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Abstract: After a brief digression on the current landscape of theoretical physics and on some open
questions pertaining to coherence with experimental results, still to be settled, it is shown that the
properties of the deformed Minkowski space lead to a plurality of potential physical phenomena
that should occur, provided that the resulting formalisms can be considered as useful models for the
description of some aspects of physical reality. A list is given of available experimental evidence not
easy to be interpreted, at present, by means of the more established models, such as the standard
model with its variants aimed at overcoming its descriptive limits; this evidence could be useful
to verify the predictions stemming from the properties of the deformed Minkowski space. The list
includes anomalies in the double-slit-like experiments, nuclear metamorphosis, torsional antennas, as
well as the physical effect of the “geometric vacuum” (as defined in analogy with quantum vacuum),
in the absence of external electromagnetic field, when crossing critical thresholds of energy parameter
values, energy density in space and energy density in time. Concrete opportunities are suggested
for an experimental exploration of phenomena, either already performed but still lacking a widely
accepted explanation, or conceivable in the application of the approach here presented, but not
tackled until now. A tentative list is given with reference to experimental infrastructures already in
operation, the performances of which can be expanded with limited additional resources.

Keywords: tevatron; LHC; KEK; daphne; fermilab; KLOE; LEP

1. Introduction
1.1. Multidimensional Geometrical Representation of Physical Reality

Since the beginning of the 20th century, a line of mathematical research on the mul-
tidimensional geometric formulation of physical phenomena has been active. The first
to attempt this path was H. Poincaré [1], starting from the work of H. Lorentz [2], who,
with his transformations, had removed the absolute nature of the time variable. These
studies are part of the broader research theme related to non-Euclidean geometries that
Poincaré conducted up to non-commutative geometries [3], consistent with the objective of
the complete “geometrization” of the physical world according to the intentions later for-
mulated by A. Einstein [4]. This also includes the research theme commonly called applied
differential geometry, dedicated to the deepening of the properties characterizing some
mathematical structures (manifold variety and more specifically bundles and fibers) and
the related methods of representation (in particular in the Lagrangian space, see, e.g., [5])
and of transformation; the latter in the context of physics are called gauge calibration,
see, e.g., [5,6], and are also the subject of group theory for the research of invariants and
symmetries, see, e.g., [7,8], with reference to A. Einstein’s field equations. Geometrization
should be regarded not as a replacement of more consolidated approaches based on forces
and corresponding fields, but, in the spirit of Bohr’s Principle of complementarity [9], as
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an auxiliary formalism whose legitimacy may derive only from experimental verification,
provided any of the specific predictions that such a representation yields are verified. In
contrast, those stemming from other approaches are not verified with comparable exten-
sion. An illuminating presentation of the role of theoretical physics in connection with
experimental results has been formulated by M. Gell-Mann [10].

1.2. Potentiality of the Generalization of Currently Used Representations

The approach based on the generalization of established representations is widely
used and has often allowed an original contribution of mathematics to the advancement
of knowledge on physics. As a classical example, we can cite the results obtained by
Minkowski [11] that made possible the representation of both electron behavior and
electrodynamics in general, through a metric formulation, continuing the attempt started
by Poincaré [12] and abandoned by him.

More recent examples of results obtained by generalization are the theories like string
theory [13]. In turn, these proposals led to a broad mathematical development whose main
result is that the maximum number of dimensions to be used in such physical-mathematical
theory is fixed in a deductive way, contrary to all other theoretical models where such
number is not deducted but axiomatically established by choice ad libitum. This point is
discussed more extensively in Section 3.3 below.

Another successful example is theories labeled “Supergravity”, which is discussed in
Section 3.2 below.

The adoption of the generalization tool can be considered to be of particular value
when it allows an application of the ‘what if ’ method in a deductive path, which is both
interesting in itself from a logical-mathematical point of view and of potential value at the
physics level, if the conjectures resulting from the generalized representation gave rise to
forecasts, on a phenomenological ground, such as to be subject to experimental verification
or refutation, in the wake of teaching by K. Popper [14] and R. Penrose [15]. It can be
considered implicit in the constraint of experimental verification the selection of variables
representing physical concepts in accordance with their definition by P. Bridgman [16],
who states that in physics, “any concept is nothing more than a set of operations”.

1.2.1. Extension of the Number of Dimensions

Of particular interest for the purpose of identifying hypothetical consequences in the
prediction of potential physical phenomena is the study of the generalizations that are
obtained when adding a new variable to the physical variables (spatial coordinates and
time) commonly used in mathematical physics.

Historically, this path was followed both by Kaluza [17] and Klein [18], suggesting
the introduction of the charge, which is a relativistic invariant, as a fifth variable, and
Wesson [19], suggesting to introduce the inertia at rest, which is a relativistic invariant too,
again as a fifth variable. Later, Randall and Sundrum, without advocating the compactifi-
cation, proposed the introduction of a fifth variable whose physical effects, however, decay
exponentially in space, see [20].

Higher-dimensional generalizations of the Randall–Sundrum models with two branes
and with toroidally compact subspace are considered in [21]. Z2-symmetric braneworlds
of the Randall–Sundrum type, with compact dimensions, have also been considered,
identifying the boundary conditions on the fermionic field, for which the contribution of the
brane to the current does not vanish, when the location of the brane tends to the boundary
of Anti-de Sitter (AdS) spacetime [22]. The consideration of the Randall–Sundrum 2-brane
model with extra compact dimensions allowed also to estimate the effects of the hidden
brane on the current density on the visible brane [23]. For a higher-dimensional version of
the Randall–Sundrum 1-brane model, see [24].

In summary, as the fifth physical coordinate, extended and “measurable”, both Kaluza–
Klein and Wesson used a relativistic invariant together with the compactification mecha-
nism, whereas Randall and Sundrum did not use an invariant nor compactified the just
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introduced additional coordinate, but have been forced to assume that its physical effects
decay exponentially in space. We adopt in the present work the choice, proposed by M.
Francaviglia and R. Mignani with contributions by E. Pessa [25–29], to use energy as an
additional fifth coordinate and also to introduce the energy dependence of all the five
parameters of the metric. This gives rise to the so-called deformed Minkowski space–time–
energy, i.e., Deformed Minkowski in 5 dimensions (DM5). In the Einsteinian context of
mass–energy equivalence, this choice can be interpreted as an extension of both previ-
ous proposals. Throughout the paper, we refer to this approach as the Mignani, Pessa,
Francaviglia (MPF) vision of generalized spacetime.

The results obtained in this way go beyond the limits of the choice of Kaluza and
Klein, as well as of Wesson, who both failed to explain the quantization of the charge,
nor succeeded in completely reconciling the representation of gravity with that of the
other interactions. In turn, in the MPF proposal, both the squared charge and the Planck’s
constant become constants of the first integrals of the geodetic motion in DM5. At the
same time, the relations that connect energy and time in Heisenberg’s uncertainty principle
automatically stem from the conditions of the geometric motion in the five-dimensional
space–time–energy continuum (see the discussion following Equation (48) in [25]). In this
context, there is no need to use the Becchi–Rouet–Stora–Tyutin (BRST) method.

1.2.2. Extension in the Use of the Concept of Metrics

It is important to remark that promoting the description of gravity as a metric theory
to become a method to also encompass the remaining three interactions [25–27] yields
an obvious advantage. Indeed, this approach, being general enough to include all four
interactions within the same mathematical description, namely the geometric one, without
forcing a unification of the interactions into a single one, allows us to ultimately achieve a
unification of all fundamental interactions at the purely geometric level.

On the other hand, focusing on possible experimental consequences of this inter-
pretation, with reference to the contribution of metrics to the representation of physical
reality, we can cite the works of M. Sachs [30,31], who arrived at calculating the hyperfine
spectrum of hydrogen without using quantum mechanics and R. Mignani together with M.
Francaviglia and E. Pessa [25–27] who formulated predictions whose coherence with some
phenomena found through experiments is the subject of this article.

1.3. Gauge Fields as an Intrinsic Consequence of Geometry

Another key and empowering aspect of the MPF proposal adopted here is to extend
the gauge transformation [26,27,32,33], commonly used for fields, to include the transfor-
mation of metrics. This inclusion can give a contribution to the ongoing investigations in
view of the unification of forces, besides through an extension of the standard model to
gravitation, also symmetrically intervening to describe strong and weak interactions, as
well as the electromagnetic one, through the formalism centered on metrics, typically used
for gravitational interactions.

From the modern point of view, we can advocate here that the expression “deformed
Minkowski space” (DM), regardless of the number of dimensions, should be, more signifi-
cantly and perhaps more correctly, denoted as “generalized Minkowski space”, endowed
with generalized Lorentz transformations, defining the conditions for the Lorentz invari-
ance, as we discuss in subsequent sections.

Regarding the energy definition problem, we are well aware that energy is not defined
locally in general relativity. This is a consequence of the principle of equivalence, not specif-
ically of Einstein’s equations. Correspondingly, and distinctly from Newtonian gravity
(where the potential can be deduced from the Schwarzschild metric, when the curvature
is set to zero in the exponential form of the latter [34,35]), in Einstein’s gravity, such an
obstruction in defining the concept of energy persists. The MFP proposal suffers from the
same difficulty. However, just as in the case of the experimental tests and validations of
Einstein’s gravity and general relativity through the verifications of the phenomena based
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upon the notions of Riemann’s curvature and torsion tensor, we wish to propose, in the
spirit of Popper and Penrose, to put to the “ordeal” of the experimental test, this approach,
as well as the corresponding extension in the geometry, to include also the deflection. In
this sense, a characteristic signature of the MFP approach ought to emerge in the possible
dependence of certain experimental phenomena from the direction in space, i.e., in the
appearance of anisotropic and asymmetric features.

Historically, attention was called upon the fact that the weak and null energy con-
ditions are violated in solutions of Einstein’s theory with classical fields as material
sources [36]. It was shown that the discussion is only meaningful when ambiguities
in the definitions of stress–energy tensor and energy density of the matter fields are re-
solved, with emphasis on the positivity of the energy densities and covariant conservation
laws and tracing the root of the ambiguities to the energy localization problem for the
gravitational field [37]. Analogously, if we consider the response of a gravitational wave
detector to scalar waves in connection to the possible choices of conformal frames for
scalar–tensor theories, then a correction to the geodesic equation arising in the Einstein
conformal frame yields a modification to the geodesic deviation equation, thus yielding a
longitudinal mode that is absent in the Jordan conformal frame [38]. On the other hand,
in the MFP approach, there are no problems of this kind with the energy density because
the energy densities for each interaction giving rise to new phenomena descend from
invariants of the theory that are experimentally determined threshold energies separating
the flat metric from the non-flat one, for each interaction. A possible further development
could be the use of the stress–energy tensor as an additional variable instead of scalar
energy. Presently the investigation of the possibilities opened by the extension based on
the introduction of scalar energy is worthwhile to be pursued.

2. Features of the MPF Vision of Minkowski Space
2.1. Recall on the Results of the Deformed Minkowski Metrics

The purpose of the present paper, starting from the MPF vision, is to show that
significant results occur in the framework of the following geometric “deformation”

ds2 = b2
0(E)c2dt2 − b2

1(E)dx2 − b2
2(E)dy2 − b2

3(E)dz2 = gDMµν(E)dxµdxν;

gDMµν(E) = diag
(
1,−b2(E),−b2(E),−b2(E)

)
;

(1)

where xµ = (ct, x, y, z), with c denoting the vacuum light-speed.
Note that the metric tensor in (1) is diagonal; this is an important property for ap-

plications. This dynamical metric tensor yields a realization of the “Finzi Principle of
Solidarity” [39,40]. In this sense, the solidarity principle behaves in an analogous way to
the action–reaction principle. Further considerations are presented in Section 2.3 below.

Furthermore, we stress that E is the measured energy of the system from the physical
point of view, and thus a merely phenomenological (non-metric) variable. Here we notice,
in passing, that the relevance of Bridgman’s approach to physical concepts appears. As
it is well known that all the present physically realizable detectors work via their electro-
magnetic interaction in the usual spacetime M, so E is the energy of the system measured
in fully Minkowskian conditions and the Hamilton theorem of total energy conservation
holds. We notice in passing that, actually, owing to its very geometric nature, DM possesses
nontrivial curvature, torsion and deflection, although the metric (1) describes a flat space.
In the DM space, the properties of curvature, torsion and deflection become fully manifest
once one recognizes the DM space as a generalized Lagrange space. Recognition of this
property is done by applying the “irreducibility theorem” (see [29,32]), i.e., by proving
that DM does not reduce to a Riemann space nor to a Finsler space, nor to an ordinary
Lagrange space.

The explicit functional form of the metric (1) for all the four interactions can be
found in [41–43]. Here, we just wish to recall that the electromagnetic and the weak
metrics show the same behavior [37], whereas, for strong and gravitational interactions,
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a deformation of the time coordinate occurs (namely, the metric time parameter assumes
values different from unity [41–43]; moreover, the three-space is anisotropic, with two spatial
parameters constant but different in value and the third one variable with energy in an
“over-Minkowskian” way reaching the limit of Minkowskian metric for decreasing values
of E, with E > E0) [41–43].

As a last remark, we stress that the four-dimensional energy-dependent spacetime
DM is just a manifestation as a subspace of a larger, five-dimensional space in which
energy plays the role of a fifth dimension. Indeed, it can be shown that the physics of
the interaction lies in the curvature of such a five-dimensional spacetime, in which the
four-dimensional, deformed Minkowski space is embedded. Moreover, all the phenomeno-
logical metrics of [41–43] can be obtained as solutions of the vacuum Einstein equations
in this generalized scheme [25–27], which resembles a Kaluza–Klein-like but without any
compactification, since the extra dimension is a true extended one: the fifth dimension is
the energy E. We wish to recall that these metrics are part of twelve classes of solutions
for the five-dimensional Einstein equations [25–28] (see in particular Chap.20 Sect.20.3
p.296–299 of [29]). For an in-depth discussion about the fifth dimension in DM5 and its
phenomenological matrix, it is useful to see chapter 19, Section 19.1, pp. 279–281 and
note (1) at p. 280 of [29].

The generalized metric is defined by Equation (1) and the corresponding interval
is clearly not preserved by the usual Lorentz transformations. If ΛM is the 4 × 4 matrix
representing a standard Lorentz transformation, then this amounts to say that the similarity
transformation generated by ΛM does not leave the deformed metric tensor gDM invariant:

(ΛM)T gDMΛM 6= gDM (2)

where T denotes transpose, however, in DM, it is possible to introduce generalized
(deformed) Lorentz transformations (GLT), which are the isometries of the deformed
Minkowski space DM [22,23]. If X denotes a column four-vector, a GLT is a 4 × 4 ma-
trix ΛDM connecting two inertial frames K, K’ such as X′ = ΛDM(E)X and leaving the
deformed interval invariant:

ΛT
DM(E)gDM(E)ΛDM(E) = gDM(E) (3)

Therefore, unlike the case of a standard Lorentz transformation (LT), a GLT generates
a similarity transformation that preserves the deformed metric tensor. Let us also notice the
explicit dependence of ΛDM on the energy E. This means that in DM, Lorentz invariance is
still valid, although in a generalized sense; namely, it should be meant as the invariance
with respect to the GLT. From this point of view, we can interpret the customary LT as
a special transformation that finds its natural extension in the new concept of the GLT.
The explicit form of the generalized (deformed) Lorentz transformations can be found
in [25–27], whereas the geometrical aspects of the generalized Lagrange spaces are dealt
with in [44].

2.2. Three Main Properties of the Generalized Lagrange Space

In [32], the representation of deformed Minkowski’s space as Lagrange generalized
space is illustrated. The phenomenology of electromagnetism was systematized in a phase
of physics that systematically used the schematics of the interaction of objects with a
field. Consequently, a taxonomy of phenomena based on the identification of types of
interaction was born. The availability of alternative readings (fields, particles, interactions,
space deformations) can be considered not as an ontological difficulty, but as a richness
in the light of Bohr’s principle of complementarity. In previous works, the operation
that generalizes Minkowski’s space has been named “deformation” and consequently, the
resulting space has been named deformed Minkowski’s space. In the present work, aimed
at illustrating the perspectives opened by the targeted use of the term “generalization”, it
would have been preferable to use the broader name “generalized Minkowski’s space”.
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Instead, the old name has been maintained for continuity with the use by the authors of
previous works.

Further details on the concept of interaction and the interpretation of DM as a gener-
alized Lagrange space, with its irreducibility to ordinary spaces, such as Riemann space,
Finsler space or Lagrangian space, can be found in [29]. Particular attention is due to
the identification of three main properties of the generalized Lagrange space, which we
consider of major importance to be investigated, if experimental results can be easily
interpreted by applying the MPF vision:

• the curvature defined as the application of Christoffel generalized symbols to the coef-
ficients of the metrical canonical H−connection of generalized Lagrange space GLN;

• the torsion defined as the distinguished tensors, d-tensors, of the metrical connection
of the generalized Lagrange space GLN;

• the deflection defined as the horizontal and vertical covariant derivatives of the
Liouville vector fields on the tangent manifold (TM), defined in Equation (35) of [32].

2.3. Internal Fields as a Way to “Store” the Energy of the Deformation

As pointed out in [32], internal fields store the energy of the deformation and return
it in the form of the effect of the deformation, i.e., modification of the measurement of
time and, therefore, different release of energy by spacetime, see Equation (52) of [32],
compared to that of the interaction, see Equation (37) of [32]. This, for example, can be a
new key to reading phenomena in the field of elementary particles such as “asymptotic
freedom” and “confinement”. In phenomenological terms, Equations (37) and (52) of [32]
can tell us that, with respect to an electromagnetic stress, asymptotic freedom is a “slow”
response, whereas confinement is a “fast” response. In simple terms, the principle of action
and reaction depends on the measure of time to respond with respect to the measure of
time relative to stress. This effect entirely replaces the idea that there is temporal inertia,
i.e., a latency time that separates the action from the reaction. Moreover, as mentioned
above, Equations (16), (37) and (50)–(52) of [32] constitute the basis of hypotheses of the
“Mignani mimicry” to explain also nuclear reactions without exceeding the Minkowskian
threshold of energy E0 for the metric of nuclear interactions. This can happen when the
electromagnetic field inside the electromagnetic space itself, in the absence of an external
electromagnetic field, “mimics”, thanks to Equation (52) of [32], a property of the nuclear
space. In this sense, there can also be an alteration of the reproducibility of phenomena if
these conditions are not taken into account (see Section 4).

3. Current Theoretical Landscape
3.1. The Maximal Symmetry of the S-Matrix and the Arising of Supersymmetry

So far, theoreticians attempted to create a unified mathematical structure, comple-
mented with ad hoc physical assumptions, in ordinary Minkowski spacetime, capable of
encompassing, within the same framework, gauge theories providing the description of
three of the four fundamental interactions related to the phenomena of electromagnetism,
weak and strong nuclear reactions—however without any metric representation—together
with a quite different interaction, i.e., gravity, which is properly described by a metric
theory. In this section, we give a brief description of the current state of the art of the
available approaches in such topics that are built upon alternative kinds of generalizations,
as compared to the one put forward in this work.

First of all, it is worth recalling here a well-known result, originally proved in the
second half of the 20th century by Coleman and Mandula [45]. Coleman and Mandula ad-
dressed the fundamental question about the maximal symmetry allowable for the scattering
matrix. They came, under five quite general and natural assumptions—e.g., Lorentz invari-
ance, particle finiteness, elastic analyticity (in weak form) and the existence of scattering—to
formulate the celebrated “no-go theorem” stating that the S-matrix allows, as its most gen-
eral symmetry group, the direct product of the Poincaré group and an internal symmetry
group. More recently [46], Weinberg gave an alternative proof of the theorem, which avoids



Symmetry 2021, 13, 607 7 of 16

group considerations and focuses on the symmetry (Lie) algebras. In other words, rather
than working with the symmetry group, he worked with the algebra of the correspond-
ing generators. Of course, returning to group consideration involves, then, just a simple
further step.

Despite the generality of its assumptions, the theorem is unable to capture all possible
occurrences. For instance, in massless theories, additional generators of the conformal
group, mixing with the Poincaré group generators can occur. Also, both cases of sponta-
neously broken symmetries and discrete symmetries escape the theorem since they do not
commute with the S-matrix. Furthermore, the theorem does not apply to 1 + 1 dimensional
theories, where scattering angles cannot obey the assumed analyticity requirement, given
that, in such theories, only forward and backward scattering can occur (see [47]).

Probably the most famous class of theories evading the theorem are supersymmetric
theories, as the implicit assumption made by Coleman and Mandula was that internal
symmetries generators had to necessarily combine trivially with the generators of the
spacetime symmetries, i.e., by commuting with them. It was the consideration of graded
Lie algebras that gave rise to the saga of four-dimensional supersymmetric theories, all of
them violating, so to speak, the famous theorem, and hence, at least at the beginning, quite
unexpected. In 1971 Yu. Golfand and E. Likhtman [48] generalized the Coleman–Mandula
theorem to include the case of supersymmetry without central charge generators. It was in
the 1975 paper by Haag–Łopuszański–Sohnius where the theorem was finally generalized
to show that the possible symmetries of a consistent four-dimensional quantum field
theory can also include supersymmetry with central charges, as a nontrivial extension of
the Poincaré algebra [49]. The first consequence of the theorem including supersymmetry
generators was the ruling out of the spin higher than 1/2 from the fermionic part of the
Lie superalgebra. The second was to provide a justification for a result published one year
before by Wess and Zumino, who proposed a renormalizable, interacting four-dimensional
quantum field theory that contained linearly realized supersymmetry [50].

3.2. Supergravity Theories, as Candidates for a Unified Description of General Relativity and
Quantum Field Theory

In 1976 Freedman, Ferrara and van Nieuwenhuizen [51] set up the minimal version of
four-dimensional supergravity, as an example of field theory combining supersymmetry
with general relativity. Shortly afterward, Deser and Zumino [52] independently proposed
the minimal four-dimensional supergravity theory. For a time, it was hoped that such a
theory would allow handling an unresolved issue in theoretical physics, i.e., the harmo-
nization of quantum field theory, describing the three fundamental interactions among
elementary particles with general relativity.

The problem is well known: the unavoidable occurrence of infinities arises when
considering the theories beyond the classical approximation, including radiative quantum
corrections. While, on the one side, for the three fundamental interactions of electromag-
netism, weak and strong nuclear ones, the renormalization procedure allows to reabsorb
such infinities in a finite number of parameters of the theory; on the other hand, gravity
escapes such a treatment [53]. As we know since 1974 [54], pure gravity theory in four
dimensions is one-loop finite, although this property does not extend to the theory in
the presence of matter, which is divergent already at one loop. At two loops, the pure
gravity counterterm constructed from the tensor product of three Riemann tensors has a
non-zero coefficient, as shown by an explicit calculation [55], see also [56]. For any super-
gravity theory, with any number of supersymmetric charges, however, it turns out that
this tensorial product of three Riemann tensors is not a valid supersymmetric counterterm,
i.e., the appearance of such a structure would produce a helicity amplitude incompatible
with supersymmetry [57,58]. Hence, in supergravity, the first divergent counterterm can
show up at orders higher than two, i.e., from three loops onward. Indeed, the square of
the Bel-Robinson tensor is expected to show up as a possible counterterm, admitting a
supersymmetric extension, just at the three loop-level in pure, four-dimensional supergrav-
ity [59–61]. In passing, we note that it has become by now a classic computation, that of
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the one-loop quantum general relativity contribution to the anomalous magnetic moment
of a lepton [62]. As explained in [63], the ultraviolet finiteness of the net result occurs, in
spite of the ultraviolet divergence of each Feynman diagram contribution, as expected by
the observation that each Feynman diagram is not ultraviolet finite by power counting.

3.3. The Advent of Superstrings and the Additional Dimension

Recently the common wisdom, according to which it is to be expected that all su-
pergravity theories will diverge at three loops, has been reconsidered [64–67] for various
reasons, especially because any loop calculation carried out so far ascertained that the
power counting of N = 8 supergravity yields the same result as N = 4 super-Yang–Mills
theory, which is an ultraviolet finite theory. Although N = 8 supergravity might ultimately
turn out to provide an ultraviolet finite gravity theory (note that some of the counterterms
cancellations observed in N = 8 supergravity appears not to originate from the requirement
of supersymmetry invariance, adding a further mystery to the issue), however, since the
1970s, many people have partly turned away from point-like theories, in the quest for a
consistent description of gravity as a quantum theory. This attitude led to the advent of
superstrings, a theory that aims at resolving the issue of making general relativity compati-
ble with quantum mechanics, by replacing the classical idea of point particles with strings,
which have an average diameter of the Planck length, i.e., the distance traveled by light
in the vacuum during one unit of Planck time. The mathematical consistency of string
theories requires the presence of additional spacetime dimensions over the customary 3+1
dimensions. While the bosonic string lives in a 26-dimensional spacetime, superstrings re-
quire 10 dimensions (3 dimensions for ordinary space + 1 time dimension + a 6 dimensional
hyperspace) [68].

There are two ways to reconcile, in the conventional wisdom, the lack of phenomeno-
logical evidence for the extra dimensions. The first mechanism consists of assuming that
elementary particles live only on a three-dimensional submanifold corresponding to a
brane, whereas gravity does not. Alternatively, one may hypothesize the compactification
of the additional dimensions on an extremely small scale; however, far from being a natural,
or at least plausible feature, the mechanism of compactification of additional dimensions
has been pinpointed by Richard Feynman as a drawback of superstring theories altogether.
To put it in his words: “For example, the theory requires ten dimensions. Well, maybe
there’s a way of wrapping up six of the dimensions. Yes, that’s possible mathematically,
but why not seven? When they write their equation, the equation should decide how many
of these things get wrapped up, not the desire to agree with experiment. In other words,
there’s no reason whatsoever in superstring theory that it isn’t eight of the ten dimensions
that get wrapped up and that the result is only two dimensions, which would be completely
in disagreement with experience” [69]. That would be an authoritative opinion leaning
towards seriously considering a possible, or even unavoidable additional dimension—as
it seems to occur in the theory expressed in the present paper—as a verifiable property
of nature, with, at least in principle, phenomenologically detectable consequences. Or, to
put it in the words of another influential theoretical physicist: “So far, string theory fails to
describe our world as we see it. It describes, instead, lots of worlds, in all sort of higher
dimensions, generally with cosmological constant having the wrong sign, with “micro-
scopical” internal spaces of cosmological size, and so on. This is a beautiful theoretical
world, with marvels and surprises, but where is our world in it? Until the description of
our world is found in this immense paper edifice, it seems to me that caution should be
maintained” [70].

A fascinating exception, so far never embedded into string theory, may be the Dvali–
Gabadadze–Porrati model of gravity (DGP), which assumes an action consisting of the
customary four-dimensional Einstein–Hilbert action dominating at short distances, along
with an additional term equivalent to the five-dimensional extension of the Einstein–Hilbert
action, which dominates at long distances [71]. The interest of this theory lies not only in
its aspiration to reproduce the cosmic acceleration of dark energy without any need for a
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small but non-zero vacuum energy density, but also in the claim that the unusual structure
of the graviton propagator makes non-perturbative effects important in a seemingly linear
regime, such as the solar system [65].

In concluding this section, let us mention, in passing, a particularly interesting case
of string theory, i.e., that in one dimension, was studied originally starting from a dis-
cretized approximation [72]. It is possible to show that the sum over the surfaces with
different genus can be carried out for the vacuum energy, yielding a result that can be
written in a closed form [72]. Building upon this model of a discretized string, one can
then consider its supersymmetric extension. The full string theory is defined in [67] as
the sum over the triangulations of the surface and embedded in the superspace, which
is described by the Wess–Zumino model in the continuum limit. The Feynman graph
expansion for the model generates a discretization of random surfaces in superspace. In
this supersymmetric one-dimensional string, it turns out, by explicit computation, that
supersymmetry is spontaneously broken [73]. Related work on supersymmetric matrix
models includes [74–77].

3.4. Central Questions Still Pending in the Physics of Fundamental Interactions

These theories, which leave the Minkowski space unaltered, so far have not been able
to fully cover unresolved central questions still pending in physics, such as:

1. combining general relativity and quantum theory into a single theory that can claim
to be the complete theory of nature, i.e., the problem of quantum gravity;

2. resolving the problems in the foundations of quantum mechanics, either by making
sense of the theory as it stands or by inventing a new theory that does make sense;

3. determining whether or not the various particles and forces can be unified in a theory
that explains them all as manifestations of a single, fundamental entity;

4. explaining how the values of the free constants in the standard model of particle
physics are chosen in nature;

5. explaining the possible missing matter and the dark energy, as well as the possible
modifications of gravity on large scales.

Among them, the MPF approach can give a contribution to addressing at least the
first three questions, as well as the last one.

In addition, there are several perhaps not yet fully established experiments, yielding
results unexplained by the current theoretical wisdom, that may find a suitable explanation
within the MPF approach. In the next section, we discuss both the latter experimental
results and their corresponding interpretation within the MPF framework.

4. Possible Experimental Phenomena Expected from the Properties of Deformed
Minkowski Space and Available Candidate Evidence
4.1. Anomalies in the Double-Slit-Like Experiments

Striking evidence of unconventional photon behavior has been collected in many
experimental instances [66,78–81]. We stress that the anomaly occurs regardless of the
photon frequency range, as demonstrated by the experiments carried out in the microwave
and the visible range. The experimental setup employed in the experiments directed
by R. Scrimaglio [78–81] showed invariably that photons anomalously, even as similar
experiments employed a varied setup of detectors and photon sources. Indeed, the same
anomalous result was always obtained [78–81]. Carrying out a separate class of laser-based
experimental activities in the microwave frequency range [82,83] provided independent
evidence of the anomaly, which, in the DM perspective, is quite straightforward to be inter-
preted as a consequence of the spacetime deformation, called the “shadow of light” [32].

Elaborating the interpretation more in detail, we recall that the structure of the de-
formed Minkowski space DM as generalized Lagrange space implies the presence of two
internal electromagnetic fields, the horizontal field Fµν see Equation (53) of [32] and the
vertical one, fµν, see Equation (54) of [32]. Whereas Fµν is strictly related to the presence
of the external electromagnetic field Fµν, vanishing if Fµν = 0, the vertical field fµν is geo-
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metrical in nature, depending only on the deformed metric tensor gDMµν (E) of GL4 = DM
and on the variable appearing in the metric (1) E, see Equation (54) of [32]. Therefore, it
is also present in spacetime regions where no external electromagnetic field occurs, see
Equations (54)–(58) of [32]. In our opinion, the arising of the internal electromagnetic
fields associated with the deformed metric of DM, as a generalized Lagrange space, is
at the very core of the physical, dynamic interpretation of the experimental results on
the anomalous photon behavior. Namely, the dynamic effects of the hollow wave of the
photon, associated to the deformation of spacetime, which manifest themselves in the
photon behavior contradicting both classical and quantum electrodynamics, arise from
the presence of the internal v-electromagnetic field fµν (in turn strictly connected to the
geometrical structure of DM).

Moreover, as already stated at the end of the previous section, in the framework of
DM, the role of the quantum vacuum is played by the geometric vacuum, whose physical
effects are represented by the vertical field fµν, which is responsible for the “shadow of
light” effect. Actually, this effect can also be interpreted as an example of the effective
action of the “geometric vacuum”, which is “full” of deformation due to the energy stored
in the geometry of deformed Minkowski space in the generalized Lagrange space in the
sense explained in Section 1.3.

4.2. Nuclear Metamorphosis

The geometrical concepts of torsion and deflection lead us naturally towards anisotropic
and asymmetric phenomena, respectively, for the first and the second concepts. The foun-
dation for such predictions and the corresponding observations lies in the “principle of
reinterpretation” of the physical laws, due to R. Mignani et al. [84], in coherence with similar
work carried out by U. Bartocci as reported in [85]. Experimental observations allowed
the study of emissions of α-particles, as well as neutrons, that confirm those phenomena
with the predicted characteristics [86,87]. Specifically, the fact that an angle of asymme-
try is present when the system is invariant under generalized Lorentz transformations,
manifesting itself through the appearance of a preferred direction of emission for α-rays
and neutrons, as a result of the spacetime deformation, can be advocated recalling the
earlier work in [88]. Furthermore, the measurement of the neutron spectra produced in
the condition of deformed spacetime, illustrated in [87], which have new and unique
characteristics, differing from standard neutron source emission, can also be interpreted as
a consequence of the invariance of the system under generalized Lorentz transformations.

The so-called “nuclear metamorphosis” is a phenomenon in which materials subjected
to sonication (i.e., exposure to ultrasounds) produce elements of both greater and lesser
atomic weight than the elements contained in the material before sonication. This phe-
nomenon has been observed both in steel rods (AISI 304 alloy) [88,89], and in high purity
mercury (purity level above 99% for use as a chemical reference sample) [90,91]. Initially,
this phenomenon generated speculations on nuclear metabarism [92,93]. But later, the
evidence of neutron emissions, both asynchronous in time and anisotropic and asymmetric
in space and also anomalous in spectrum and fluence in energy [94], produced by sonicated
steel with ultrasounds in the same conditions of “nuclear metamorphosis” have directed
the reflection on the non-flat nature of nuclear spacetime [95].

Results compatible with the present interpretative framework can be obtained by the
compression of rocks [96]. Although the description and interpretation of the experimental
data do not lead to firm and ultimate conclusions, the data of the neutron emission were
measured by different kinds of detectors, which supports their trustworthiness. We stress
that in the experimental setup aiming to test anisotropic and/or asymmetric phenomena,
the positions of the detectors cannot be chosen arbitrarily, as they must follow the geometry
of the deflection and the torsion [94]. According to this prescription, measuring neutrons
stemming from rock fracture [96] carried out according to deformed Minkowski spacetime
neutron detectors gave non-vanishing results only when positioned according to deflection
and torsion.
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Finally, by applying the same ultrasonic sonication technique to substances contain-
ing a radionuclide, a significant reduction in activity has been found and analyses have
confirmed that this reduction is due to the nuclear metamorphosis of the radionuclide into
other inactive nuclides under matter conservation conditions [97–99].

Indeed, all these phenomena, summarized under the label “nuclear metamorpho-
sis” [88–91,94,97–99], always occurred in the absence of any kind of gamma emissions
above the natural background, thus excluding that they could be interpreted as phenomena
connected to customary nuclear transformations. Hence, this consideration yields the
possibility to interpret this absence of emitted energy in the sense of Mignani’s mimicry. In
other words, such missing energy is the one described by Equation (6), while the energy
received by the material system corresponds to the one described in Equation (37) of [32],
giving rise to a “geometric mimesis” in the sense described by Equations (50)–(52) of [32].

More in general, in the spirit of the authors of [95], there are indications that connect
the “nuclear metamorphosis”, as well as the emission of neutrons and α-particles that
accompanies them (anomalous under every aspect, temporal, spatial and energetic), to
both the curvature and the deflection tensor of deformed Minkowski space, understood as
Lagrange generalized space, see Section 2.

Finally, it is tantalizing to also attempt an interpretation of the rich phenomenology
collected during decades of experiments on low energy nuclear reactions (LENR), although
they still lack a conclusive understanding, in the light of the theoretical concepts and ideas
on which our interpretation of the nuclear metamorphosis experiments is based. For a
comprehensive review of such phenomenology, see, e.g., [100]. Additional experimental
results are expected from the outcomes of the H2020-EIC-FETPROACT-2019 project “Clean
Energy from Hydrogen-Metal Systems (CleanHME)” project, which is currently underway.
A possible strategy for the theoretical interpretation of LENR experimental results would
be that of searching for hints of structural modifications, critical energy density and mech-
anisms of releasing the loaded energy in a suitable interval of time that can be possibly
explained and modeled, in the spirit of the Mignani mimicry, through the possible use of
geometric concepts, such as curvature, torsion and deflection.

4.3. Torsional Antennas

Finally, we want to mention the case of torsional antennas. It is well known that
emission diagrams of antennas have peculiarities that are commonly interpreted in terms
of angular energy distribution. Let us consider the case of torsional antennas composed
of two concentric circular dipoles on orthogonal planes, which are subjected to torsion
according to an axis passing through the common center and given by the intersection of
the two orthogonal planes, each containing one of the circles. These torsional antennas
generate the phenomenon of the symmetrical emission of electromagnetic waves, with
a circular polar diagram, but only for torsion angles higher than the flat angle, while,
for specular angles, the polar diagrams are not comparable among themselves [101,102].
Until now, it has not been possible to explain these phenomena with simulations based on
the classical equations of the electromagnetic field. The behavior of the torsional antenna
emissions seems to follow the features of the “torsion” in the Generalized Lagrange space of
deformed Minkowski as suggested by Equation (32) of [32]. Also, experiments conducted
on torsional antennas tend to confirm the considerations exposed in Section 2.1 dealing
with situations where the usual Lorentz transformations are not kept, while generalized
(deformed) Lorentz transformations are maintained. The effects of twisting a double loop
torsional antenna have been addressed recently in [101,102].

4.4. Suggestion for Further Analysis and Experimental Activity

Having discussed some results showing anomalous effects, which could be explained
through a quite straightforward interpretation in terms of the intrinsic gauge fields of
deformed Minkowski space, we stress that, in our opinion, further verification of such
findings, using all needed experimental precautions (see Section 4.2), would be highly
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desirable, also in connection with the emphasis on falsifiability and the value of falsification
activities included in Popper’s epistemological positions.

Moreover, the deflection property that characterizes the MFP theoretical framework
might be useful also in analyzing the cosmic microwave background radiation data [103–107],
in order to explore their anisotropy and asymmetries.

5. Concluding Remarks and Outlook on Experimental Opportunities

In the MPF approach, three main properties emerge, namely:

• the curvature property is concordantly related to gravitational interaction;
• the torsion property is related to the phenomenon of anisotropy (asymmetric angular

behavior) found in nature, as in the case of the torsional antenna, and anisotropic
neutron emissions;

• the deflection property is connectable to the asymmetry phenomenon found in nature,
as in the case of cosmic microwave frequency background radiation, to the violation
of parity symmetry in the lepton interaction and the asymmetric emission of neutrons
and alfa particles.

The latter properties proved valuable in attempting a consistent interpretation of
several otherwise unexplained phenomena, see Section 4. We now suggest a list of possible
experimental activities aiming at verifying whether new phenomena connected with the
DM generalized Lagrangian space properties can really be found. It is useful to deepen the
study of the properties of the torsion in DM, also in the characteristics of the gravitational
interaction that result from the astrophysical evidence. Also, it is convenient to consider
the possibility to handle the appearance of anisotropic features in certain experimental
phenomena both at laboratory scale and at a cosmological scale, using jointly torsion
and deflection.

The measurement by the UA1 collaboration of the Bose–Einstein correlation in proton
anti-proton annihilation in the ramping runs in 1986–1987 opened new perspectives for the
experimental determination of the features of the hadronic metrics [41,108–110]. On the
one hand, there is still the unclear problem of why the value of Bose–Einstein’s correlation
constant is anomalous, i.e., it is not the one predicted by the theory of the standard model
and the quark model. On the other hand, an in-depth study of the correlation allows
improving the knowledge of the hadronic metric that was obtained for the first time with
this method [41,108]. In particular, the ramping run from 35 up to 350 GeV/c in the
center of mass was a precursor of the experimental program that ought to be carried out
systematically in the future; one does not have to make a single-energy measurement, i.e.,
carry out an experimental determination with fixed energy, but a measurement in a wide
energy range, because only in this way it will be possible to determine the dependence of
the hadronic metric on energy, thus opening the way to a new season of phenomenology
in the physics of elementary particles.

This program can be carried out at the European Center for Nuclear Researches
(CERN) through the Large Hadron Collider (LHC) accelerator, which has the detectors
already available, i.e., those related to the quest for the Higgs particle, namely ATLAS (A
Toroidal LHC ApparatuS) and CMS (Compact Muon Solenoid), Tevatron Fermilab (with
detectors to be searched, e.g., KLOE ((K LOng Experiment),

An experimental, small-scale program can also be carried out at KEK, the old LEP
accelerator, or even with DAPHNE. In fact, the use of positron–electron beams makes the
experiment much cleaner because they are little affected by the phenomena of hadroniza-
tion, through the study of the inverse Compton radiation that occurs in the impact of a
charged particles beam accelerated with the thermal radiation of the same vacuum pipe of
the accelerator machine to measure the “shadow of light” effect due to the geometric field
fµν and the geometric vacuum, as it has been described in the present work.

Hence, the inverse Compton radiation becomes the probe with which to verify the
effect of the geometric electromagnetic field, in the absence of an external electromagnetic
field, and therefore the effect of the geometric vacuum that we have presented here as a
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possible alternative to quantum vacuum. Here a further development of detector technol-
ogy is required for the study of the gamma radiation produced by the inverse Compton
effect since both the spatial and temporal distribution (to be obtained through the study
of the concomitance between beam and detection) and the energetic distribution should
be studied, as was done with the “spaghetti” gamma calorimeter, calibrated at the LEP
accelerator of CERN, using inverse Compton radiation in the period 1992–1994 [111,112].

Investigating five-dimensional theories is appealing from many viewpoints, some of
which we have glanced upon in Section 1.2.1. It is remarkable that supersymmetric black
holes may live in no more than five dimensions. An example is given by the study of the
attractor mechanism carried out in [113], within the framework of the five-dimensional
Einstein–Maxwell Chern–Simons theory. We recall that compactifying M-theory on a CY3
manifold yields a five-dimensional supergravity theory, which represents the low energy
approximation of the full theory. Yet, in spite of its relatively simple formulation, the
effective, approximate theory grasps many of the properties of the complete M-theory.

In turn, the use of the term “interaction” is a legacy of the pre-Einsteinian phase of
the development of physics, during which the phenomenology of gravity was explained
in terms of interaction between masses rather than a property of spacetime. There are
interesting attempts to describe the mechanical and quantum-mechanical properties of the
empty spacetime, e.g., Rovelli [114], as well as its thermodynamical properties in terms
of “atoms” of spacetime Padmanbhan [115]. In particular, the latter has been introduced
to try to justify the use of thermodynamical concepts, such as the entropy of black holes,
for example, from a microscopic point of view. In the present work, we prefer to stick to
a customary view of spacetime as a geometrical nontrivial (non-flat, or rather not strictly
pseudo-Euclidean) notion.
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