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Abstract: In supersymmetric extensions of the Standard Model, the observed particles come in
fermion–boson pairs necessary for the realization of supersymmetry (SUSY). In spite of the expected
abundance of super-partners for all the known particles, not a single supersymmetric pair has been
reported to date. Although a hypothetical SUSY breaking mechanism, operating at high energy
inaccessible to current experiments cannot be ruled out, this reduces SUSY’s predictive power and it is
unclear whether SUSY, in its standard form, can help reducing the remaining puzzles of the standard
model (SM). Here we argue that SUSY can be realized in a different way, connecting spacetime and
internal bosonic symmetries, combining bosonic gauge fields and fermionic matter particles in a
single gauge field, a Lie superalgebra-valued connection. In this unconventional representation, states
do not come in SUSY pairs, avoiding the doubling of particles and fields and SUSY is not a fully
off-shell invariance of the action. The resulting systems are remarkably simple, closely resembling a
standard quantum field theory and SUSY still emerges as a contingent symmetry that depends on
the features of the vacuum/ground state. We illustrate the general construction with two examples:
(i) A 2 + 1 dimensional system based on the osp(2, 2|2) superalgebra, including Lorentz and u(1)
generators that describe graphene; (ii) a supersymmetric extension of 3 + 1 conformal gravity with
an SU(2, 2|2) connection that describes a gauge theory with an emergent chiral symmetry breaking,
coupled to gravity. The extensions to higher odd and even dimensions, as well as the extensions to
accommodate more general internal symmetries are also outlined.

Keywords: supersymmetry; supergravity; Standard Model

1. Introduction

The two main frameworks for our current understanding of the fundamental laws of
nature, General Relativity (GR) and the Standard Model (SM) of particle physics, are not
only unrelated in scope, but logically independent and seemingly inconsistent with each
other. Yet, GR and SM must intersect at some high energy scale in a form that reconciles
both schemes. Moreover, in spite of their differences, both frameworks share a common
basic feature, Lorentz invariance.

1.1. Local Poincaré Symmetry

GR is a gauge theory for the Lorentz group. This is manifest in the so-called first order
formulation, where the Lorentz connection ωa

b and the local orthonormal frame (vielbein)
ea are the dynamical variables of the theory, which belong to the adjoint and fundamen-
tal representations of the Lorentz group, respectively. The three and four-dimensional
Einstein–Hilbert (EH) actions—or their Lovelock generalizations to higher dimensions—
are invariant under local Lorentz transformations. The invariance under local translations
that would complete local Poincaré invariance is not so straightforward, although it can
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be implemented in a particular class Chern–Simons (CS) theories in odd dimensions
D ≥ 3 [1].

The SM, on the other hand, describes elementary particles as irreducible represen-
tations of the Poincaré group, labeled by mass and spin/helicity Casimir operators of
ISO(3, 1). In this case, the symmetry is not a gauge invariance, but rather a rigid symmetry
of the entire flat spacetime, R3,1, which is an expected symmetry of the in and out states of
a scattering process, say. Thus, the internal invariance under local U(1)× SU(2)× SU(3)
transformations has a very different status from Poincaré invariance in the SM. The inter-
nal gauge symmetry is responsible for the fundamental interactions among elementary
particles—the three fundamental forces of the quantum world—while the rigid Poincaré
symmetry classifies the particle states and is not associated to a fundamental interaction in
the SM.

The attempt to promote Poincaré invariance into a gauge symmetry gives mixed
results. As mentioned above, the local Lorentz symmetry can be associated with an
interaction field—the Lorentz connection one-form ωa

b, while the translation subgroup of
the Poincaré group is not well represented by a gauge connection. The closest association
of the local translation symmetry would be with the vielbein one-form ea, but there is no
four dimensional action I[ω, e] invariant under δea = Dλa, where λa(x) is a translation
parameter and D is a covariant exterior derivative. Applying such a transformation to the
EH action changes it by a bulk term proportional to the torsion, which can only vanish as a
consequence of the field equations (as already mentioned, the only exception is the special
CS theory invariant under local Poincaré transformations, for D = 2n + 1 ≥ 3). Hence,
invariance under local translations would be a contingent symmetry at best, valid on certain
backgrounds satisfying classical torsion constraints. In contrast with this, gauge symmetries
are not contingent, they are true symmetries both at the classical and quantum levels.
The action of a gauge theory is expected to be invariant (as Yang–Mills or BF theories), or to
change by a surface term (as CS), independently of any features of the background.

In an alternative approach, the translation part of the Poincaré group is identified
with the local diffeomorphisms xµ → xµ + ξµ(x), which is an invariance of any generally
covariant theory, like GR. The problem with this is that the generators of the diffeomor-
phism algebra, the Hamiltonian constraintsH⊥ andHi, do not form a Lie algebra but an
open algebra, in which the structure constants are replaced by functions of the dynamical
fields [2]. This is not a standard gauge symmetry with a fiber bundle structure that could be
naturally combined with the internal gauge invariance for the other interactions. Moreover,
it is not clear what could be the quantum mechanical meaning of a symmetry whose nature
depends on its on-shell dynamics.

1.2. Conventional SUSY

As is well known, the idea of constructing a field theory in which internal and space-
time symmetries are combined into a single Lie group runs into an obstruction known
as the Coleman–Mandula no-go theorem. This theorem roughly states that a Lie group
that includes Poincaré and internal symmetries, that is an invariance of the S-matrix of a
standard field theory, is necessarily a direct sum of both Lie algebras and hence trivial [3].
This no-go theorem is circumvented if instead of a Lie algebra one considers a graded
algebra [4]. This observation gave support to the models that were proposed by the pio-
neers [5,6], setting off the supersymmetric revolution that culminated with supergravity
and superstring theory.

Supersymmetry is a clever scheme to merge spacetime and internal symmetries at the
level of the algebras. The trick consists in introducing fermionic generators in an irreducible
representation of the Lorentz group (spin 1/2), also charged with respect to the internal
gauge fields (electromagnetic, isospin, color, etc.). Then, the fermionic generators necessar-
ily have nontrivial commutators with both spacetime and internal generators, providing
a bridge connecting both types of symmetries. The early supersymmetry (SUSY) models
tried to achieve a supersymmetric extension of the Poincaré group, but as mentioned above,
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it is not easy to construct a gauge theory with local Poincaré symmetry. Hence, the first
models only considered rigid SUSY transformations rather than gauge symmetries [5,6].

Generically, the idea of SUSY was exploited mostly assuming that bosons and fermions
belong to a vector-like representation of the type

Q|B〉 = |F〉 , Q|F〉 = |B〉 , (1)

where Q is the generator of supersymmetry and B, F represent bosonic and fermionic
states [6,7]. The superalgebra is completed by typically demanding that applying twice a
supersymmetry transformation on a state should be equivalent to the action of a spacetime
transformation on that same state.

Attempts to construct supersymmetric standard models (SSMs) along these lines
have not been successful in reproducing the observed features of the SM. The main draw-
back stems from considering the SUSY extension of the Poincaré algebra, which leads to
supercharges that commute with the Hamiltonian. This immediately implies that particle
states connected by SUSY are necessarily degenerate in energy, which leads to a scheme
in which for every bosonic particle there is a fermionic one with the same mass and vice-
versa. Additionally, since the Poincaré group commutes with the internal gauge algebra
u(1) ⊕ su(2) ⊕ su(3), for each boson of a given mass there should exist a fermion not
only with the same mass, but also equal electric charge, flavor, and color, and vice-versa.
The existence of such SUSY pairs, a signal of most SUSY models not seen in the SM, has
prompted the argument that SUSY must be spontaneously broken, but should be restored
at a sufficiently high energy. The energy scale for this restoration has been pushed to higher
and higher scales by larger and larger particle accelerators. With the latest negative results
from the LHC [8], hopes have been reduced for ever observing some evidence of SUSY in
the lab.

After several decades of struggling to fit the idea of SUSY into the framework of the
SM, it seemed that one had two choices, both of doubtful physical relevance: either a rigid
SUSY extension of the Poincaré group, or a SUGRA model in which the SM does not seem
to fit. This frustrating scenario led many researchers in the 1980s into other lines of inquiry,
specially string theory. Still, the question has remained as to the usefulness of the SUSY
idea for the SM.

1.3. Gauge SUSY

While the standard SUSY scheme is certainly a natural way to use a graded Lie alge-
bra, it is not the only option. If one wants to include a gauge potential for a fundamental
interaction (e.g., a connection field for u(1) ⊕ su(2) ⊕ su(3)) in a SUSY model, a more
appropriate representation would be one in which the gauge potential is part of a super-
connection that transforms in the adjoint representation of the graded Lie algebra. This
would have the added advantage that the supersymmetry could be implemented as a local
symmetry—rather than a rigid one—from the start. Schematically, these superalgebras
would have the structure

[JA, JB] = f C
AB JC , [TK,TL] = SM

KL TM , [JA,TK] = 0 , (2)

[JA,Qα
i ] =

1
2
(ΓA)

α
βQ

β
i , [TK,Qα

i ] = (τK)
j
iQα

j , (3)

{Qα
i ,Qj

β} = δ
j
i (Γ

A)α
βJA + δα

β(τ
K)

j
iTK , (4)

where J, T, and Q are the generators of spacetime, internal, and SUSY transformations; Q
is the charge or Dirac conjugate of Q, and the indices A, K are raised and lowered with
the Cartan–Killing form in the respective algebras. Clearly, without the SUSY generators,
the bosonic algebra is trivially the direct sum of the spacetime and internal algebras. Com-
mutators (3) state that the supercharges are in a spinor and the fundamental representations
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of the spacetime and internal symmetries, respectively. Finally, (4) shows how SUSY ties
together spacetime and internal symmetries.

In principle, this idea can be generalized to any two Lie algebras G1 and G2, with gener-
ators {Ur} and {Vs}, instead of spacetime and internal algebras with generators {JA} and
{TK} discussed above. This would provide a different form of unification rather than the
form G1 ⊕G2, like the one assumed in the standard model. Perhaps a gauge SUSY unifying
the U(1), SU(2), and SU(3) symmetries of the SM can be developed along this line.

1.4. Standard and CS Supergravities

As noted in the pioneering work of Akulov and Volkov [5], the consideration of
local SUSY leads naturally to theories involving gravity, later referred to as supergravity
(SUGRA) [7,9]. Phenomenologically, SUGRA has not done much better than SSMs as a
low energy SM. A central assumption in most SUGRA theories is that gravity is described
by the EH action, with Poincaré symmetry playing an essential role in the flat limit.
As mentioned above, while the Lorentz group can be easily associated with a local gauge
symmetry, the translation part is troublesome in four dimensions [10], and replacing the
Poincaré group by AdS symmetry presents similar issues [11]. This is true even without
supersymmetry. The technical obstacle in the construction of a Poincaré (or AdS)-invariant
action is the absence of the necessary invariant tensor in even dimensions [12,13].

On the other hand, in dimensions D = 2n + 1, the CS forms for ISO(D − 1.1),
SO(D− 1, 2), and SO(D, 1) provide suitable actions for locally Poincaré (and (A)dS)-
invariant gravitation theories [1,14]. In the past three decades, our group has been working
on supersymmetric theories in which the dynamical fields are components of a graded
Lie-algebra valued connection, that is, a connection associated to a superalgebra. These
theories possess local supersymmetry and, if the superalgebra contains the Lorentz or
(A)dS algebra, represented by a Lorentz connection and a vielbein, they also include gravity.
The gauge fields associated with the SUSY generators are spin 3/2 fermions (gravitini),
while the internal symmetry has standard spin 1 gauge fields [15,16]. These CS supergrav-
ity theories are covariant under general coordinate transformations, they do not exhibit
matching SUSY pairs and, although they are topological in a certain sense, they describe
propagating degrees of freedom [1]. In spite of their simplicity and beauty, these models
have two drawbacks: they only exist in odd dimensions and they do not contain ordinary
spin 1/2 fermions, like the leptons and quarks of the SM, but only spin 3/2 gravitini.

The first problem is related to the fact that no metric is necessary to write down a gauge
invariant theory in odd dimensions (using CS forms). In even dimensions, the spacetime
symmetry (Poincaré, (A)dS, conformal, etc.) breaks down to Lorentz, which means that
some pieces (the translation sector) of the connection are no longer gauge fields whilst
“miraculously” provide a metric structure for the theory. This is also the case if a CS theory
is reduced to an even dimension below, either by a KK compactification [17,18], or by an
alternative projection onto a submanifold [19].

As we will see in the next section, the second drawback can be remedied if the gravitini
in the connection are interpreted as composite states that combine the metric structure (the
vielbein field ea

µ) and a spin 1/2 fermion.

2. Unconventional SUSY

An important point of contrast between the SUSY and the SM refers to the role
fermions and bosons play in those theories. In the SM, besides the Higgs field, all bosons
are spin 1 fields that carry gauge interactions and they are connections in the adjoint repre-
sentation of the gauge group. Fermions, on the other hand, are spin 1/2 fields that generate
the currents that source the interactions, the building blocks of matter and they are vectors
in the fundamental representation of the gauge group. Bosons are one-forms satisfying sec-
ond order Maxwell-like field equations, while fermions are zero-forms satisfying first order
Dirac-like equations. There seems to be not even an approximate symmetry connecting
these two radically distinct classes of objects in the SM. Phenomenologically, there seems
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to be no cases of fundamental bosonic matter fields acting as sources of interactions, or of
fundamental interactions mediated by fermions.

2.1. Supersymmetric Connection

To the best of our knowledge, supersymmetry implemented in a superconnection
was first explored in [20], where a Chern–Simons supergravity theory in 2 + 1 dimensions
for the superalgebras OSp(2|p)×OSp(2|q) was proposed. This model was also extended
to higher odd dimensions as Chern–Simons theories for superconnections with values in
graded Lie algebras containing the Poincaré or AdS algebras [15]. The idea is to consider a
connection of the form

A = AK TK + ωA JA +Qα χα + χα Qα , (5)

where TK are generators of internal symmetry (e.g., SU(N)), JA is a generator of spacetime
transformations (e.g., Lorentz), and Q,Q are SUSY generators or supercharges, with

[T, J] = 0, [T,Q] ∼ Q, [J,Q] ∼ Q (6)

{Q,Q} ∼ T+ J . (7)

As a consequence of the fact the supercharges belong to the fundamental representa-
tion of the internal group, and to the spinor representation of Lorentz, the fermion field χ
will also belong to those representations.

From a phenomenological viewpoint, the field A has an unappealing aspect: its only
fermionic component is a spin 3/2 field χ, the gravitino, an exotic form of gauge field,
whose existence has not been confirmed either directly or indirectly, unlike the usual spin
1/2 leptons and quarks of the SM.

2.2. Matter Ansatz

The unconventional SUSY idea (u-SUSY) includes an additional assumption that
brings in a standard spin 1/2 fermion into this scheme. We refer to this assumption as the
matter ansatz.

In [21], a three-dimensional model was constructed along the line mentioned above,
in which the connection (a graded Lie-algebra valued one form) plays a central role. In this
superconnection, the gravitino field (χ) is assumed to be a composite of the vielbein (ea)
and a spin 1/2 Dirac spinor (ψ), and not an irreducible spin 3/2 field,

dxµ χα
µ = dxµ ea

µ(Γa)
α

βψβ, (8)

where Γa are the Dirac matrices. This ansatz has important consequences.
Without this assumption, i.e., leaving the gravitino as usual, the theories constructed

for this connection in odd-dimensions are those in the family of CS supergravities consid-
ered in [15] which, in 2 + 1 dimensions have no propagating degrees of freedom (topological
field theories) [22]. The ansatz (8) changes the physical nature of the system. In three di-
mensions, for example, instead of a non-propagating gravitino, a propagating spin 1/2 field
appears that satisfies a standard Dirac equation minimally coupled to the spin connection
ωa and to the internal gauge field A. The bosonic fields on the other hand, satisfy standard
CS dynamical equations for massless gauge connections.

The resulting u-SUSY actions are by construction generically invariant under the
local internal and Lorentz symmetries and under general coordinate transformations.
Thus, those generally covariant theories necessarily include gravitation. The background
geometry in vacuum is typically a constant curvature spacetime with torsion. The action
is generically not invariant under SUSY, while maximally symmetric vacua are BPS states,
and hence supersymmetric under a reduced SUSY [21,23–25].

In what follows, we show how u-SUSY can be implemented in odd and even di-
mensions. These examples are generalizations of the three-dimensional CS action for an
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OSp(2|2) connection in [21], and of the MacDowell–Mansouri model in four-dimensions
for OSp(4|1) [10].

3. u-SUSY in Odd Dimensions

Let us review first u-SUSY in odd dimensions as this problem is considerably simpler
than its even-dimensional counterpart. The simplicity is due to the fact that in order to
construct a gauge invariant theory in odd dimensions all that is needed is a connection
field, whereas in even dimensions a connection alone is not sufficient and one needs in
addition a metric structure.

3.1. Three-Dimensional u-SUSYs

We want to construct an action in three dimensions invariant under local Lorentz and
U(1) gauge transformations with these two symmetries connected by SUSY. This could
describe a system consisting of an electrically charged spin 1/2 Dirac field interacting with
three-dimensional electromagnetic and gravitational fields.

The smallest supersymmetric Lie algebra containing so(2, 1) × u(1) is osp(2, 2|1),
has Lorentz generators Ja = 1

2 εa
bc Jbc, U(1) generator T, and supercharges Qα and Qα

(a, b, c = 1, 2, 3 and α = 1, 2). The non-vanishing (anti-)commutators are

[Ja, Jb] = εab
c Jc , {Qα,Qβ} = −(Γa)α

βJa − iδα
βT ,

[Ja,Qα] = 1/2(Γa)
α

βQβ , [Ja,Qα] = −1/2Qβ(Γa)
β

α , (9)

[T,Qα] = iQα , [T,Qα] = −iQα .

The corresponding connection field is the one-form valued in the graded algebra and
is exactly of the form (5), where A = Aµdxµ is the U(1) gauge field, ωa = (1/2)εabcωabµdxµ

is the Lorentz (spin) connection, and χα = χα
µdxµ is an anticommuting one-form identified

as the gravitino. The corresponding Chern–Simons three-form (wedge products of exterior
forms are implicit and shall not be displayed),〈

AdA+
2
3
A3
〉

, (10)

where 〈· · · 〉 is the invariant (super) trace and defines a SUGRA action in three spacetime
dimensions [20]. The field equations imply that the classical configurations are flat,

F = dA+A2 = 0 , (11)

that is, the super connection A is locally flat and can be locally expressed as pure gauge,
A = U−1dU, where U(x) is a position-dependent element of OSp(2, 2|1). The curvatures
of the respective subgroups are given by

Ra − 2χ Γa χ = 0 , F− χ Γa χ = 0 , ∇χα = dχα + iAχα + ωa(Γa)
α

βχβ = 0. (12)

where Ra = dωa + εa
bcωbωc and F = dA. This theory is a three-dimensional CS SUGRA

with no propagating degrees of freedom (CS dynamics) and there is trivially a matching
between bosonic and fermionic degrees of freedom (0), an accidental consequence of the
topological nature of the theory.

Assuming the gravitino to be a composite of a spin-1/2 fermion and the vielbein field,
as in (8), promotes the fermion ψ into a charged Dirac particle propagating on a curved
manifold whose metric structure is defined by the dreibein [24]. In fact, the field equation
for ψ is [

/∂ + i /A− 1
4

Γa /ωa + ea
µTaνλεµνλ

]
ψ = 0. (13)

The background geometry is characterized by constant curvature and torsion, where
the cosmological constant is a constant of integration for the dreibein. This in turn implies
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that the last term involving torsion in (13) is also proportional to the same constant and
fixes the mass of the fermion. The bosonic fields ω, A remain massless and are “locally
pure gauge” (for details, see [21]).

Thus, this model describes a massive, spinless charged fermion propagating on a
background characterized by a spacetime geometry of constant curvature in the presence
of an electromagnetic field given by a locally exact connection. Around the Lorentz-flat
vacuum (Rab = 0, ψ = 0 = A), this is the action for graphene in the long wavelength
limit [26], which suggests that this interesting material can add to its many extraordinary
features that of being essentially supersymmetric. This theory can also be seen as a
boundary theory of a four dimensional AdS supergravity when reduced by the matter
ansatz [27,28]

The vacuum configuration, AdS3 with ψ = 0 = A, is gauge invariant under the
entire OSp(2, 2|1) symmetry. For other BPS states, such as the M = 0 or the M = J BTZ
black holes, 1/2 or 1/4 of all possible supersymmetries would be preserved [29], and for
a generic background SUSY would be at most an approximate symmetry. This type of
contingent symmetry also occurs for the invariance under translations, which is at best an
approximate symmetry in nature.

One could also consider enlarging the internal gauge symmetry to a non-abelian
gauge group such as the case of U(1)× SU(2) studied in [23]. Additionally in that case,
the fermion has an additional SU(2) charge (spin) and is the only propagating field;
the vacuum structure is richer, with different types of globally defined Killing spinors.
The bosonic sector of this theory is rather simple, essentially 2+1 gravity plus locally flat
U(1) and SU(2) connections. The propagating spinor endowed with a non-abelian charge
would probably make this system phenomenologically quite interesting.

3.2. Higher Odd Dimensions

Extending this same scheme to higher odd dimensions D = 2n + 1 is fairly straight-
forward. The Lorentz group SO(2n, 1) can be complemented with an internal gauge group
G0; the supercharge Qα

a would be in a spin-1/2 representation of the Lorentz group and
in the fundamental of G0. The connection A and the corresponding CS forms, with the
matter ansatz, are uniquely defined and prescribe a field theory with gauge supersymmetry
involving gravity, gauge fields, and charged spin 1/2 fermions. The bosonic part of the
connection would generically propagate and SUSY would not be generically respected.
Nevertheless, the maximally symmetric vacua would still be invariant under the entire
supersymmetric group and therefore SUSY would be a contingent symmetry.

A five-dimensional CS model along these lines was studied in [30]. The general
problem of a generic CS supergravity theory with the additional assumption of the matter
ansatz has not been addressed yet.

4. u-SUSY in Even Dimensions

In even dimensions, the previous construction cannot be carried out because there
exist no Chern–Simons forms to define the Lagrangian in that case. One can try to build a
Yang–Mills or a BF action with a super connection of the form (5) for a given superalgebra.
This, however has the important consequence that the gauge symmetry must be necessarily
broken since there is no local action that is invariant under the entire gauge superalgebra.
This was already observed in the pioneering work of MacDowell and Mansouri [10] and
Townsend [31] emphasized in a more general context by Regge and collaborators [12,16,32].

In the end, this situation can be seen as a consequence of the Chern–Weil theorem [33].
Suppose one wants to write down an action in 2n dimensions for a connection A that
transforms in the adjoint representation of a gauge group G, A → U−1(A+ d)U, where
U ∈ G. Then, Fa → U−1FU, where Fa = dAa + f a

bcA
bAc, and any functional of the form

I[A] =
∫

Ca1a2···anFa1Fa2 · · ·Fan , (14)
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that is invariant under gauge transformations, is a characteristic class and therefore not a
useful action. Consequently, two possibilities arise for a nontrivial theory invariant under
a gauge symmetry group G:

(1) The fields in the action cannot be only the connection A in G, the Lie algebra of G. In
addition to the connection, other fields must enter in the Lagrangian. These other
fields must combine in a way to make a G-invariant action, or

(2) the Lagrangian is constructed with the G-valued connection A, but the action is not
invariant under the entire group G. The symmetry is broken down to a subgroup
G′ ⊆ G because Ca1a2···an is not an invariant tensor of G but an invariant of G′. Then,
the effective gauge symmetry of the action is G′ and the part of the connection
that carries the generators of G′ is the only true gauge connection, while the part
corresponding to the broken symmetries are in a vector representation of G′.

4.1. 4D Gauge Gravities

An example of the first situation is the Einstein–Hilbert action in 4 dimensions,

I[ω, e] =
∫

M4
εabcd

(
Rab + αeaeb

)
eced , (15)

where Rab = dωab + ωa
c ωc

b is the curvature and ω is the connection for the Lorentz group
SO(3, 1), while ea is not a connection but a Lorentz vector and enters in the Lagrangian is
such a combination that makes the expression (15) invariant under SO(3, 1).

One can also understand this situation from the second viewpoint. Consider combin-
ing ωa

b and ea into a connection for a semisimple group G ⊇ SO(3, 1) (take G as SO(3, 2)
or SO(4, 1)),

WAB =

[
ωab ea/`
−eb/` 0

]
. (16)

It is necessary to introduce the constant ` with units of length in order to match the
dimensionless nature of the connection ω. Here the upper case indices take values 0, 1, 2, 3, 4.
Then, the curvature FAB = dWAB +WA

C WCB is

FAB =

[
Rab ± ea eb/`2 Ta/`
−Tb/` 0

]
, (17)

which can be used to construct a Lagrangian for a four-dimensional action (the ± signs
correspond to AdS (+) or dS (−)),

I[W] =
∫

CABCDFABFCD . (18)

The problem is, as MacDowell and Mansouri noted, that there exist no G-invariant
fourth rank tensors to be used as CABCD. The only invariant fourth rank tensors with the
right symmetry are

εABCD or [ηACηBD − ηADηBC]. (19)

Unfortunately, the fourth rank Levi–Civita tensor is only an invariant for SO(3, 1) ⊆ G,
and therefore it is not possible to write (18) with C = ε. Taking the second invariant tensor
in (18) yields another characteristic class, the Pontryagin invariant for G,

IP[W] =
∫

FABFAB , (20)
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Alternatively, using the curvature for G but with εabcd, the invariant tensor for SO(3, 1),
yields the Einstein–Hilbert action (plus the Euler characteristic),

IEH [W] =
∫

εabcdFabFcd

=
∫

εabcd

(
Rab ± eaeb/`2

)(
Rcd ± eced/`2

)
(21)

Alternatively, using the curvatureF and the other SO(3, 1) invariant, [ηacηbd− ηadηbc]/2
yields

IT [W] =
∫ (

Rab ± eaeb/`2
)(

Rab ± eaeb/`2
)

=
∫ (

RabRab ± 2Rabeaeb/`2
)

, (22)

which, apart from the Lorentz–Pontryagin invariant RabRab, is a somewhat exotic but
legitimate four-dimensional action for a theory with torsion, but it is only invariant under
SO(3, 1) ⊆ G.

In the end, both scenarios (1) and (2) above lead to the same conclusion: in 4 dimen-
sions, a local action invariant under SO(4− p, p) must contain some fields besides an
so(4− p, p) connection. There is still a consolation prize for the theories that are not invari-
ant under the full G symmetry. The backgrounds defined by FAB = 0 are gauge invariant
under full local G transformations. (This is rather trivial since F = 0⇒ U−1 FU = 0.)

4.2. Yang–Mills Action and Generalizations

One could object to the previous discussion arguing that the Yang–Mills (YM) gauge
action

IYM[A] =
∫

M
Tr[F ∗ F] , (23)

built for the connection in the Lie algebra of the group G is invariant under same group in
any dimension.

The point is that the Hodge dual ∗F is a function of F and of the metric structure of
M. This may seem like a small detail but it is a relevant one. Even if in some manifolds
and in special coordinates the metric can taken a rather simple form, such as gµν =
diag(−1,+1,+1,+1), the metric is a field and it changes under deformations of M (and
under changes of coordinates). This sensitivity of the metric to the changes in M implies
that IYM is not a topological invariant.

Similarly, the integral of the invariant 2n-form Tr[Fn] over a compact manifold is a
topological invariant, but if multiplied by a scalar field φ(x), then the functional

I[A, φ] =
∫

M
φ Tr[Fn] , (24)

is not a topological invariant. It defines a sensible action, with reasonable equations
of motion.

4.3. Four-Dimensional u-SUSY

Consider one of the simplest nontrivial superalgebra in 4 dimensions containing
Lorentz and an abelian internal gauge symmetries, G ⊃ so(3, 1)⊕ u(1). The supercharges
are complex Lorentz spinors and a cursory check shows that the closure of the superalgebra
requires the introduction of additional vector generators in the spacetime algebra. The re-
sulting superalgebra is the osp(4|2) ∼ usp(2, 2|1), which includes the (A)dS4 generators
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{Ja} and {Jab}, the complex supercharge Qα,Qβ in a spin 1/2 representation, and the u(1)
generator K. The essential anticommutator in the superalgebra reads

{Qα,Qβ} = −
1
2
(Γab)α

βJab + (Γa)α
βJa − iδα

βK , (25)

where Γab = [Γa, Γb]/2 and {Γa} are the Dirac matrices. Adopting the matter ansatz (8),
the connection (5) is

A = AK+ f a Ja +
1
2

ωab Jab +Qα (/e )
α

βψβ + ψα (/e )
α

βQβ , (26)

where A, f , ω, /e = Γa ea are one-form fields. The corresponding curvature two-form reads
F = F0 K+ Fa Ja + 1

2 Fab Jab +Qα F α +F α Qα, where

F0 = dA− ψ/e /e ψ (27)

Fa = D f a + iψ/e Γa /e ψ (28)

Fab = Rab + f a f b + iψ/e Γab /e ψ (29)

F = ∇(/e ψ) (30)

F = (ψ /e )
←−∇ , (31)

with D f a = d f a + ωa
b f b and Ra

b = dωa
b + ωa

cωc
b. Additionally,∇ = [d− iA + 1

2 6 f +
1
2 /ω]

is the covariant derivative in the spin-1/2 representation, and [−
←−
d − iA + 1

2 6 f +
1
2 /ω] =

←−∇ .
We observe that the one-form f a = f a

µdxµ has the same features as the metric structure
ea, except for the dimensionless nature of the connection and the dimension of length
of vielbein.

We know that the 4-form 〈FF〉, where 〈· · · 〉 is an invariant trace in the Lie superalge-
bra, defines a characteristic class, not a Lagrangian. In order to build an action, we need to
define some operation ~ that takes the role of the Hodge-∗ in YM theories. This must be an
automorphism in the algebra operation with the property ~2 = −1. Moreover, we expect
that in the purely bosonic sector the Lagrangian reduces to the Einstein–Maxwell theory. We
observe that ~ should act on the u(1) subalgebra as ~F0 = ∗F0; on the fermionic sector as
~F = Γ5F ; and on the spacetime subalgebra as ~FAB = J5FAB, where J5 ≡ 1

4! ε
abcdJabJcd.

The definition of ~ is not unique but this choice seems to be the simplest option and yields
the Einstein–Maxwell–Dirac Lagrangian [25,34–36].

Note that as in the discussion of §4.1, the spacetime symmetry is broken from SO(3, 2)
down to SO(3, 1). This means that the field f a is no longer a gauge connection but an
ordinary Lorentz vector one-form, indistinguishable from the vielbein, except for the
dimensions. Hence, we have two possible metric structures, one defined by ea

µ, and another
defined by ` f a

µ for some scale factor ` with units of length. Another way to look at this
problem is to observe that it is not necessary to include a vielbein, because the connection
already has a field suited for the job of providing a metric structure. All that is needed is
the parameter ` that sets the length scale of the system.

Putting all these ingredients together, one finds the rather standard looking Lagrangian
(see [35,36] for details),

L =− 1
4
〈F ~ F〉

=− 1
4

Fµν Fµν|e|d4x− 1
16

εabcd(Rab + eaeb/`2)(Rcd + eced/`2)

− i
2`

[
(ψ
←−
D )Γaψ− ψΓa(

−→
D ψ)

]
εabdcebeced +

2i
`

ψΓ5/e ψ(Tbeb)

− i
2`2 ψψεabdceaebeced + 12

[
(ψΓ5ψ)2 − (ψψ)2

]
|e|d4x , (32)
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where we have identified f a = `−1ea. The first two pieces in the right hand side are the
Maxwell and Einstein–Hilbert Lagrangians with negative cosmological constant; the third
term is the Dirac Lagrangian for a charged spin 1/2 field coupled to gravity; the fourth term
is a non-minimal coupling of the fermion to torsion; the fifth is a mass term and the last is a
Nambu–Jona–Lasinio fermion self-coupling. This latter coupling is nonrenormalizable and
occurs naturally in BCS superconductivity as a natural mechanism to produce a mass gap
and chiral symmetry breaking. This is a combined effect of nonrenormalizability and the
logarithmic dependence of the mass gap on the cut-off scale [37].

More realistic scenarios in four dimensions can be—and have been—considered,
where the internal gauge symmetry is not just U(1), but a nonabelian one. In fact, in [25]
the construction is given for a u-SUSY theory for su(2, 2|2), which is the supersymmetric
completion of the conformal group SO(4, 2) and contains U(1)× SU(2) as internal gauge
symmetry. Again, the introduction of the ~ operation reduces the symmetry of the action
down to SO(3, 1)× SU(2)×U(1). There, a refined version of ~ allows us to write down
the Lagrangian in the form,

Lgen = −1
4
〈F ~ F〉 (33)

where now F ∈ su(2, 2|2). The latter model, after identification of the vielbein field with
and the translation gauge fields in su(2, 2|2), yields an action principle for a Dirac field
charged under the u(1)⊕ su(2) internal algebra, plus standard gravity and Yang–Mills
sectors, with additional NJL terms and couplings to the torsion.

5. Discussion, Summary, and Outlook

The u-SUSY idea is based on two logically independent ideas: (i) The use of a connec-
tion in a super algebra that contains a spacetime subalgebra and an internal one, and (ii)
the matter ansatz (8). The first, in odd dimensions leads to the family of CS supergravities
and in even dimensions to a new and not completely surveyed family of supergravities
with gravitini that are charged with respect to the internal gauge symmetry, whose relation
with standard SUGRAs is not completely understood [34]. The second idea could also
be applied to any of the known SUGRAs and it is expected that it would yield a theory
containing spin 1/2 fermions in a Dirac-like action coupled to a host of other gauge and
matter fields.

We have argued that the inclusion of gravity in high energy models similar to the Stan-
dard Model can be quite natural in u-SUSY. In fact, gravitation is essentially unavoidable
in u-SUSY because the Lorentz algebra is required to close the superalgebra, as for instance
in (4). In addition, since the matter ansatz requires a metric structure, this completes the
list of ingredients for gravity. This type of SUSY matches the observed patterns of massless
bosonic carriers of gauge interactions and spin 1/2 (possibly massive) fermions charged
with respect to those interactions, and not the other way around. The resulting models
do not exhibit supersymmetric pairs, with supersymmetry emerging as an approximate
invariance but generically broken, a contingent symmetry like translation invariance. This
SUSY breaking is not of the spontaneous kind. The symmetry is not broken by the vacuum
but by the action. In fact, the vacuum has a larger symmetry than the action, in a similar
way to what happens in Einstein–Hilbert gravity, where the action is not invariant under
local Poincaré or AdS transformations, but the vacuum is. In u-SUSY, supersymmetry is a
contingent symmetry that depends on the background around which the theory is defined.

It can be observed that in four dimensions, the u-SUSY scheme, NJL terms of the form

κ
[(

ψr(T
i)r

sψs
)(

ψp(T
i)p

qψq
)
−
(

ψr(T
i)r

s γ5ψs
)(

ψp(T
i)p

q γ5ψq
)]

, (34)

are generically produced. They come with completely fixed coefficients as a precise
prediction of the model [25,35,36]. The presence of such terms, where the SU(N) indices
r, s, p, q label the different fermionic families, has been proposed as a possible explanation
for left-handed neutrino oscillations without a need to assume non-vanishing neutrino
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masses or sterile features for the right-handed states [38,39]. Hence, u-SUSY could perhaps
provide a mechanism for the missing neutrino puzzle, which could be an indication for an
underlying supersymmetry in nature.

We are currently studying the theory defined by (33) for the superalgebra su(2, 2|2) [34].
Without using the matter ansatz, this can be viewed as the mother SUGRA theory of the
u-SUSY model [25]. The Lagrangian describes u(1)⊕ su(2)-colored gravitini, with a Rarita–
Schwinger Kinetic term, Pauli couplings, NJL terms, interacting with Einstein–Hilbert
type of fields, and u(1) ⊕ su(2) Yang–Mills fields. The supersymmetries are broken in
general, reminding us the Chern–Weil theorem discussed earlier, however the supersym-
metry conditions select supergravity backgrounds of a standard fashion. As a consequence,
the model (33) describes an interesting (non-arbitrary) class of supergravity breaking mech-
anism, which preserves certain isotropy subalgebras. Then applying the matter ansatz, this
model produces a spin-1/2 model, similar to [25], with the same kind of interactions, thus
providing Lagrangians of a standard form, including NJL interactions and Pauli terms.

Another extension of the u-SUSY idea to be explored further is the possibility of
considering superalgebras, like the one obtained by the supersymmetric completion of
two internal gauge symmetries. Consider, for example, the superalgebra containing u(1)⊕
su(2)⊕ su(3), with generators K, KI and TR, respectively, and supercharges Qα

ir and Qjs
β .

The expected superalgebra would be something like

[KI ,KJ ] = iεJK
L KL , [TR,TS] = i fRS

U TU , (35)

{Qα
ir , Qjs

β } ∼ δα
β

[
δs

r(σ
I)

j
iKI + δ

j
i (τ

R)s
rTR − iδs

r δ
j
iK
]
+ δs

r δ
j
i (Γ

A)α
β JA . (36)

The connection one-form would be of the form

A = AK+ AI KI + ARTR + ωA JA +Qir
α χα

ir + χir
α Qα

ir , (37)

In this case, the fermion fields would be spin 3/2 charged with respect to all three
internal gauge charges.
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