Scalable Codes for Precision Calculations of Properties of Complex Atomic Systems
Abstract
:1. Introduction
2. Theory and Methods
2.1. The CI Method
2.2. Selecting Important Configurations with Valence Perturbation Theory (CI+PT)
2.3. Including Core Correlations with Other Methods (CI+MBPT/CI+All-Order Method)
3. Computational Developments
3.1. Parallelization of Codes
3.2. Speedup of Parallel Programs
3.3. Selection of Important Configurations
4. Applications
4.1. Optical Clocks Based on Highly Charged Ions
4.2. Calculation of the 3C/3D Line Intensity Ratio in Fe XVII
4.3. Other Applications
5. Conclusions and Further Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Safronova, M.S.; Budker, D.; DeMille, D.; Kimball, D.F.J.; Derevianko, A.; Clark, C.W. Search for new physics with atoms and molecules. Rev. Mod. Phys. 2018, 90, 025008. [Google Scholar] [CrossRef] [Green Version]
- Porsev, S.G.; Beloy, K.; Derevianko, A. Precision determination of electroweak coupling from atomic parity violation and implications for particle physics. Phys. Rev. Lett. 2009, 102, 181601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porsev, S.G.; Beloy, K.; Derevianko, A. Precision determination of weak charge of 133Cs from atomic parity violation. Phys. Rev. D 2010, 82, 036008. [Google Scholar] [CrossRef] [Green Version]
- Wood, C.S.; Bennett, S.C.; Cho, D.; Masterson, B.P.; Roberts, J.L.; Tanner, C.E.; Wieman, C.E. Measurement of Parity Nonconservation and an Anapole Moment in Cesium. Science 1997, 275, 1759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsigutkin, K.; Dounas-Frazer, D.; Family, A.; Stalnaker, J.E.; Yashchuk, V.V.; Budker, D. Observation of a Large Atomic Parity Violation Effect in Ytterbium. Phys. Rev. Lett. 2009, 103, 071601. [Google Scholar] [CrossRef]
- Antypas, D.; Fabricant, A.; Stalnaker, J.E.; Tsigutkin, K.; Flambaum, V.V.; Budker, D. Isotopic variation of parity violation in atomic ytterbium. Nat. Phys. 2018, 15, 120–123. [Google Scholar] [CrossRef] [Green Version]
- Leefer, N.; Bougas, L.; Antypas, D.; Budker, D. Towards a new measurement of parity violation in dysprosium. arXiv 2014, arXiv:1412.1245. [Google Scholar]
- Porsev, S.G.; Safronova, M.S.; Kozlov, M.G. Electric Dipole Moment Enhancement Factor of Thallium. Phys. Rev. Lett. 2012, 108, 173001. [Google Scholar] [CrossRef] [Green Version]
- Sanner, C.; Huntemann, N.; Lange, R.; Tamm, C.; Peik, E.; Safronova, M.S.; Porsev, S.G. Optical clock comparison for Lorentz symmetry testing. Nature 2019, 567, 204–208. [Google Scholar] [CrossRef] [Green Version]
- Ludlow, A.D.; Boyd, M.M.; Ye, J.; Peik, E.; Schmidt, P.O. Optical atomic clocks. Rev. Mod. Phys. 2015, 87, 637–701. [Google Scholar] [CrossRef]
- Dzuba, V.A.; Flambaum, V.V.; Kozlov, M.G. Combination of the many-body perturbation theory with the configuration-interaction method. Phys. Rev. A 1996, 54, 3948–3959. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, M.G.; Porsev, S.G.; Safronova, M.S.; Tupitsyn, I.I. CI-MBPT: A package of programs for relativistic atomic calculations based on a method combining configuration interaction and many-body perturbation theory. Comput. Phys. Commun. 2015, 195, 199–213. [Google Scholar] [CrossRef] [Green Version]
- Safronova, M.S.; Kozlov, M.G.; Johnson, W.R.; Jiang, D. Development of a configuration-interaction plus all-order method for atomic calculations. Phys. Rev. A 2009, 80, 012516. [Google Scholar] [CrossRef] [Green Version]
- Savukov, I.M.; Johnson, W.R. Combined CI+MBPT calculations of energy levels and transition amplitudes in Be, Mg, Ca, and Sr. Phys. Rev. A 2002, 65, 042503. [Google Scholar] [CrossRef] [Green Version]
- Dzuba, V.A. VN-M approximation for atomic calculations. Phys. Rev. A 2005, 71, 032512. [Google Scholar] [CrossRef] [Green Version]
- Dzuba, V.A.; Flambaum, V.V. Core-valence correlations for atoms with open shells. Phys. Rev. A 2007, 75, 052504. [Google Scholar] [CrossRef] [Green Version]
- Davidson, E.R. The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 1975, 17, 87–94. [Google Scholar] [CrossRef]
- Rakhlina, Y.G.; Kozlov, M.G.; Porsev, S.G. The energy of electron affinity to a zirconium atom. Opt. Spectrosc. 2001, 90, 817–821. [Google Scholar] [CrossRef]
- Dzuba, V.A.; Kozlov, M.G.; Porsev, S.G.; Flambaum, V.V. Using effective operators in calculating the hyperfine structure of atoms. Zh. Eksp. Teor. Fiz. 1998, 114, 1636–1645, [Sov. Phys. JETP 1998, 87, 885]. [Google Scholar] [CrossRef]
- Gropp, W.; Lusk, E.; Skjellum, A. Using MPI; MIT Press Ltd.: Cambridge, MA, USA, 2014. [Google Scholar]
- Gropp, W.; Hoefler, T.; Thakur, R.; Lusk, E. Using Advanced MPI: Modern Features of the Message-Passing-Interface; The MIT Press: Cambridge, MA, USA, 2015. [Google Scholar]
- Slater, J.C. The Theory of Complex Spectra. Phys. Rev. 1929, 34, 1293–1322. [Google Scholar] [CrossRef]
- Condon, E.U. The Theory of Complex Spectra. Phys. Rev. 1930, 36, 1121–1133. [Google Scholar] [CrossRef]
- López-Urrutia, J.C. The visible spectrum of highly charged ions: A window to fundamental physics. Can. J. Phys. 2008, 86, 111–123. [Google Scholar] [CrossRef]
- Berengut, J.C.; Dzuba, V.A.; Flambaum, V.V. Enhanced laboratory sensitivity to variation of the fine-structure constant using highly-charged ions. Phys. Rev. Lett. 2010, 105, 120801. [Google Scholar] [CrossRef]
- Berengut, J.C.; Dzuba, V.A.; Flambaum, V.V.; Ong, A. Electron-Hole Transitions in Multiply Charged Ions for Precision Laser Spectroscopy and Searching for Variations in α. Phys. Rev. Lett. 2011, 106, 210802. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, M.G.; Safronova, M.S.; Crespo López-Urrutia, J.R.; Schmidt, P.O. Highly charged ions: Optical clocks and applications in fundamental physics. Rev. Mod. Phys. 2018, 90, 045005. [Google Scholar] [CrossRef] [Green Version]
- Berengut, J.C.; Dzuba, V.A.; Flambaum, V.V.; Ong, A. Optical transitions in highly charged californium ions with high sensitivity to variation of the fine-structure constant. Phys. Rev. Lett. 2012, 109, 070802. [Google Scholar] [CrossRef] [PubMed]
- Derevianko, A.; Dzuba, V.A.; Flambaum, V.V. Highly Charged Ions as a Basis of Optical Atomic Clockwork of Exceptional Accuracy. Phys. Rev. Lett. 2012, 109, 180801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dzuba, V.A.; Derevianko, A.; Flambaum, V.V. High-precision atomic clocks with highly charged ions: Nuclear-spin-zero f12-shell ions. Phys. Rev. A 2012, 86, 054501, Erratum in 2013, 87, 029906. [Google Scholar] [CrossRef] [Green Version]
- Schmoger, L.; Versolato, O.O.; Schwarz, M.; Kohnen, M.; Windberger, A.; Piest, B.; Feuchtenbeiner, S.; Pedregosa-Gutierrez, J.; Leopold, T.; Micke, P.; et al. Coulomb crystallization of highly charged ions. Science 2015, 347, 1233–1236. [Google Scholar] [CrossRef] [PubMed]
- Windberger, A.; Crespo López-Urrutia, J.R.; Bekker, H.; Oreshkina, N.S.; Berengut, J.C.; Bock, V.; Borschevsky, A.; Dzuba, V.A.; Eliav, E.; Harman, Z.; et al. Identification of the Predicted 5s-4f Level Crossing Optical Lines with Applications to Metrology and Searches for the Variation of Fundamental Constants. Phys. Rev. Lett. 2015, 114, 150801. [Google Scholar] [CrossRef]
- Safronova, U.I.; Flambaum, V.V.; Safronova, M.S. Transitions between the 4f-core-excited states in Ir16+, Ir17+, and Ir18+ ions for clock applications. Phys. Rev. A 2015, 92, 022501. [Google Scholar] [CrossRef] [Green Version]
- Cheung, C.; Safronova, M.; Porsev, S.; Kozlov, M.; Tupitsyn, I.; Bondarev, A. Accurate Prediction of Clock Transitions in a Highly Charged Ion with Complex Electronic Structure. Phys. Rev. Lett. 2020, 124, 163001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühn, S.; Shah, C.; López-Urrutia, J.R.C.; Fujii, K.; Steinbrügge, R.; Stierhof, J.; Togawa, M.; Harman, Z.; Oreshkina, N.S.; Cheung, C.; et al. High Resolution Photoexcitation Measurements Exacerbate the Long-Standing Fe XVII Oscillator Strength Problem. Phys. Rev. Lett. 2020, 124, 225001. [Google Scholar] [CrossRef] [PubMed]
- Kramida, A.; (National Institute of Standards and Technology, Gaithersburg, MD 20899, USA). Preliminary Critical Analysis of Fe XVII Spectral Data. Private communication, 2019. [Google Scholar]
- Porsev, S.G.; Safronova, U.I.; Safronova, M.S.; Schmidt, P.O.; Bondarev, A.I.; Kozlov, M.G.; Tupitsyn, I.I.; Cheung, C. Optical clocks based on the Cf15+ and Cf17+ ions. Phys. Rev. A 2020, 102, 012802. [Google Scholar] [CrossRef]
- Zhang, K.; Studer, D.; Weber, F.; Gadelshin, V.M.; Kneip, N.; Raeder, S.; Budker, D.; Wendt, K.; Kieck, T.; Porsev, S.G.; et al. Detection of the Lowest-Lying Odd-Parity Atomic Levels in Actinium. Phys. Rev. Lett. 2020, 125, 073001. [Google Scholar] [CrossRef]
- Safronova, M.S.; Cheung, C.; Kozlov, M.G.; Spielman, S.E.; Gibson, N.D.; Walter, C.W. Predicting quasibound states of negative ions: La- as a test case. Phys. Rev. A 2021, 103, 022819. [Google Scholar] [CrossRef]
- Walter, C.; Spielman, S.; Ponce, R.; Gibson, N.; Yukich, J.; Cheung, C.; Safronova, M. Observation of an Electric Quadrupole Transition in a Negative Ion: Experiment and Theory. Phys. Rev. Lett. 2021, 126, 083001. [Google Scholar] [CrossRef] [PubMed]
Runtime (s) | Speedup (from N = 50) | |||||
---|---|---|---|---|---|---|
N | FormH | Dvdsn | Total | FormH | Dvdsn | Total |
50 | 22,571 | 1343 | 24,218 | 1 | 1 | 1 |
100 | 12,843 | 1514 | 14,593 | 1.8 | 0.9 | 1.7 |
200 | 5800 | 957 | 6927 | 3.9 | 1.4 | 3.5 |
300 | 3810 | 678 | 4610 | 5.9 | 2.0 | 5.3 |
400 | 2913 | 596 | 3646 | 7.8 | 2.3 | 6.6 |
500 | 2292 | 535 | 2958 | 9.9 | 2.5 | 8.2 |
Configuration | Only | All Shells | Other | Final | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Contr. | Contr. | Contr. | Contr. | Contr. | Contr. | Contr. | Open | |||||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
4714 | 31 | 15 | 14 | 8 | −3 | 2 | 0 | 4781 | −4 | 4777 | ||
25,170 | −75 | 14 | 13 | 75 | −2 | 25 | −4 | 25,220 | −34 | 25,186 | ||
9073 | 5797 | −931 | −1994 | 1097 | −240 | −54 | 9 | 12,757 | −375 | 12,382 | ||
36,362 | −8549 | 460 | 1848 | −403 | 183 | 294 | 144 | 30,339 | −56 | 30,283 | ||
46,303 | −8680 | −5 | 1858 | −410 | 184 | 251 | 144 | 39,645 | −81 | 39,564 | ||
59,883 | −8638 | 454 | 1858 | −326 | 183 | 324 | 143 | 53,882 | −84 | 53,798 | ||
68,786 | −8751 | −188 | 1690 | −384 | 253 | 191 | 64 | 61,662 | −233 | 61,429 |
Configuration | Triples | QED | Final | Diff. [36] | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
6,087,185 | 6 | 254 | 3876 | 772 | 67 | 6,092,159 | 0.02% | ||
6,116,210 | −21 | 24 | 2886 | 701 | 43 | 6,119,842 | 0.03% | ||
6,129,041 | −23 | 25 | 3015 | 711 | 94 | 6,132,864 | 0.03% | ||
6,138,383 | −11 | 41 | 2825 | 704 | 82 | 6,142,025 | 0.03% | ||
2 | 5,842,248 | −10 | 108 | 3408 | 735 | 787 | 5,847,276 | 0.03% | |
1 | 5,857,770 | −10 | 70 | 3303 | 708 | 784 | 5,862,626 | 0.03% | |
1 | 5,953,697 | −10 | 74 | 3364 | 717 | 1042 | 5,958,883 | 0.03% | |
6,466,575 | −11 | 16 | 2384 | 665 | 87 | 6,469,717 | 0.03% | ||
6,481,385 | −13 | 16 | 2250 | 658 | 86 | 6,484,383 | 0.03% | ||
6,482,549 | −12 | 27 | 1745 | 622 | 97 | 6,485,028 | 0.03% | ||
6,488,573 | −14 | 26 | 1740 | 607 | 84 | 6,491,016 | 0.03% | ||
6,502,481 | −17 | 21 | 1696 | 627 | 88 | 6,504,895 | 0.03% | ||
6,511,163 | −18 | 18 | 1762 | 604 | 87 | 6,513,617 | 0.02% | ||
6,548,550 | −16 | −3 | 1747 | 616 | 134 | 6551029 | 0.02% | ||
6,589,977 | −16 | 22 | 1729 | 629 | 335 | 6,592,676 | 0.02% | ||
6,596,316 | −17 | 14 | 1947 | 641 | 334 | 6,599,235 | 0.03% | ||
6,600,744 | −17 | 19 | 1803 | 610 | 343 | 6,603,501 | 0.03% | ||
6,656,872 | −8 | −52 | 1743 | 619 | 288 | 6,659,462 | 0.02% | ||
(eV) | 13.4302 | 0.0009 | −0.0061 | −0.0005 | 0.0004 | 0.0191 | 13.4440 | 0.15% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheung, C.; Safronova, M.; Porsev, S. Scalable Codes for Precision Calculations of Properties of Complex Atomic Systems. Symmetry 2021, 13, 621. https://doi.org/10.3390/sym13040621
Cheung C, Safronova M, Porsev S. Scalable Codes for Precision Calculations of Properties of Complex Atomic Systems. Symmetry. 2021; 13(4):621. https://doi.org/10.3390/sym13040621
Chicago/Turabian StyleCheung, Charles, Marianna Safronova, and Sergey Porsev. 2021. "Scalable Codes for Precision Calculations of Properties of Complex Atomic Systems" Symmetry 13, no. 4: 621. https://doi.org/10.3390/sym13040621
APA StyleCheung, C., Safronova, M., & Porsev, S. (2021). Scalable Codes for Precision Calculations of Properties of Complex Atomic Systems. Symmetry, 13(4), 621. https://doi.org/10.3390/sym13040621