
symmetryS S

Article

Computing Expectiles Using k-Nearest Neighbours Approach

Muhammad Farooq 1, Sehrish Sarfraz 2, Christophe Chesneau 3, Mahmood Ul Hassan 4,* , Muhammad Ali Raza 5,
Rehan Ahmad Khan Sherwani 6 and Farrukh Jamal 7

����������
�������

Citation: Farooq, M.; Sarfraz, S.;

Chesneau, C.; Ul Hassan, M.;

Raza, M.A.; Sherwani, R.A.K.;

Jamal, F. Computing Expectiles Using

k-Nearest Neighbours Approach.

Symmetry 2021, 13, 645. https://

doi.org/10.3390/sym13040645

Academic Editor:

José Carlos R. Alcantud

Received: 27 February 2021

Accepted: 8 April 2021

Published: 11 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Statistics, GC University Lahore, Lahore 54000, Pakistan; muhammad.farooq@gcu.edu.pk
2 Department of Statistics, University of Gujrat, Gujrat 50700, Pakistan; sehrishsarfraz123@gmail.com
3 Department of Mathematics, Université de Caen, LMNO, Campus II, Science 3, 14032 Caen, France;

christophe.chesneau@unicaen.fr
4 Department of Statistics, Stockholm University, SE-106 91 Stockholm, Sweden
5 Department of Statistics, GC University Faisalabad, Faisalabad 38000, Pakistan; ali.raza@gcuf.edu.pk
6 College of Statistical and Actuarial Sciences, University of the Punjab, Lahore 54000, Pakistan;

rehan.stat@pu.edu.pk
7 Department of Statistics, The Islamia University of Bahawalpur, Bahawalpur 61300, Pakistan;

farrukh.jamal@iub.edu.pk
* Correspondence: mahmood.ul-hassan@stat.su.se

Abstract: Expectiles have gained considerable attention in recent years due to wide applications in
many areas. In this study, the k-nearest neighbours approach, together with the asymmetric least
squares loss function, called ex-kNN, is proposed for computing expectiles. Firstly, the effect of
various distance measures on ex-kNN in terms of test error and computational time is evaluated.
It is found that Canberra, Lorentzian, and Soergel distance measures lead to minimum test error,
whereas Euclidean, Canberra, and Average of (L1, L∞) lead to a low computational cost. Secondly,
the performance of ex-kNN is compared with existing packages er-boost and ex-svm for computing
expectiles that are based on nine real life examples. Depending on the nature of data, the ex-kNN
showed two to 10 times better performance than er-boost and comparable performance with ex-svm
regarding test error. Computationally, the ex-kNN is found two to five times faster than ex-svm and
much faster than er-boost, particularly, in the case of high dimensional data.

Keywords: asymmetric least squares loss function; k-nearest neighbours approach; expectiles; ma-
chine learning; high dimensional data

1. Introduction

Given independent data Dn := ((x1, y1), . . . , (xn, yn)) that were drawn from unknown
probability distribution P on X×Y, where X ⊂ Rd and Y ⊂ R, the symmetric loss functions,
such as least absolute deviation loss or least squares loss lead to study the center of the
conditional distribution P(Y|X = x) by estimating the conditional median med(Y|X = x)
or the conditional mean E(Y|X = x), respectively. To investigate P(·|x) beyond the center,
one well-known approach is computing quantiles that were proposed by Koenker and
Bassett Jr. [1]. If P(·|x) has strictly positive Lebesgue density, the conditional τ-quantile qτ ,
τ ∈ (0, 1) of Y given x ∈ X is the solution of

P(Y ≤ qτ |X = x) = τ .

Another approach is computing expectiles proposed by Newey and Powell [2] and
it has gained considerable attention recently. Assume that Q := P(Y|x) such that |Q|1 :=∫

Y y dQ(y) < ∞, then the conditional τ-expectile µτ for each τ ∈ (0, 1) is the unique solution of

τ
∫ ∞

µτ

(y− µτ) dQ(y) = (1− τ)
∫ µτ

−∞
(µτ − y) dQ(y) .
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It is well-known that quantiles or expectiles can be computed algorithmically, see, for
example, Efron [3] and Abdous and Remillard [4]. To be more precise, for all t ∈ R and a
fixed τ ∈ (0, 1), one needs to solve the optimization problem

ητ := arg min
t∈R

Ey∼QLτ(y, t) , (1)

where Lτ is the asymmetric loss function, which, for p ≥ 1, is defined by

Lτ(y, t) =
ß

(1− τ)|y− t|p , if y < t ,
τ|y− t|p , if y > t .

(2)

For p = 1, we reach the asymmetric least absolute deviation (ALAD) loss function
from (2) and, consequently, conditional quantiles qτ = ητ from (1). Analogously, for p = 2,
Lτ from (2) is the asymmetric least squares (ALS) loss and, thus, (1) produces conditional
expectiles µτ = ητ .

In general, for fixed τ, expectiles do not coincide with quantiles. The decision of
computing either expectiles or quantiles depends on the applications at hand. For example,
if one is interested to compute the threshold below which τ-fraction of observations lies,
then τ-quantile is the right choice. On the other hand, to compute the thresholds, such
that the ratio of gain (average deviations above threshold) and loss (average deviations
below threshold) is equal to k where k := 1−τ

τ , then τ-expectile is the right choice. Broadly
speaking, quantiles are the tail probabilities, while expectiles are considered tail expec-
tations. This distinction of expectiles from quantiles made expectiles applicable in the
fields of, for example, demography [5], education [6], and extensively in finance (see, e.g.,
Wang et al. [7] and Kim and Lee [8]). In fact, expectiles are the only risk measures that
satisfy the well-known properties of coherence and elicitability (see, e.g., Bellini et al. [9]),
and they are are proved to be better alternative to quantile-based value-at-risk (VaR). Fur-
thermore, one can immediately realized the well-known performance measure in portfolio
management known as gain-loss ratio or Ω-ratio by τ-expectile for any τ ∈ (0, 1), see Keating
and Shadwick [10] for more details.

Different semiparametric and non-parametric approaches have been proposed in the
literature for estimating expectiles. For example, Schnabel and Eilers [11] proposed an
algorithm using P-splines, which is found to be difficult to implement on the problems
involving multiple predictors. Another algorithm that is based on gradient boosting is pro-
posed by [12] and Yang and Zou [13]. It is observed by Farooq and Steinwart [14] through
experiments that boosting-based algorithm becomes computationally expensive when the
dimensions of input space increases. Recently, Farooq and Steinwart [14] developed an
SVM-like solver while considering sequential minimal optimization. Although the solver
is found to be efficient when compared with an R-package er-boost developed by Yang and
Zou [13], but SVM-based solver is found time-sensitive to the training set size.

It is important to note that the aforementioned algorithms are required to select an ap-
propriate nonlinear function. To estimate conditional expectiles directly, Yao and Tong [15]
used the kernelized iteratively reweighted approach, where kernel is used to assign higher
weights to the points that are closer to the query point. However, choosing the right kernel
for a problem at hand is tricky. Moreover, this method leads to the curse of dimensionality
issue. Another simple, yet very popular, approach for estimating conditional quantities is
the k-nearest neighbours that has competed with the advanced complex machine learning
approaches when it comes to dealing with complex problems. Since the introduction of
kNN in 1967, it has been applied in many applications regarding classification, regression,
and missing value imputation, such as pattern recognition, economic forecasting, data
compression, outlier detection, and genetics, etc., see [16]. One key advantage of the kNN
approach is that it does not require a smoothness assumption of functions, which is, in
general, necessary in advanced techniques of classification and regression. With these
advantages, we use kNN together with the ALS loss function to compute expectiles and
named the algorithm ex-kNN. We then compare the ex-kNN with and R-package, called
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er-boost proposed by Yang and Zou [13], and show, numerically, that ex-kNN not only
better performs in terms of accuracy and computational cost, but is also less sensitive to
the dimensions of input space as compared to er-boost. In addition, we show that the
performance of ex-kNN is comparable with an SVM-like solver ex-svm proposed by [14].
Moreover, ex-kNN is found to be less sensitive to the training set size as compared to ex-svm.

This paper is organized, as follows: Section 2 gives a brief overview of the kNN
approach in the context of computing expectiles. This also includes a concise introduction
of different distance measures (Section 2.1) and the procedure of choosing the best value
for k (Section 2.2)—two aspects of kNN that greatly influence its performance. Section 3
covers the experiments while considering nine real life datasets in order to evaluate the
effect of various distance measures on the performance of ex-kNN as well as comparing the
results with existing packages for computing expectiles, like er-boost and ex-svm. Section 4
provides the concluding remarks.

2. K-Nearest Neighbours Expectile Regression

The kNN approach to computing expectiles is explained in this section. Because the per-
formance of kNN depends on the selection of suitable distance measures and the best value
of k-neighbours, a detailed discussion on these two aspects is given in Sections 2.1 and 2.2,
respectively. To this end, let xq ∈ X be a query point and R := {x1, . . . , xr} ∈ X be a set of
reference points. Subsequently, the kNN approach searches the k nearest neighbours for
query point xq in the reference set R based on a specified distance measure, and then uses the
set {y1, . . . , yk} that corresponds to the k nearest neighbours for classification or regression.

Once the set {y1, . . . , yk} corresponding to k-nearest neighbours is achieved, expectiles
can be computed by solving the empirical version of (1), which is, for p = 2, we solve the
optimization problem

µ̂τ := arg min
t∈R

k

∑
i=1

Lτ(yi, ti) . (3)

Because the loss function used in (3) is quadratic in nature, the problem (3) can be
solved by using iterative reweighted least squares (IRLS) algorithm. To be more precise,
we assume an initial estimate of the expectile eτ and generate a sequence of weights τ
(when yi < eτ) and 1− τ (when yi ≥ eτ) for all i = 1, 2, . . . , k. Subsequently, we update the
estimate of eτ by

eτ :=
(1− τ)

Ä
∑k

i=1 yi|y < eτ

ä
+ τ
Ä

∑k
i=1 yi|y ≥ eτ

ä
∑k

i=1(1− τ)|y < eτ + ∑k
i=1 τ|y < eτ

. (4)

and, hence, the corresponding weights, repeatedly, until convergence is achieved. Note
that one may initialize eτ by the average value of {y1, . . . , yk}. Following [11], Procedure 1
presents the pseudo code for computing expectiles using IRLS.

Procedure 1 Computing Expectiles

Input: response variable y, τ ∈ (0, 1), stopping criteria T ← T0

Initialize: e∗τ ← 1
k ∑k

i=1 yi, g← g0
while (g < T) do

w← {(1− τ)|yi < e∗τ} ∪ {τ|yi ≥ e∗τ} for all i = 1 = 1, 2, . . . , k
eτ ← 1

∑k
i=1 wi

∑k
i=1 wi yi

g← |eτ − e∗τ |
e∗τ ← eτ

end while
return e∗τ

Here, g is the margin of error achieved in an iteration and T is the stopping criterion.
Fast convergence can be achieved by making good choice of T and initialization of e∗τ .
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Moreover, in the case when τ = 0 or τ = 1, the τ-expectile can be considered to be the
minimum or maximum value of the set {y1, . . . , yk}, respectively.

2.1. Distance Measures

As mentioned above, one of the aspects that influences the performance of kNN
algorithm is the distance measure that is used to identify the closest neighbours in the
training data. The Euclidean is a commonly used distance measure while implementing
kNN. However, to our knowledge, there is no study indicating that it is the best suitable
choice with kNN in all cases. Therefore, several studies have been dedicated to exploring
the suitable distance measure with kNN for the given problem at hand. For instance, Mulak
and Talhar [17] evaluated the performance of kNN with four distance measures on the KDD
data set and found that the Manhattan distance measure is the best in terms of classification
accuracy. Lopes and Ribeiro [18] investigated the impact of five distance measures, such as
Euclidean, Manhattan, Canberra, Chebychev, and Minkowsky, for various small datasets
and found that Euclidean and Manhattan perform better for most of the datasets. Extending
the investigation, Kittipong et al. [19] investigated the performance of kNN with eleven
distance measures and determined that Manhattan, Minkowsky, and Chebychev lead
to better performance. Analogously, Todeschini et al. [20] considered eighteen distance
measures and sorted out the best five distance measures leading to better performance.

A more detailed investigation in this regard has been done by [21], where they have
considered 54 different distance measures from seven families of distances and shown that
no single distance metric can be considered to be good enough for all types of datasets. In
other words, the choice of the distance measures with kNN depends on many factors, such
as nature of input variables, number of dimensions, and size of datasets. This raises the
need of also considering different distance measures in our study for computing expectiles
using kNN and to identify the one that leads to the best performance in our case for a
specified dataset. For this purpose, we consider a set of distance measures that have been
found to be the best in the aforementioned studies for various datasets. This set includes the
Euclidean distance, Manhattan distance, Chebychev distance, Canberra distance, Soergel
distance, Lorentzian distance, Cosine distance, Contracted JT distance, Clark distance
Squared Chi-Squared distance, Average (L1, L∞) distance, Divergence distance, Hassanat
distance, and Whittaker’s Index association. A brief description of these distance measures
is given in the following. We refer to [21] for more details on these and other lists of distance
measures. To this end, we assume that xi = {xi1, . . . , xip} and xj = {xj1, . . . , xjp} are the
p-dimensional ith and jth data points in Xp.

• Euclidean Distance (ED) is also called L2 norm or Ruler distance and defined by

dE(xi, xj) :=

Ã
p

∑
l=1

(xil − xjl)2 . (5)

• Manhattan Distance (MD) is also known as L1 distance, and defined as the sum of
absolute difference of elements of xi and xj for i = j = 1, 2, . . . , p, which is,

dMD(xi, xj) :=
p

∑
l=1
|xil − xjl | . (6)

• Chebychev Distance (CbD) is the maximum value distance and specified by

dCbD(xi, xj) := max
l
|xil − xjl |. (7)

• Canberra Distance (CD) is a weighted version of Manhattan distance measure and
defined by
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dCD(xi, xj) :=
p

∑
l=1

|xil − xjl |
|xil |+ |xjl |

. (8)

Note that (8) is sensitive to small changes when both xi and xj are close to zero.
• Soergel Distance (SoD) is widely used for calculating the evolutionary distance and

obeying all four properties of a valid distance measure. It is listed by

dSoD(xi, xj) :=
∑

p
l=1|xil − xjl |

∑
p
l=1(xil + xjl)

. (9)

• Lorentzain Distance (LD) is defined as a natural log of absolute distance between vector
xi and xj, that is

dLD(xi, xj) :=
p

∑
l=1

ln(1 + |xil − xjl |) , (10)

where one is added to avoid the log of zero and to ensure non-negative property of a
distance metric.

• Cosine Distance is derived from a cosine similarity that measures the angle between
two vectors. It is specified by

dCosD(xi, xj) := 1−
∑

p
l=1 xil yjl√

∑
p
l=1 x2

il ∑
p
l=1 x2

jl

. (11)

• Jaccard Distance (JacD) measures dissimilarity between two vectors. It is defined by

dJacD(xi, xj) =
∑

p
l=1(xil − xjl)2

∑
p
l=1 x2

il + ∑
p
l=1 x2

jl −∑
p
l=1 xil xjl

. (12)

• Clark Distance is also called the coefficient of divergence. It is the square root of half of
divergence distance. It is defined by

dDivD(xi, xj) :=

Ã
p

∑
l=1

(xil − xjl)2

(xil + xjl)2 . (13)

• Squared Chi-Squared Distance belongs to the family of L2 and it is defined by

dSCSD(xi, xj) :=
p

∑
l=1

(xil − xjl)2

|xil + xjl |
. (14)

• Average (L1, L∞) Distance is the average of Manhattan distance and Chebyshev distance.
It is defined by

dAvgD(xi, xj) :=
∑

p
l=1|xil − xjl |+ max|xil − xjl |

2
. (15)

• Divergence Distance is defined by

dClaD(xi, xj) := 2
p

∑
l=1

(xil − xjl)2

(xil + xjl)2 . (16)

• Hassanat Distance (HasD) is defined by

dHas(xi, xj) :=
p

∑
l=1

D(xil , xjl) , (17)
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where for l = 1, 2, . . . , p

D(xil , xjl) :=


1−

1−min(xil , xjl)
max(xil , xjl)

, if min(xil , xjl) ≥ 0 ,

1−
1−min(xil , xjl) + |min(xil , xjl)|

max(xil , xjl) + |min(xil , xjl)|
, if min(xil , xjl) < 0 .

It is important to note that (17) is invariant to different scale, noise, and outlier, and it
is always bounded by [0, 1[. Contrary to other distances measures, HasD(. , .) shows
high similarity between points xi and xj when it approaches zero where as it shows
high dissimilarity when it approaches one. Moreover, it can only achieve limiting
value one if max(xil , xjl)→ +∞ or min(xil , xjl)→ −∞.

• Whittaker’s Index of Association Distance

dWIAD(xi, xj) :=
1
2

p

∑
l=1
| xil

∑
p
l=1 xil

−
xjl

∑
p
l=1 xjl

|. (18)

2.2. Selecting Best k

The selection of an appropriate value for k plays a key role in determining the per-
formance of kNN. A lot of work has been done so far in the context of classification,
regression, and missing data imputation in order to deal with this issue. For example,
Lall and Sharma [22] suggested choosing the fixed optimal k =

√
n for training a dataset

when the sample size n > 100. However, this approach has been criticised due to lack of
theoretical guarantee. Many more advanced approaches to determine k-value have been
proposed. For example, the kTree method is used to learn different k-value for different
test sample [23], sparse-based kNN method [24], and using reconstruction framework [25].
For more details, we refer the readers to [23], and the references therein.

The cross-validation is one of the approaches that has gained popularity in machine
learning applications to tune the hyperparameters and that has also been considered
in kNN. Recall that the cross-validation splits the data into two folds, where one fold
is used to train the model by learning suitable values for the hyperparameters and the
other fold is used to validate the model. The m-fold cross-validation method extends this
approach by randomly dividing data into m equally (or nearly equally) folds. In other
words, the process of cross-validation is repeated m times, such that in the each iteration
a different fold is held-out for model validation and the remaining m-1 folds are used to
learn the hyperparameters.

Procedure 2 Computing Best k

Input: τ ∈ (0, 1), kmax, data
split data into m-folds
for i = 1 to kmax do

for j = 1 to m do
Obtain k = i neighbours against each query point of j-th fold using distance measure
d(·, ·)
Compute expectiles from k = i neighbours using Procedure 1
Compute error for j-th fold using Lτ

end for
For each k = i choose minimum error from all folds

end for
Choose k with minimum cross-validation error
return Best k

Note that the algorithms, such as er-boost and ex-svm, use cross-validation approach
to tune the hyperparameters. We consider the same approach in this study to select the
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best value of k, despite the existence of advanced strategies so that a fair comparison of
ex-kNN with these algorithms can be made in terms of training time. Procedure 2 provides
the pseudo code of selecting best k value by cross-validation.

2.3. The ex-kNN Algorithm

After considering a distance measures from the list that is given in Section 2.1, the best
k-value for the training part of the data is attained using cross-validation approach follow-
ing Procedure 2. The selected best k-value is used in testing part of data to compute the
test error. The whole procedure of implementing the ex-kNN is described in the following
Algorithm 1.

Algorithm 1 Compute test error

Training Phase:
Input: τ ∈ (0, 1), kmax, train data
split data into m-folds
Compute best k-value using Procedure 2

Testing Phase:
Input: τ ∈ (0, 1), best k, test data
Compute expectiles using Procedure 1
Compute test error using Lτ

3. Experimental Results

In this section, we conduct experiments using different datasets to compare the
performance of ex-kNN with the existing algorithms of computing expectiles, like er-boost
and ex-svm, in terms of training time and test error. All of the experiments have been
performed on INTEL CORE i3-4010U (1.70 GHz) 4 GB RAM system under 64 bit version of
WINDOWS 8. The run time during experiments is computed by using single core, whereas
the running of other processes were minimized.

Recall that [14] have considered nine datasets in their study to compare the perfor-
mance of ex-svm with er-boost. To make a fair comparison of ex-kNN with ex-svm and
er-boost, we have downloaded the same datasets following the details that are given by [14].
That is, the data sets CONCRETE-COMP, UPDRS-MOTOR, CYCLE-PP, AIRFOIL-NOISE, and
HOUR have been downloaded from UCI repository. Three data sets—NC-CRIME, HEAD-
CIRCUM, and CAL-HOUSING—were extracted from R packages Ecdat, AGD and StatLib
repository, respectively. Finally, one data set MUNICH-RENT was downloaded from the
data archive of Institute of Statistics, Ludwig-Maximilians-University. These datasets were
scaled componentwise, such that all of the variables, including the response variable, lie in
[−1, 1]d+1, where d denotes the dimension of the data. Table 1 describes the characteristics
of the considered data sets. All of the datasets were randomly divided into training and
testing samples comprising 70% and 30%, respectively. The training sample is further di-
vided into m-folds with randomly generated folds to implement cross-validation approach
for determining the best k-value.

Table 1. Characteristics of data sets together with the training sizes and the test sizes that refer to the splits used in the run
time experiments.

Data Sample Sizes Training Size Test Size Categorical Features Continuous Total

NC-CRIME 630 441 189 3 16 19
CONCRETE-COMP 1030 721 309 0 8 8
AIRFOIL-NOISE 1503 1052 451 1 4 5
MUNICH-RENT 2053 1437 616 8 4 12
UPDRS-MOTOR 5875 4112 1763 1 18 19
HEAD-CIRCUM 7020 4914 2106 0 4 5
CYCLE-PP 9568 6697 2871 0 5 5
HOUR 17,379 12,165 5214 7 5 12
CAL-HOUSING 20,639 14,447 6192 0 8 8
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It is important to note that the algorithms er-boost and ex-svm are implemented in
C++ to gain the computational advantages. For fair comparison regarding computational
cost, we have implemented ex-kNN in the R 3.6.1 package using the libraries Rcpp [26] and
ArmadilloRcpp [27]. The library Rcpp provides seamless integration of R and C++, whereas
ArmadilloRcpp is the templated C++ linear algebra library. The use of these libraries makes
the implementation of ex-kNN algorithm close to the implementation of er-boost and
ex-svm algorithms.

Firstly, we evaluate the effect of different distance measures that were considered
in Section 2.1 on the performance of ex-kNN for computing expectiles. Note that the
performance is measured in terms of test error and computational time, and the distance
measure that leads to the minimum on these two evaluation factors is considered to be
the best distance measure. In this context, for τ = 0.25, 0.50, 0.75, the test error and
computational time of ex-kNN is computed and presented in Tables A1–A6 in Appendix A.
By giving rank to the test error and computation time of ex-kNN for each distance measure
in each dataset, we observe that there is no single distance measure that performs well on all
data sets in terms of test error and computational cost. For instance, by looking in Table A1
of test error for τ = 0.25, we see that, for the dataset HOUR, the Euclidean distance provides
the minimum test error, whereas the same distance measure behaves entirely opposite
for dataset MUNICH-RENT. This leads us to conclude that the distance measure that plays
vital role on the performance of ex-kNN depends on the characteristics of datasets. This
observation is also noted by [21] in their investigation. Therefore, one need to consider the
nature of datasets while choosing a distance measure for kNN-type methods.

In order to determine the overall performance of a distance measure on all datasets,
we have computed the average of ranks assigned to individual distance measures on
different datasets, see Tables A1–A6 in Appendix A. Clearly, the distance measures Canberra,
Lorentzian, and Soergel can be labelled as the best three distance measures when the goal
is to achieve the high accuracy of the results. However, on the other hand, when the
objective is to attain a low computational cost of ex-kNN, the Euclidean, Canberra, and
Average (L1, L∞) distance measures are ranked as the top three. Furthermore, these best
three distance measures regarding test error and computational cost does not hold the said
order for τ = 0.25, 0.5 and 0.75. This indicates that the distance measure for the same data set
behaves differently for different τ-level. To be more elaborative, we see, in Tables A2 and A3,
that the Canberra distance measure that holds top position in providing minimum distance
measure in most of the datasets when computing expectiles for τ = 0.50, 0.75 attains third
position for τ = 0.25. Similar is the situation with other distance measures. It is interesting
to note from the results of our experiments based on the considered datasets that no single
distance measure can lead the ex-kNN towards achieving both goals of high accuracy
and low computational cost at the same time. In other words, the choice of a distance
measures with ex-kNN not only depends on the data set, but also the objective. It is also
important to note that the Euclidean distance that has been considered more often with
kNN in the literature shows poor performance in general when the goal is to achieve highly
accurate predictions.

Finally, we compare the performance of ex-kNN with the existing packages of com-
puting expectiles, like er-boost and ex-svm, with respect to the test error and computational
cost. To perform experiments by er-boost, we set the default value of boosting steps
(M = 10) and use 5-fold cross-validation to choose the best value of interaction (L) between
variables. For more details regarding experimental setting with er-boost, we refer the
interested readers to [28]. To perform the ex-svm, which is the part of package liquidSVM,
we downloaded the terminal version of liquidSVM for Windows 64 bit. The default setting
of 10 by 10 grid search of hyperparameters together with 5-fold cross validation is used
to tune these hyperparameters. For more details on ex-svm and liquidSVM, we refer the
readers to [14,29], respectively. Finally, to compute the test error and computation cost for
ex-kNN we consider the distance measures that attain the top average rank for τ-expectile,
which is, Canberra distance for test error and Euclidean distance for computational time.
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Furthermore, we also use five-fold cross-validation to determine the best k-value. Based on
the aforementioned settings, the results for test error and computational cost of ex-kNN,
er-boost, and ex-svm for different datasets are presented in Tables 2 and 3. By comparing
ex-kNN with er-boost regarding test error at τ = 0.25, 0.50, and 0.75, we see that ex-kNN,
depending on the nature of the data, shows between two to eight times better performance,
see Figure 1. On the other hand, the performance of ex-kNN in terms of test error is
comparable with ex-svm on some examples. Regarding computational cost, similar to the
findings of [14] for ex-svm, we observe that ex-kNN is also more sensitive to the training set
size and less sensitive to data dimensions. However, it is interesting to note that ex-kNN,
based on the datasets, is up to five times more efficient on some examples than ex-svm.
Moreover, ex-kNN is found to be considerably time efficient on the datasets, particularly
when the data sets are high dimensional, as we see in Figure 1.
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Figure 1. Test error ratio of er-boost and ex-svm to ex-kNN(top) and computational time ratio of er-boost and ex-svm to
ex-kNN (bottom). The graphs comprise of τ = 0.25 (left), τ = 0.50 (middle) and τ = 0.75 (right).

Table 2. Test error obtained by performing ex-kNN, er-boost, and ex-svm while computing expectiles for τ = 0.25, 0.50, 0.75.

Data Set
τ = 0.25 τ = 0.50 τ = 0.75

ex-kNN er-boost ex-svm ex-kNN er-boost ex-svm ex-kNN er-boost ex-svm

NC-CRIME 0.0029 0.0083 0.0057 0.0040 0.0120 0.0061 0.0047 0.0120 0.0050
CONCRETE-COMP 0.0250 0.0397 0.0097 0.0389 0.0490 0.0127 0.0522 0.0452 0.0100
AIRFOIL-NOISE 0.0130 0.0401 0.0079 0.0149 0.047 0.0107 0.0169 0.0462 0.0080
MUNICH-RENT 0.0131 0.0137 0.0009 0.0172 0.0158 0.0012 0.0202 0.0135 0.0010
UPDRS-MOTO 0.0229 0.0538 0.0249 0.0474 0.0640 0.0291 0.0474 0.0545 0.026
HEAD-CIRCUM 0.0039 0.0246 0.0034 0.00500 0.0254 0.0040 0.0060 0.0193 0.0030
CYCLE-PP 0.0046 0.0354 0.0048 0.0062 0.0450 0.0053 0.0076 0.0389 0.0040
HOUR 0.0155 0.0289 0.0116 0.0252 0.0399 0.0152 0.0344 0.0383 0.0150
CAL-HOUSING 0.0231 0.0549 0.0191 0.0375 0.0761 0.0259 0.0552 0.0751 0.0260
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Table 3. Train time (in seconds) obtained by performing ex-kNN, er-boost and ex-svm while computing expectiles for
τ = 0.25, 0.50, 0.75.

Data Set
τ = 0.25 τ = 0.50 τ = 0.75

ex-kNN er-boost ex-svm ex-kNN er-boost ex-svm ex-kNN er-boost ex-svm

NC-CRIME 0.545 29.790 0.900 0.571 29.819 0.830 0.617 29.730 0.820
CONCRETE-COMP 0.584 2.924 2.740 0.572 3.032 2.740 0.575 2.867 2.410
AIRFOIL-NOISE 0.132 1.091 5.060 0.893 1.105 4.510 1.130 1.072 4.510
MUNICH-RENT 1.619 14.760 3.82 1.619 15.026 4.070 1.872 15.604 3.380
UPDRS-MOTO 10.524 163.30 6.91 10.495 167.24 59.52 11.516 163.63 56.49
HEAD-CIRCUM 9.064 2.512 44.320 8.908 2.664 39.43 8.821 2.819 41.20
CYCLE-PP 16.163 3.833 88.670 15.961 3.728 77.06 16.018 3.680 80.250
HOUR 65.435 126.30 386.160 63.252 121.820 343.23 64.775 120.270 303.550
CAL-HOUSING 75.757 54.780 381.12 76.221 57.433 342.99 74.301 53.620 340.69

4. Conclusions

In this study, an algorithm, called ex-kNN, is proposed by combining the idea of the
k-nearest neighbours approach and the asymmetric least squares loss function in order to
compute expectiles. Because the performance of ex-kNN depends on the distance measure
used to determine the neighbourhood of the query point, various distance measures are
considered and their impact is evaluated in terms of test error and computational time.
It is observed that there exists no single distance measures that can be associated with
ex-kNN to achieve high performance for different kinds of datasets. To be more precise,
it is found from the list of considered distance measures that Canberra, Lorentzian, and
Soergel lead to minimum test error, whereas Euclidean, Canberra, and Average of (L1, L∞)
provide a low computational cost of ex-kNN. Furthermore, using nine real-world datasets,
the performance of ex-kNN is compared with existing packages for computing expectiles,
namely er-boost and ex-svm. The results showed that the ex-kNN, depending on the nature
of data, performs between two to eight times better than ex-kNN in terms of test error and it
showed comparable performance with ex-svm on some datasets. Regarding computational
cost, it is found that ex-svm is up to five times more efficient than ex-svmm and much more
efficient than er-boost.

To make a fair comparison of ex-kNN with existing packages, this study is limited to
using the cross-validation approach with ex-kNN to select the best value of k-neighbours.
However, more advanced and efficient approaches for this purpose can be considered with
ex-kNN for a further reduction of computational cost. Moreover, some other loss functions
to compute expectiles can be investigated, with the results compared to the one considered
in this study.
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Appendix A. Impact of Different Distance Measures on Test Error and Computational Cost of ex-kNN

Table A1. Test error of ex-kNN for τ = 0.25 under different distance measures for different datasets. The result in (·) indicates the rank of a distance measure for a specific dataset.

Distance
Measure

Data Set Average
RankNC-CRIME CONCRETE-COMP AIRFOIL-NOISE MUNICH-RENT UPDRS-MOTOR HEAD-CIRCUM CYCLE-PP HOUR CAL-HOUSING

Euclidean 0.0047
(4)

0.0246
(3)

0.0125
(2)

0.0142
(8)

0.0277
(6)

0.0039
(2)

0.0047
(3)

0.0150
(1)

0.0237
(5)

3.78

Manhattan 0.0036
(3)

0.0257
(6)

0.0130
(5)

0.0135
(6)

0.0245
(4)

0.0039
(2)

0.0045
(1)

0.0157
(6)

0.0229
(1)

3.78

Chebychev 0.0066
(7)

0.0299
(8)

0.0121
(1)

0.0152
(9)

0.0347
(10)

0.0039
(2)

0.0050
(5)

0.0165
(7)

0.0250
(8)

6.33

Canberra 0.0034
(2)

0.0250
(6)

0.0130
(5)

0.0131
(4)

0.0229
(1)

0.0039
(2)

0.0046
(2)

0.0155
(4)

0.0231
(3)

3.22

Soergel 0.0034
(2)

0.0250
(6)

0.0130
(5)

0.0131
(4)

0.0229
(2)

0.0039
(2)

0.0046
(2)

0.0155
(4)

0.0231
(3)

3.33

Lorentzian 0.0029
(1)

0.0270
(7)

0.0129
(4)

0.0132
(5)

0.0236
(3)

0.0038
(1)

0.0045
(1)

0.0155
(4)

0.0230
(2)

3.11

Cosine 0.0060
(6)

0.0249
(5)

0.0175
(6)

0.0114
(1)

0.0323
(8)

0.0042
(3)

0.0069
(6)

0.0152
(3)

0.0260
(9)

5.22

Contracted JT 0.0059
(5)

0.0248
(4)

0.0121
(1)

0.0140
(7)

0.0287
(7)

0.0039
(2)

0.0048
(4)

0.0150
(1)

0.0237
(5)

4

Clark 0.0746
(8)

0.0396
(10)

0.0223
(9)

0.0352
(11)

0.0981
(12)

0.0038
(1)

0.0048
(4)

0.0540
(9)

0.0248
(7)

7.89

Squared
Chi-squared

0.0692
(7)

0.0366
(9)

0.0215
(8)

0.0352
(11)

0.1037
(13)

0.0038
(1)

0.0047
(3)

0.0477
(8)

0.0241
(6)

7.33

Average (L1, L∞) 0.0036
(3)

0.0233
(2)

0.0128
(3)

0.0129
(2)

0.0257
(5)

0.0039
(2)

0.0047
(3)

0.0151
(2)

0.0235
(4)

2.88

Divergence 0.0746
(8)

0.0366
(9)

0.0223
(9)

0.0352
(11)

0.0981
(12)

0.0038
(1)

0.0048
(4)

0.0540
(9)

0.0248
(7)

7.78

Hassanat 0.0155
(9)

0.0667
(11)

0.0592
(10)

0.0349
(10)

0.0896
(11)

0.0563
(4)

0.0772
(8)

0.0604
(10)

0.0864
(11)

9.33

Whittaker’s Index
association

0.0036
(3)

0.0210
(1)

0.0178
(7)

0.0130
(3)

0.0333
(9)

0.0042
(3)

0.0070
(7)

0.0156
(5)

0.0263
(10)

5.33
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Table A2. Test error of ex-kNN for τ = 050 for nine data sets of different sizes under eighteen distance measures. The result in (·) indicates the rank of a distance measure for a
specific dataset.

Distance
Measure

Data Set Average
RankNC-CRIME CONCRETE-COMP AIRFOIL-NOISE MUNICH-RENT UPDRS-MOTOR HEAD-CIRCUM CYCLE-PP HOUR CAL-HOUSING

Euclidean 0.0063
(6)

0.0350
(4)

0.0145
(3)

0.0177
(7)

0.0535
(5)

0.0050
(2)

0.0064
(3)

0.0236
(1)

0.0385
(5)

3.89

Manhattan 0.0041
(3)

0.0405
(8)

0.0145
(3)

0.0174
(5)

0.0470
(1)

0.0050
(2)

0.0062
(1)

0.0254
(7)

0.0378
(2)

3.56

Chebychev 0.0085
(8)

0.0398
(7)

0.0142
(1)

0.0192
(8)

0.0624
(6)

0.0051
(3)

0.0067
(5)

0.0256
(8)

0.0402
(6)

5.78

Canberra 0.0040
(2)

0.0389
(6)

0.0149
(5)

0.0172
(4)

0.0474
(2)

0.0050
(2)

0.0062
(1)

0.0252
(6)

0.0375
(1)

3.22

Soergel 0.0040
(2)

0.0389
(6)

0.0149
(5)

0.0172
(4)

0.0474
(2)

0.0050
(2)

0.0062
(1)

0.0252
(6)

0.0375
(1)

3.22

Lorentzian 0.0037
(1)

0.0419
(9)

0.0143
(3)

0.0169
(3)

0.0470
(1)

0.0050
(2)

0.0062
(1)

0.0256
(8)

0.0378
(2)

3.33

Cosine 0.0067
(7)

0.0343
(2)

0.0219
(7)

0.0156
(1)

0.0663
(7)

0.0054
(4)

0.0100
(7)

0.0246
(4)

0.0429
(8)

4.78

Contracted JT 0.0067
(7)

0.0345
(3)

0.0141
(2)

0.0175
(6)

0.0527
(3)

0.0050
(2)

0.0066
(4)

0.0237
(2)

0.0382
(4)

3.67

Clark 0.0550
(11)

0.0435
(10)

0.0304
(9)

0.0560
(10)

0.1505
(10)

0.0049
(1)

0.0063
(2)

0.0716
(11)

0.0407
(7)

7.89

Squared
Chi-squared

0.0506
(10)

0.0459
(11)

0.0231
(8)

0.0560
(10)

0.1268
(11)

0.0050
(2)

0.0064
(3)

0.0685
(9)

0.0392
(5)

7.67

Average (L1, L∞) 0.0046
(5)

0.0367
(5)

0.0146
(4)

0.0175
(6)

0.0533
(4)

0.0050
(2)

0.0064
(3)

0.0245
(3)

0.0379
(3)

3.88

Divergence 0.0550
(11)

0.0435
(10)

0.0304
(9)

0.0560
(10)

0.1505
(10)

0.0049
(1)

0.0063
(2)

0.0716
(11)

0.0407
(7)

7.89

Hassanat 0.0266
(9)

0.0963
(12)

0.0679
(10)

0.0558
(9)

0.0982
(9)

0.0582
(5)

0.1019
(7)

0.0701
(10)

0.1173
(11)

9.11

Whittaker’s Index
association

0.0042
(4)

0.0312
(1)

0.0214
(6)

0.0159
(2)

0.0678
(8)

0.0050
(2)

0.0099
(6)

0.0247
(5)

0.0435
(9)

4.78
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Table A3. Test error of ex-kNN for τ = 0.75 for nine data sets of different sizes under eighteen distance measures. The result in (·) indicates the rank of a distance measure for a
specific dataset.

Distance
Measure

Data Set Average
RankNC-CRIME CONCRETE-COMP AIRFOIL-NOISE MUNICH-RENT UPDRS-MOTOR HEAD-CIRCUM CYCLE-PP HOUR CAL-HOUSING

Euclidean 0.0073
(6)

0.0458
(3)

0.0165
(5)

0.0213
(6)

0.0535
(5)

0.0062
(3)

0.0078
(4)

0.0323
(1)

0.0521
(3)

3.67

Manhattan 0.0050
(3)

0.0547
(9)

0.0160
(2)

0.0211
(5)

0.0470
(1)

0.0061
(2)

0.0076
(2)

0.0349
(7)

0.0502
(1)

3.44

Chebychev 0.0103
(8)

0.0498
(5)

0.0164
(4)

0.0245
(8)

0.0624
(6)

0.0062
(3)

0.0081
(6)

0.0344
(5)

0.0552
(6)

5.67

Canberra 0.0047
(2)

0.0522
(7)

0.0169
(6)

0.0202
(3)

0.0474
(2)

0.0060
(1)

0.0076
(2)

0.0345
(6)

0.0502
(1)

3.33

Soergel 0.0047
(2)

0.0522
(7)

0.0169
(6)

0.0202
(3)

0.0474
(2)

0.0060
(1)

0.0076
(2)

0.0345
(6)

0.0502
(1)

3.33

Lorentzian 0.0045
(1)

0.0569
(11)

0.0156
(1)

0.0206
(4)

0.0470
(1)

0.0061
(2)

0.0075
(1)

0.0351
(8)

0.0502
(1)

3.33

Cosine 0.0072
(5)

0.0449
(2)

0.0263
(8)

0.0185
(1)

0.0633
(7)

0.0067
(5)

0.0129
(8)

0.0326
(3)

0.0591
(8)

5

Contracted JT 0.0075
(7)

0.0456
(10)

0.0162
(3)

0.0211
(5)

0.0527
(3)

0.0061
(2)

0.0079
(5)

0.0325
(2)

0.0524
(4)

4.56

Clark 0.0291
(9)

0.0518
(6)

0.0384
(10)

0.0803
(10)

0.1505
(9)

0.0060
(1)

0.0078
(4)

0.0804
(10)

0.0552
(6)

7.22

Squared
Chi-squared

0.0303
(10)

0.0544
(8)

0.0275
(9)

0.0803
(10)

0.1268
(10)

0.0061
(2)

0.0079
(5)

0.0792
(9)

0.0534
(5)

7.56

Average (L1, L∞) 0.0057
(4)

0.0487
(4)

0.0165
(5)

0.0220
(7)

0.0533
(4)

0.0062
(3)

0.0077
(3)

0.0335
(4)

0.0511
(2)

4.0

Divergence 0.0291
(9)

0.0518
(6)

0.0384
(10)

0.0803
(10)

0.1505
(9)

0.0060
(1)

0.0078
(4)

0.0804
(10)

0.0552
(6)

7.22

Hassanat 0.0376
(11)

0.1271
(12)

0.0630
(11)

0.0801
(9)

0.0982
(8)

0.0548
(6)

0.0127
(7)

0.1330
(11)

0.1554
(9)

9.33

Whittaker’s Index
association

0.0047
(2)

0.0415
(1)

0.0251
(7)

0.0188
(2)

0.0678
(7)

0.0066
(4)

0.0076
(2)

0.0335
(4)

0.0590
(7)

4
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Table A4. Computational time (in seconds) of ex-kNN for τ = 0.25 for different datasets under different distance measures. The result in (·) indicates the rank of a distance measure for a
specific dataset.

Distance
Measure

Data Set Average
RankNC-CRIME CONCRETE-COMP AIRFOIL-NOISE MUNICH-RENT UPDRS-MOTOR HEAD-CIRCUM CYCLE-PP HOUR CAL-HOUSING

Euclidean 0.5446
(2)

0.5844
(1)

0.1316
(1)

1.6198
(4)

10.524
(2)

9.0639
(7)

16.1634
(3)

65.4357
(9)

75.7579
(1)

3.33

Manhattan 0.5498
(3)

0.818
(12)

0.1045
(12)

1.8028
(6)

10.364
(1)

8.5893
(2)

18.51
(10)

63.3749
(4)

77.5216
(2)

5.78

Chebychev 0.6044
(9)

0.5906
(2)

0.9668
(7)

3.0618
(13)

13.593
(10)

8.9278
(6)

17.4414
(7)

63.6503
(5)

86.1188
(10)

7.67

Canberra 0.5899
(8)

0.5954
(3)

0.9402
(4)

1.8594
(8)

10.826
(3)

8.5108
(1)

16.5988
(4)

65.7512
(10)

80.164
(5)

5.11

Soergel 0.5227
(1)

0.6073
(4)

0.8939
(2)

1.8247
(7)

12.143
(8)

9.6888
(10)

17.7741
(8)

65.3165
(8)

83.2344
(8)

6.22

Lorentzian 0.7613
(14)

0.7697
(11)

1.2644
(14)

3.2461
(14)

26.761
(13)

13.4067
(14)

24.3586
(14)

149.57
(14)

156.521
(14)

13.56

Cosine 0.5604
(6)

0.6299
(5)

1.0400
(13)

1.946
(10)

11.805
(6)

10.1804
(12)

19.8549
(12)

78.3711
(11)

94.7818
(13)

9.78

Contracted JT 0.5682
(7)

0.6525
(9)

0.9802
(9)

1.8632
(9)

11.362
(4)

8.7091
(4)

16.7185
(5)

65.1808
(7)

84.1575
(9)

7.00

Clark 0.6907
(12)

0.6334
(6)

0.9655
(5)

1.5661
(3)

12.752
(9)

9.4176
(9)

17.2851
(6)

56.4671
(3)

80.421
(6)

6.33

Squared Chi-squared 0.554
(4)

0.6351
(7)

0.9660
(6)

1.4994
(1)

11.9517
(7)

8.7754
(5)

15.9783
(2)

47.3696
(2)

78.1152
(3)

4.67

Average 0.5543
(5)

0.607
(4)

0.9069
(3)

1.7472
(5)

11.6386
(5)

9.1459
(8)

15.9075
(1)

64.6276
(6)

82.6535
(7)

4.89

Divergence 0.608
(10)

0.6077
(4)

0.9719
(8)

1.5152
(2)

12.14
(8)

8.6737
(3)

18.1009
(9)

47.3471
(1)

78.7135
(4)

5.44

Hassanat 0.7566
(13)

0.6872
(10)

1.0079
(13)

2.2696
(12)

18.315
(12)

10.7503
(13)

21.5964
(13)

93.594
(13)

92.7772
(12)

12.33

Whittaker 0.6154
(11)

0.6385
(8)

1.0025
(9)

1.9555
(11)

14.668
(11)

10.1414
(11)

19.4346
(11)

81.7056
(12)

91.5862
(11)

10.56
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Table A5. Computational time (in seconds) of ex-kNN for τ = 0.50 for different datasets under different distance measures. The result in (·) indicates the rank of a distance measures for
specific dataset.

Distance
Measure

Data Set Average
RankNC-CRIME CONCRETE-COMP AIRFOIL-NOISE MUNICH-RENT UPDRS-MOTOR HEAD-CIRCUM CYCLE-PP HOUR CAL-HOUSING

Euclidean 0.5708
(2)

0.5709
(1)

0.8935
(2)

1.6198
(4)

10.495
(1)

8.9081
(5)

15.9607
(2)

63.2521
(5)

76.2212
(1)

2.6

Manhattan 0.6034
(6)

0.594
(2)

0.9196
(4)

1.8028
(6)

10.517
(2)

8.2911
(1)

17.2263
(9)

66.1123
(9)

77.8895
(2)

4.6

Chebychev 0.539
(1)

0.6171
(5)

1.1711
(10)

2.0618
(11)

14.732
(9)

9.3347
(8)

17.9897
(10)

61.1169
(4)

81.1524
(6)

7.1

Canberra 0.5395
(1)

0.5937
(2)

0.9097
(3)

1.8594
(8)

10.806
(3)

8.6402
(2)

16.628
(4)

65.9869
(8)

82.4209
(8)

4.3

Soergel 0.5878
(3)

0.596
(3)

0.9583
(5)

1.8247
(7)

11.584
(5)

8.9926
(6)

16.9919(8) 65.3066
(6)

81.9699
(7)

5.6

Lorentzian 0.75
(9)

0.7826
(10)

2.0282
(11)

3.2461
(13)

25.827
(12)

13.44
(14)

23.1625
(14)

148.494
(14)

156.957
(13)

12.2

Cosine 0.6181
(7)

0.6827
(8)

0.9902
(6)

1.946
(9)

11.799
(7)

10.179
(11)

19.1273
(12)

78.2216
(11)

97.3233
(12)

9.2

Contracted JT 0.6053
(5)

0.5958
(3)

0.9215
(4)

1.8632
(8)

11.209
(4)

8.7274
(4)

16.9739
(7)

65.8887
(7)

190.639
(14)

6.2

Clark 0.6513
(8)

0.6448
(6)

0.9245
(4)

1.5661
(3)

12.109
(8)

9.343
(9)

16.8576
(6)

56.6508
(3)

80.3316
(5)

5.8

Squared Chi-squared 0.8069
(10)

0.6165
(5)

0.9978
(7)

1.4994
(1)

11.734
(6)

9.5527
(10)

15.9735
(3)

51.4523
(2)

78.0933
(3)

5.2

Average 0.57
(2)

0.6041
(3)

0.8823
(1)

1.7472
(5)

11.5787
(5)

9.0538
(7)

15.846
(1)

66.4976
(10)

83.7506
(9)

4.8

Divergence 0.5989
(4)

0.6124
(4)

1.0063
(8)

1.5152
(2)

12.115
(8)

8.665
(3)

16.7336
(5)

47.2858
(1)

78.5157
(4)

4.3

Hassanat 0.6543
(8)

0.7225
(9)

1.0487
(9)

2.2696
(12)

18.6056
(11)

11.2559
(13)

19.8263
(13)

95.3304
(13)

92.7626
(11)

11.0

Whittaker 0.5744
(2)

0.6718
(7)

0.9935
(6)

1.9555
(10)

15.3884
(10)

10.4403
(12)

18.2015
(11)

87.7859
(12)

91.691
(10)

8.9
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Table A6. Computational time (in seconds) for ex-kNN for τ = 0.75 for different data sets under different distance measures. The result in (·) indicates the rank of a distance measure for a
specific dataset.

Distance
Measure

Data Set Average
RankNC-CRIME CONCRETE-COMP AIRFOIL-NOISE MUNICH-RENT UPDRS-MOTOR HEAD-CIRCUM CYCLE-PP HOUR CAL-HOUSING

Euclidean 0.6173
(9)

0.5747
(1)

1.1302
(12)

1.8723
(8)

11.5164
(4)

8.8205
(6)

16.0187
(2)

64.775
(6)

74.3069
(1)

5.4

Manhattan 0.5877
(7)

0.627
(6)

1.0535
(9)

1.7588
(5)

11.1217
(2)

8.2967
(1)

16.273
(6)

61.1129
(4)

77.543
(2)

4.7

Chebychev 0.6173
(9)

0.6042
(3)

0.9624
(5)

1.7797
(6)

12.2382
(8)

9.296
(9)

17.5824
(9)

67.123
(9)

82.936
(6)

7.1

Canberra 0.514
(1)

0.608
(4)

1.0633
(10)

1.905
(9)

10.8455
(1)

8.4855
(2)

16.9752
(8)

65.7854
(8)

79.529
(4)

5.2

Soergel 0.6495
(10)

0.605
(4)

0.891
(2)

2.1117
(12)

11.6266
(6)

8.7794
(5)

17.6685
(10)

65.14
(7)

83.0972
(7)

7.0

Lorentzian 0.7376
(11)

0.8223
(11)

1.2033
(13)

3.1173
(14)

25.8591
(14)

13.592
(14)

24.2913
(13)

147.046
(14)

158.0938
(14)

13.1

Cosine 0.5593
(4)

0.6235
(5)

1.1075
(11)

1.9934
(11)

12.3925
(9)

10.141
(12)

18.8673
(14)

76.3668
(11)

98.0471
(12)

9.9

Contracted JT 0.522
(2)

0.5938
(2)

0.9526
(4)

1.7922
(7)

11.2751
(3)

8.6923
(4)

17.2228
(4)

69.6091
(10)

127.1401
(13)

5.4

Clark 0.5612
(4)

0.6482
(7)

1.0328
(8)

1.562
(3)

12.7084
(11)

8.9228
(7)

16.664
(7)

60.9276
(3)

80.3319
(5)

6.1

Squared Chi-squared 0.5808
(6)

0.6243
(5)

1.0119
(7)

1.5108
(2)

11.7821
(7)

9.6469
(10)

16.0538
(3)

50.4478
(1)

88.5031
(9)

5.6

Average 0.5702
(5)

0.6105
(4)

0.8769
(1)

1.7392
(4)

11.5745
(5)

9.1333
(8)

16.0031
(1)

62.9529
(5)

88
(8)

4.6

Divergence 0.5354
(3)

0.6829
(9)

0.991
(6)

1.4968
(1)

12.6362
(10)

8.6422
(3)

16.2329
(5)

50.6745
(2)

78.5331
(3)

4.7

Hassanat 0.6535
(9)

0.7815
(10)

1.0523
(9)

2.2169
(13)

18.0316
(13)

11.0908
(13)

18.2871
(12)

89.8852
(13)

92.8332
(11)

11.4

Whittaker 0.5924
(8)

0.6597
(8)

0.9252
(3)

1.926
(10)

15.1091
(12)

9.9105
(11)

17.8684
(11)

83.5628
(12)

91.9307
(10)

9.4
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