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Abstract: We present a simple model of interaction of the Maxwell equations with a matter field
defined by the Klein–Gordon equation. A simple linear interaction and a nonlinear perurbation
produces solutions to the equations containing hylomorphic solitons, namely stable, solitary waves,
whose existence is related to the ratio energy/charge. These solitons, at low energy, behave as
poinwise charged particles in an electromagnetic field. The basic points are the following ones: (i) the
matter field is described by the Nonlinear Klein–Gordon equation with a suitable nonlinear term; (ii)
the interaction is not described by the equivariant derivative, but by a very simple coupling which
preseves the invariance under the Poincaré group; (iii) the existence of soliton can be proved using the
tecniques of nonlinear analysis and, in particular, the Mountain Pass Theorem; (iv) a suitable choice
of the parameters produces solitons with a prescribed electric charge and mass/energy; (v) thanks to
the point (ii), the dynamics of these solitons at low energies is the same of classical charged particles.

Keywords: Maxwell equations; nonlinear Klein-Gordon equation; solitons; Q-balls; variational
methods

MSC: 35C08; 35A15; 35Q61; 37K40; 78M30

1. Introduction

In classical mechanics, the coupling of the electromagnetic field with matter is given
by the following equation

d
dt

 mξ̇√
1−

∣∣ξ̇∣∣2
 = q

(
E + ξ̇ ×H

)
(1)

where m denotes the rest mass of a particle, ξ = ξ(t) is its position in space and ξ̇ is
the time derivative of ξ. Unfortunately, this equation is not consistent with the Maxwell
equations. One of the main reasons for this inconsistency comes from the fact that the
Maxwell equations are relativistic invariants, and hence the inertial mass of a charged
material point is infinite by the Maxwell equation, the electrostatic energy of a pointwise
material point is given by

E =
∫

E2dx =
∫ ∣∣∣∣∇ 1

|x|

∣∣∣∣2dx = +∞

Then, if you couple the Lorentz equation with the Maxwell equations, in order to
accelerate a material point (which produces a electric field), it would necessarily be an
infinite force since the inertial mass, by the Lorentz inariance of the equations, equals the
energy. If the material point is replaced by a sort of ball, other problems are present, such
as the self-interaction of the field produced by the particle and the difficulty of a relativistic
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description of a solid body. As far as I know, there is not a satisfactory description of the
dynamics of a microscopic charged “ball” in an e.m. field. With the advent of quantum
mechanics, this problem has lost its relevance and quantum models have been sought to
describe this interaction.

Here, we recall the formally simplest of them, since it has some relevance for this
paper. It is given by the interaction of the Klein–Gordon equation (which describes a
spinless boson field) with the e.m. field. In this case, the action functional is given by

AW :=
1
2

∫∫ (
|(∂t + iqϕ)ψ|2 − |(∇− iqA)ψ|2 + m2|ψ|2

)
dx dt. (2)

where ψ is the wave-function of the boson field, (ϕ, A) is the gauge potential, m and q is
the mass and the electric charge of a particle.

Despite the fact that quantum electrodynamics (QED) is a well-established theory, we
think that the study of the possibility of a consistent, not-quantistic electrodynamics (CED)
is still a relevant issue that might shed new light on the unsolved problems in QED.

Here, we propose a model based on the idea that charged particles can be described
by solitons, which can be seen as bumps of a “matter field”. The idea is not new; in the
last half century, since the pioneering work of Rosen in ’68 [1], a lot of papers have been
written. The original point of this paper is the introduction of a very simple interaction
between the “matter field” and the e.m. field which produces "almost" identical particles,
which obey the known laws of CED (see Theorem 3).

Finally, we recall that the existence and the qualitative properties of solitons produced
by the interaction of the Nonlinear Klein–Gordon equation with the e.m. have been
largely studied in the case of the interaction (2) (see, e.g., [2–8]). The new (and simpler)
interaction introduced in this paper (see (9)) produces new phenomena. This interaction is
not realistic from the physical perspective, but it can be regarded as a first step towards
more sophisticated models.

2. The Model
2.1. The Basic Equations

The action of the electromagnetic field is defined by the Lagrangian density

LF[ϕ, A] =
1
2

(
|∂tA +∇ϕ|2 − |∇×A|2

)
(3)

Now, we need to choose an equation to describe the matter field. The simplest
semilinear equation invariant for the Poincaré group is the following

�ψ + W ′(|ψ|) ψ

|ψ| = 0 (4)

where
� := ∂2

t − ∆

represents the d’Alembert operator; ψ takes values in C and

W(s) =
1
2

s2 + N(s); (5)

N ∈ C2
(
R3
)

, N(0) = N′(0) = 0.

The use of the complex variable is important since it gives to the field ψ an internal
degree of freedom, represented by a phase shift given by

ψ(t, x) 7→ eiθψ(t, x) (6)

Usually, people refer to Equation (4) as to the nonlinear Klein–Gordon equation since,
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its linearization gives the Klein–Gordon equation

�ψ + ψ = 0.

Equation (4) has a variational structure and its Lagrangian density can be written
as follows:

LM[u, S] =
1
2

(
|∂tψ|2 − |∇ψ|2

)
−W(|ψ|)

=
1
2

[
|∂tu|2 − |∇u|2 + (∂tS)

2u2 − |∇S|2u2
]
−W(u) (7)

where we have set
ψ(t, x) = u(t, x)eiS(t,x); u ≥ 0. (8)

We want to couple the matter field ψ with the electromagnetic field in the most simple
and natural way, making sure that the Lorentz invariance of the equations be satisfied.
Since the Lagrangian of the electromagnetic field depends on the 4-vector (ϕ, A), it must
be coupled with a 4-vector, determined by ψ. There are two possible candidates, which are
linear in u and invariant for the transformation ψ(t, x) 7→ ψ(t, x)eiθ :

(∂tu,∇u)

(∂tS,∇S)u

They lead to the following interaction Lagrangian densities

L0[u, ϕ, A] = β(ϕ∂tu + A · ∇u)

LI[u, S, ϕ, A] = β(∂tSϕ + A · ∇S)u (9)

where β is the interaction constant which, in order to fix the ideas, we assume positive; on
the contrary, the sign “+” in the above definitions is necessary; a “−” would violate the
time-reversal property and the equations would lose the invariance for the Poincaré group.
Since LI is not locally gauge invariant, we assume the Lorentz condition

∂t ϕ +∇ ·A = 0. (10)

In this paper, we will examine the case LI (with β > 0) which provides a very
rich model.

Therefore, we will study the equations relative to the following Lagrangian density

L = LM + LI + LF

=
1
2

[
|∂tu|2 − |∇u|2

]
dxdt−W(u) +

1
2

[
(∂tS)

2 − |∇S|2
]
u2

+β(A · ∇S + ϕ∂tS)u

+
1
2

(
|∂tA +∇ϕ|2 − |∇×A|2

)
Making the variation of the action functional

A =
∫∫
L dx dt

with respect to u, S, ϕ and A, we obtain the following system of equations:

�u + W ′(u)−
[
(∂tS)

2 − |∇S|2
]
u = β(A · ∇S + ϕ∂tS) (11)

∂t

(
∂tS u2 − βϕu

)
−∇ ·

(
∇S u2 + βAu

)
= 0 (12)
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∇ · (∂tA +∇ϕ) = β∂tSu (13)

∇× (∇×A) + ∂t(∂tA +∇ϕ) = β∇Su. (14)

We can express these equations with new variables in order to make the equations
independent of β and to obtain the Maxwell equations

E = −∂tA−∇ϕ (15)

H = ∇×A (16)

ρ = −β∂tSu (17)

j = β∇Su (18)

Therefore, we obtain
∇ · E = ρ (19)

∇×H− ∂tE = j (20)

and (15) and (16) give rise to the first couple of Maxwell equations:

∇× E + ∂tH = 0 (21)

∇ ·H = 0. (22)

The equations of the matter field become:

�u + W ′(u) +
j2 − ρ2 + ϕρ + A · j

u
= 0 (23)

∂t(ρu− ϕu) +∇ · (ju + Au) = 0. (24)

Notice that the Equations (23) and (24) depend only on gauge-independent variables
(u, ρ, j, E, H) since the dependence from ϕ and A in these equations can be eliminated via
the GAUSS equations, which gives ϕ and A by the appropriate Green functions. The action
can be rewritten as follows

A =
1
2

∫∫ (
|∂tu|2 − |∇u|2

)
dxdt−

∫∫
W(u)dxdt

+
1
2

∫∫ (
ρ2 − j2

)
dxdt

+
∫∫

(A · j− ϕρ) dxdt +
1
2

∫∫ (
E2 −H2

)
dxdt. (25)

Remark 1. As we have already remarked, the Lagrangian (9) is not invariant for the local action of
the gauge group of the electromagnetic field; however, it is invariant for the global action of a gauge
transformation, namely, invariant for the 4-parameters group

(u, S, ϕ, A) 7→ (u, S− at− b · x, ϕ + a, A + b); (a, b) ∈ R4 (26)

Moreover, we have the invariance (6), which can be rewritten as follows

TθS = S + θ; θ ∈ R
2πZ (27)

and it is typical of the (4) equation. Notice that ,in this model, the invariance (27) is independent
of the gauge invariance (26), and hence leads to a different conservation law (see Section 2.2).
Finally, we remark that the position (17) and (18) are appropriate if we put ourselves in a gauge,
where (u, S, ϕ, A) vanish at infinity, or to be more precise, if u, S ∈ H1(R3), ϕ ∈ D1,2(R3) and
A ∈ D1,2(R3,R3) (see (41)).
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2.2. Conservation Laws

Let us examine the main integral of motion that will be used in the following. We assume
that (u, S, ϕ, A) is a solution of (11)–(14) and that all the quantities |∂tu|2, |∇u|2, (∂tS)

2,
etc., are integrable; under these assumptions, we will compute some integral of motion
relevant to this paper.

Conservation of Energy. Energy, by definition, is the quantity preserved by the time
invariance of the Lagrangian. We have the following result

Proposition 1. The energy takes the following form

E = EM + EF + EI (28)

where

EM[u, S] =
1
2

∫ [
|∂tu|2 + |∇u|2

]
dx +

1
2

∫ [
(∂tS)

2 + |∇S|2
]
u2dx +

∫
W(u)dx

=
1
2

∫ [
|∂tu|2 + |∇u|2

]
dx +

1
2

∫
ρ2 + j2

β2 dx +
∫

W(u)dx (29)

is the matter field energy,

EF[ϕ, A] =
1
2

∫ (
|∂tA +∇ϕ|2 + |∇ ×A|2

)
dx

=
1
2

∫ (
E2 + H2

)
dx.

is the e.m. field energy, and

EI[u, S, ϕ, A] = −β
∫
(ϕ∂tS + A · ∇S)udx (30)

=
∫
(ϕρ−A · j) dx.

is the interaction energy.

The names matter field energy, e.m. field energy, and interaction energy are motivated by
the fact that EM depend only on the matter variables (u, S), EF depend on the e.m. field
variables (ϕ, A) and only EI depend on all four variables.

Proof. By Noether’s Theorem, we have that the energy density EM relative to the La-
grangian density LM is given by

EM =
∂LM

∂(∂tu)
· ∂tu +

∂LM

∂(∂tS)
· ∂tS−LM

= (∂tu)
2 + (∂tS)

2u2 − 1
2

[
|∂tu|2 − |∇u|2 −W(u) + (∂tS)

2u2 − |∇S|2u2
]

=
1
2

[
|∂tu|2 + |∇u|2 + (∂tS)

2u2 + |∇S|2u2
]
+ W(u)

=
1
2

[
|∂tu|2 + |∇u|2 + ρ2 + j2

β2

]
+ W(u)
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The computation of energy density relative to the Lagrangian density LF is the usual
one and we report it for completeness:

∂LF

∂(∂tA)
−LF = (∂tA+∇ϕ) · ∂tA−

1
2
(∂tA+∇ϕ)2 +

1
2
(∇×A)2

= −E · (−E+∇ϕ)− 1
2

E2 +
1
2

H2

=
1
2

E2 +
1
2

H2 − E · ∇ϕ = EF − E · ∇ϕ

The energy density relative to the Lagrangian density LI is given by

∂LI

∂(∂tS)
· ∂tS−LI = βϕu∂tS− β(A · ∇S + ∂tSϕ)u

= −βA · ∇Su = −A · j

If we set
EI = −E · ∇ϕ−A · j

we have that

EI =
∫
EIdx =

∫
(−E · ∇ϕ−A · j)dx

=
∫
(∇ · E ϕ−A · j)dx =

∫
(ρϕ−A · j)dx

= −β
∫
(ϕ∂tS + A · ∇S)udx

Then
E = EM + EF + EI.

Conservation of Momentum. Momentum, by definition, is the quantity, which is
preserved by virtue of the space invariance of the Lagrangian. Here, we will compute only
the matter-field moment, since it is the only part needed in the rest of this paper.

Proposition 2. The momentum takes the following form

P = PM + PF + PI (31)

where

PM =
∫ (

∂tu∇u + ∂tS∇Su2
)

dx (32)

=
∫
(∂tu∇u + ρj)dx (33)

is the matter field momentum.

Proof. By Noether’s Theorem, we have that the momentum densities PM relative to the
Lagrangian densities LM is given by

PM =
∂LM

∂(∂tu)
∇u +

∂LM

∂(∂tS)
∇S = ∂tu∇u + ∂tS∇Su2

Conservation of electric charge: Even if our equations are not invariant for the whole
gauge group; nevertheless, the electric charge is preserved, as it is a consequence of (26).
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In fact, by (19) and (20), we obtain the continuity equation

∂tρ = ∇ · (∂tE) = ∇ · (∇×H− j) = −∇ · j

Therefore, the total electric charge

Q[u, S] =
∫

ρdx = −β
∫

∂tSu dx (34)

is preserved.
Conservation of hylenic charge: Following [9,10] the hylenic charge, by definition, is

the quantity which is preserved by the invariance for the transformation (6). It is defined
as follows

H[u, S, ϕ] =
∫ (

∂tSu2

β
− ϕu

)
dx =

∫
(ρ− ϕ)u dx (35)

By Equation (12), we see directly that the hylenic charge is preserved.

2.3. The Cauchy Problem

In order to study the Cauchy problem, it is more convenient to use the variable ψ
rather that (u, S). To this end, we introduce the following operators:

Dt(ψ) = Im
(

∂tψ

ψ

)
= Im

(
∂t
(
ueiS)

ueiS

)

= Im
(

∂tueiS + iu∂tSeiS

ueiS

)
= Im(∂tu + i∂tS) = ∂tS

and

Dx(ψ) = Im
(
∇ψ

ψ

)
= ∇S

Since we have assumed the Lorentz condition, the Equations (11)–(14), using (5), can
be rewritten as follows

�ψ + ψ = −N′(|ψ|) ψ

|ψ| + A ·Dx(ψ)− ϕDt(ψ) (36)

�ϕ = Dt(ψ)|ψ| (37)

�A = Dx(ψ)|ψ|. (38)

We make the following (redundant) assumptions on N

N, N′ and N′′ are bounded; (39)

N(s) ≥ −1
2
(1− δ)s2; 0 < δ < 1. (40)

Theorem 1. If (39) and (40) hold and β is sufficiently small, the Cauchy problem relative to
Equations (36)–(38) has a unique weak solution.

Proof. The proof of this theorem follows standard arguments and we will just provide a
sketch. The function space to work in is H1 ×

(
D1,2)4 where

H1 =

{
ψ ∈ L2(R3,C) |

∫ (
|∇ψ|2 + |ψ|2

)
dx < +∞

}

D1,2 =

{
f ∈ L6(R3) |

∫
|∇ f |2dx < +∞

}
. (41)
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We set
U(t, x) = (ψ(t, x), ϕ(t, x), A(t, x));

where ψ ∈ H1(R3,C), ϕ ∈ D1,2(R3,R), and A ∈ D1,2(R3,R3) =
[
D1,2(R3,R1)

]3. So, we
end with the Cauchy problem

�U + P1U = F(U) (42)

where P1 is the projection of U on the first component, i.e., P1U = ψ.
We equip the phase space

X :=
[

H1 ×
(
D1,2

)4
]
×
(

L2
)6

, (43)

with its natural norm given by

‖U‖2 = ‖∂tψ‖2
L2 + ‖ψ‖2

H1 + ‖∂t ϕ‖2
L2 + ‖∇ϕ‖2

L2 + ‖∂tA‖2
L2 + ‖∇A‖2

L2

It is well known that a sufficient condition for the Cauchy problem to have a unique
solution for the initial data in X is:

• the energy inequality holds: there exists two positive constants c1 and c2, such that

c1‖U‖2 ≤ E[U] ≤ c2‖U‖2

This inequality can be proved if β is sufficiently small and if (39) holds;
• F : X → X′ is locally compact; this fact holds, since the embedding

Xloc →
(

L6
loc

)6

is compact;

Under these conditions, the proof goes as follows:

1. We take a sequence of approximate solutions; for example, we can use the Faedo–
Galerkin procedure;

2. We take the weak limit of the approximated solutions which exists thank to the second
energy inequality;

3. We pass to the limit in the weak formulation of the equations; we can take the limit in
the nonlinear part F, since it is locally compact;

4. We can prove the uniqueness thanks to the first energy inequality and the Gron-
wall’s inequality.

Remark 2. The optimal conditions for the existence of solutions and the study of the their regularity
is not the aim of this paper and it is a question that, for the moment, is left open.

3. q-Solitons

Roughly speaking, a solitary wave is a solution of a field equation whose energy travels
as a localized packet and which preserves this localization in time. A soliton is a solitary
wave which exhibits some form of stability so that it has a particle-like behavior (see,
e.g., [10–13]).

It is well known that Equation (4) presents solitons under suitable assumptions on
W. It was largely studied during the 1970s and the 1980s. The first rigorous result for the
finite energy solution was due to Strauss [14], and later Beresticky and Lions [15] gave
sufficient and “almost necessary” condition for the existence. In [10], there is a detailed
analysis of the case in which W ≥ 0. If we couple (4) with the Maxwell equation via the
interaction (2), the solitons usually are called Q-balls (Coleman [16]). The first rigorous
result about the existence of Q-balls was established in 2002 [17]. Afterwards, their stability
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was proved in [18]. A detailed analysis of Q-balls and the references to the large literature
can be found in [10]; in all these papers, the interaction between the solitons and the e.m.
field is established by the Lagrangian (2).

In this section, we analyze the existence and the properties of solitons when the
interaction with the Maxwell equation is simply given by the Lagrangian (9) and not by (2).
They will be called q-solitons. The main difference between q-solitons and the Q-balls is
that the former behave like single particles while the latter behave like a swarm of particles
(see [10], Sections 4.1.2 and 5.1.5).

3.1. Existence of Stationary Waves

Let us prove the existence of some particular solution of Equations (11)–(14); first, we
look for stationary solutions, namely solutions where ψ is a stationary wave, i.e.,

ψ(t, x) = u(x)e−iωt; u ≥ 0 (44)

We make the following ansaz

u = u(x); S = −ωt; ϕ = ϕ(x); A = 0. (45)

Replacing these variables in (11)–(14), Equations (12) and (14) are identically satisfied,
while Equations (11) and (13) become

− ∆u + W ′(u)−ω2u + βωϕ = 0 (46)

− ∆ϕ = βωu (47)

These two equations have nontrivial solutions, provided that suitable conditions on
W ∈ C2 are satisfied: we write W as follows,

W(s) =
1
2

s2 + N(s), (48)

In the model of our interest, N must be considered as a small perturbation of the
parabola 1/2s2. However, in order to get an existence result , it is sufficient to make the
following assumptions on N

• (N-1) N(0) = N′(0) = N′′(0) = 0;
• (N-2) infs∈R+ N(s) := Ninf < 0, (Ninf is allowed also to be −∞);
• (N-3) There exist C > 0 and 2 < p < 6, such that |N′(s)| ≤ C(1 + sp−1).

We will show that, at least for β small, the above assumptions guarantee the existence
of nontrivial solutions to Equations (46) and (47). In most of the literature relative to (4),
we usually have the following choice of N :

N(s) =
1
p
|s|p, 2 < p < 6. (49)

This assumption implies the existence of nontrivial solutions also for Equations (46)
and (47) for every β > 0. However, in our model, it is more interesting (see Theorem 3) to
choose a “bump-like” N, such as

N(s) = −ε2s3 exp

(
−
∣∣∣∣ s− 1

ε

∣∣∣∣2
)

. (50)

or a “bell” function such as

N(s) =

{
−
[
(s− 1)2 − ε2

]2
i f |s− 1| < ε

0 i f |s− 1| ≥ ε
(51)
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where ε is a small parameter which makes W(s) ≥ 0. Its relevance will be discussed in
Theorem 3.

We define the following bilinear form

aω(u, u) =
1
2

∫ [
|∇u|2 +

(
1−ω2

)
u2
]
dx + β2ω2

∫∫ u(x)u(y)

|x− y|2
dxdy (52)

Notice that ∫∫ u(x)u(y)

|x− y|2
dxdy =

∫
(G ∗ u)u dx

where
G(x) =

1

4π|x|2

is the Green function relative to the Poisson equation

− ∆φ = u (53)

namely (G ∗ u)(x) = (−∆)−1 :
(
D1,2)→ D1,2.

Now, let us introduce a number ωinf, which is very relevant in this study of solitons

ωinf := inf
{

ω > 0 | ∃u ∈ H1
c , aω(u, u) +

∫
N(u) dx < 0

}
; (54)

ωinf depends on β and the shape of N. For example, if N(u) is given by (49), then it is
immediately necessary to check that ωinf = 0 for every β > 0. If N(u) is given by (50), ωinf
depends on β (see Corollary 1).

We have the following theorem.

Theorem 2. If (N-1) and (N-3) hold and if ωinf < 1, then for every ω ∈ (ωinf, 1), Equations (46)
and (47) have nontrivial solutions in H1(R3)×D1,2(R3).

Proof. The couple of Equations (46) and (47) can be easily solved by standard variational
methods; we will here provide a sketch of the proof, avoiding standard estimates which
are well known among people working in nonlinear analysis.

Set
H1

rad

(
R3
)
=
{

u ∈ H1
(
R3
)
| u = u(|x|)

}
;

and
V :=

{
u ∈ H1

rad

(
R3
)
| aω(u, u) < +∞

}
Since ωsup < 1, V is a Hilbert space equipped with scalar product aω(u, v) and norm

‖u‖V :=
√

aω(u, v). Moreover, by the definition of ωsup, ∃δ > 0,

‖u‖2
V ≥ δ‖u‖2

H1

Then, using the Gagliardo–Nirenberg–Sobolev estimate, we can see that

V = H1
rad +

[
D1,2

rad(R
3)
]′
⊂ H1

rad + L6/5 (55)

Now, we define, on V, the following functional:

J[u] = ‖u‖2
V +

∫
N(u)dx (56)

=
1
2

∫ [
|∇u|2 +

(
1−ω2

)
u2
]

dx + ω2β2
∫
[(G ∗ u)u + N(u)]dx
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By (N-3), (55) and standard arguments, J is a differentiable functional in V. So we
have to prove two facts: (1) the critical points of J solve Equations (46) and (47) and (2) if
ω ∈ (ωinf, 1), J has at least a nontrivial critical point.

(1) We have that ∀v ∈ V

dJ[u](v) =
∫ [
∇u∇v +

(
1−ω2

)
uv
]

dx + ω2β2
∫ [

(G ∗ u) + N′(u)
]
vdx

and by well known arguments, we have that

−∆u + (1−ω2)u + ω2β2(G ∗ u) + N′(u) = 0.

Taking account of (48)

−∆u + W ′(u) + ω2β2(G ∗ u)−ω2u = 0;

finally, setting ϕ = ωβ(G ∗ u), we get Equation (46) while Equation (47) follows from the
definition of ϕ.

(2) The simplest way to prove the existence of critical points of J is the use of the
Mountain Pass theorem of Ambrosetti and Rabinowitz [19]. Following standard arguments,
it is easy to prove that J satisfies the Palais–Smale condition (for a very similar result,
see [17], Lemma 4.3). The interesting fact is to check the conditions, which guarantee the
geometry of the Mountain Pass theorem, namely, that

∃r > 0, ‖u‖2
V = r ⇒ J[u] ≥ b > 0 (57)

and
∃ū, ‖ū‖2

H1 > r, J[ū] ≤ 0 (58)

By the definition of ‖·‖V

‖u‖2
V ≥ δ‖u‖2

H1 , δ > 0.

If r > 0, is sufficiently small, by (48), (N-1), (N-3) and standard computations,
∃C, η > 0 such that ∫

|N(u)|dx ≤ C‖u‖2+η

H1 ≤
C
δ
‖u‖2+η

H1

then, if ‖u‖V = r

J[u] =
1
2
‖u‖2

V +
∫
|N(u)|dx

≥ δ‖u‖2
V −

C
δ
‖u‖2+η

V

=

[
δ− Crη

δ

]
r2

Then if r is sufficiently small J[u] ≥ b > 0 and (57) is proved. (58) holds by the
definition (54) of ωinf.

Corollary 1. If (N-1), (N-2) and (N-3) hold, then there exists β0 > 0, such that for every
β ∈ (0, β0) Equations (46) and (47) have nontrivial solutions in H1(RN).

Proof. By Theorem 2, it is sufficient to prove that

ωinf < 1.
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By (N-2), we can choose a point s1 such that

N(s1) = −h2.

We set

ur =


s1 i f |x| < r
0 i f |x| > r + 1

|x|
r s1 − [(r + 1)|x| − 1]s1 i f r < |x| < r + 1

, (59)

ω̄ =

√
1− h2

s2
1

,

and

F[u] :=
1
2

∫
|∇u|2dx +

∫ (
W(u)− 1

2
ω̄2u2

)
dx

Let us compute F[ur] :

F[ur] =
1
2

∫
Br+1\Br

|∇ur|2dx +
∫

Br+1\Br

(
W(u)− 1

2
ω̄2u2

r

)
dx

+
∫

Br

(
W(ur)−

1
2

ω̄2u2
r

)
dx

The first part can be estimated as follows:

1
2

∫
Br+1\Br

|∇ur|2dx +
∫

Br+1\Br

(
W(u)− 1

2
ω̄2u2

)
dx ≤ C ·meas(Br+1\Br)

≤ C1r2

For the second part, we have that∫
Br

(
W(ur)−

1
2

ω̄2u2
r

)
dx =

∫
Br

[
1
2

u2
r −

1
2

ω̄2u2
r + N(ur)

]
dx

=
∫

Br

[
1
2

(
1− ω̄2

)
s2

1 + N(ur(s1))

]
dx

≤
∫

Br

[
1
2

[
1−

(
1− h2

s2
1

)]
s2

1 − h2

]
dx

=
∫

Br

[
1
2

h2 − h2
]

dx =
4
3

πr3 h2

2
=

2
3

πr3h2

Then, we have that

F[ur] ≤ C1r2 − 2
3

πr3h2.

Therefore, we can choose a r̄ so large that

F[ur̄] < −r̄3h2 < −1

and β so small that

β2ω̄2
∫
(G ∗ ur̄)ur̄dx ≤ 1.

Then

aω̄(ur̄, ur̄) +
∫

N(ur̄) dx = F[ur̄] +
1
2

β2ω̄2
∫
(G ∗ ur̄)ur̄dx ≤ − 1

2
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and hence

ωinf < ω̄ =

√
1− h2

s2
1
< 1.

3.2. Stationary q-Solitons

Using the equivariant Mountain Pass theorem and exploiting the fact that the func-
tional (56) is even, it is possible to prove that Equations (11)–(14), have an infinite number
of radially symmetric solutions of the form (44) and (45), namely solitary waves. We
call ground state solution, the radially symmetric solution u0 > 0, which minimizes the
following quantity

Λ[u, ω] =
E[u, ω]

|H[u, ω]| =

∫ ( 1
2 |∇u| − 1

2 ω2u2 + W(u) + β2ω2(G ∗ u)
)

dx∣∣∫ (−β−2ωu2 −ω(G ∗ u)u)dx
∣∣

in H1 ×R+. Clearly, at least for a generic W, this solution is unique and it corresponds
to the critical value determined by the Mountain Pass Theorem, having chosen ω, which
minimizes Λ[u, ω]. Notice that Λ[u, ω] is the ratio of the matter energy (29) and the hylenic
charge (35). If W ≥ 0, the ground state solution, is a soliton in the sense that it is orbitally
stable (see, e.g., [18] or [10]).

By Theorem 1, Equations (11)–(14) define a dynamical system whose phase space is
given by (43). A generic point of the phase space, at time t, can be represented as follows:[

(u(t, ·), S(t, ·), ϕ(t, ·), A(t, ·))
(∂tu(t, ·), ∂tS(t, ·), ∂t ϕ(t, ·), ∂tA(t, ·))

]
From now on, σ0 we will denote the ground state solution of Equations (46) and (47),

namely

σ0(x) =
[

(u0(x), θ, 0, 0)
(0,−ω0 + θ, 0, 0)

]
(60)

where θ is a possible phase shift which is not relevant and, from now on, it will be neglected.
Such a function will be called a q-soliton. We have chosen this name to emphasize the
comparison with the Q-balls which are stable configurations of the equations determined
by the action AW +AF (see (2) and (3) and the discussion at the beginning of Section 3).
Roughly speaking, a Q-ball behaves like a swarm of charged particles kept close to each
other by the gluing force determined by N(s) (see [9] or [10] Section 5.1.5). Instead, as
we will see in this and the following sections, a q-soliton behaves like a single particle of
“matter” condensed by the gluing force determined by N(s).

The q-soliton, has a positive electric charge ρ0 = ωu0 (and hence, by (47), ϕ0(x) > 0).
However, the Equations (11)–(14), have a solution with negative charge, given by

σ−0 (x) =
[

(u0(x), 0, 0, 0)
(0, ω0, 0, 0)

]
Then, (11)–(14), have at least two orbitally stable solutions determined by a q-soliton

σ0(x) and a q-antisoliton σ−0 (x):

U(t, x) =
[

(u0(x), 0, ϕ0(x), 0)
(0,−ω0t, 0, 0)

]
; U−(t, x) =

[
(u0(x), 0,−ϕ0(x), 0)

(0, ω0t, 0, 0)

]
Generally, they are unique up to space–time translations and phase shift. Rotations do

not produce new solutions, since u0 is radially symmetric.
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The “shape” of a soliton is determined by the nonlinear N(s). In [20], there is a
detailed analysis of this topic in the case β = 0. Clearly, this analysis can be extended to
the q-soliton when β is small. The next theorem examines some properties of the q-solitons
in the case, in which N(s) is a small bump such as (51)

Theorem 3. For every ε > 0, we can choose N, such that

• W ≥ 0;
• 1− ε < ωinf < 1.
• if u0 is the Mountain Pass solution of Equations (46) and (47), then

1− ε ≤ ‖u0‖L∞ ≤ 1 + ε

Proof. We choose N to be a bell function such as (51), so that

min N = N(1) ≥ −ε2

and
supp(N) = [1− ε, 1 + ε]

Then, the first inequality is trivially verified. In order to prove the second inequality,
we see that

N(u) ≥ −1
2

ε2

and so, if we put ω̄2 = 1− ε2, we have that

aω̄(u, u) +
∫

N(u) dx ≥ 1
2

∫ [
|∇u|2 +

(
1− ω̄2

)
u2
]

dx +
∫

N(u)dx

=
1
2

∫ [
|∇u|2 + ε2u2

]
dx− 1

2
ε2
∫

u2dx ≥ 0

Therefore, by the definition of ωinf (54), we have that ω2
inf > ω̄2 and hence ωinf >√

1− ε2 > 1− ε.
The third inequality follows applying to Equation (46) the maximum principle. The

details of the proof can bo found in [20].

Remark 3. The picture which comes out from Corollary 1 and Theorem 3 is the following: given the
free electromagnetic field and the free matter field relative to KG, we obtain q-solitons, provided that

• The interaction between them is given by a Lagrangian of type (9) with β very small;
• KG is perturbed by a nonlinear term N(s) (negative in some point) small with respect to 1

and large with respect to β.

If we want to analyze the properties of a q-soliton considered as a model for physical
particles, it is useful to rewrite Equation (11) with dimensional constants. We get the
following equation (which is satisfied by σ0 if suitably rescaled)

∂2
t u− c2∆u + α2u +

c2

`2 N′(u)−
[
(∂tS)

2 − c2|∇S|2
]
u = ηβ(A · ∇S− ϕ∂tS) (61)

In this equation,

• c is the speed of light which makes the equation invariant for the Lorentz transforma-
tions with the parameter c;

• u has the dimension of

{mass}
1
2

{space} ;

this fact can be deduced ,e.g., by the fact that, by Theorem 1,



Symmetry 2021, 13, 760 15 of 29

1
2

∫ [
|∂tu|2 + c2|∇u|2

]
dx

has the dimension of energy;
• α has the dimension of a frequency; if we linearize Equation (61) with β = 0, we

get KG
∂2

t u− c2∂2
xu + α2u = 0. (62)

which has the following dispersion relations

ωKG = α

√
1 +

c2

α2 k2
KG

where ωKG and kKG are the frequency and the wave number of the small perturbations
of the matter field. Since ω0 < α < ωKG, the oscillations of the q-soliton, having
frequency ω0, do not excite dispersive waves in the surrounding matter field. This
fact partially explains the stability of the soliton;

• If we give to N′ the same dimension of u, ` has the dimension of a length and it is of
the order of the radius of the soliton in the sense that

u0(x), ∇u0(x) ∼= 0 for every x ≥ r0 := k`

where ∼= means that the quantity is exponentially small and k is a dimensionless
variable which depends on N.

• Here, S is supposed to be dimensionless;
• ηβ represents the strength of the interaction of the matter field with the electromagnetic

field; by (17)

dim β =
{electric charge} · {time} · {space}

{mass}
1
2

and if we give to ϕ the dimension of an electric field, i.e.,

{electric charge}/{space},

then

dim η =
{mass}

{electric charge}2 · {space}2 · {time}2 ;

using these variables, then aω(u, u) defined by (52) becomes

aω(u, u) =
∫ [

c2|∇u|2 +
(

α2 −ω2
)

u2
]
dx + ω2η2β2

∫∫ u(x)u(y)

|x− y|2
dxdy; (63)

hence, if ηβ is too large with respect to the other constants, then, by (54), if ωinf ≥ α
and there are no solitons. Actually, there is a competition between the gluing force
which increases with c`−1N and the electric force, which increases with ηβ. The gluing
force tends to concentrate the matter field while the electric force tends to spread it.

By this discussion, it shows that

W(u) =
1
2

α2u +
c2

`2 N(u)

represents the potential of the “nuclear force”, which is repellent when u is small and
attractive when the values of u are in range, where N(s) is negative. N(s) is responsible
for the nonlinear behavior of the matter field, and hence of the existence of q-solitons. By
these considerations, Theorem 3 and Remark 3, a q-soliton is a good model for physical
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particles if, in the dimensionless equation

β2 � max N(s)� 1

Additionally, the condition
W(u) ≥ 0 (64)

is suitable for a physical model.
We denote by

{σ0, ϕ0} =
[

(u0(x), 0, ϕ0, 0)
(0,−ω0, 0, 0)

]
(65)

the equilibrium configuration containing a q-soliton. The energy of this configuration is
given by

E[{σ0, ϕ0}] = EM[{σ0, ϕ0}] + EI[{σ0, ϕ0}] + EF[{σ0, ϕ0}]
= E[σ0] + EI[{σ0, ϕ0}] + EF[ϕ0]

where

E[σ0] =
∫ [1

2
|∇u0|2 −

1
2

ω2
0u2

0dx
]

dx +
∫

W(u0)dx; (66)

EI[{σ0, ϕ0}] = ω0β
∫

ϕ0u0dx;

EF[ϕ0] =
1
2

∫
|∇ϕ0|2dx.

All these terms are positive; E[σ0] is positive by (29) and (64); EI[{σ0, ϕ0}] is positive
since, by Equation (47) ω0 and ϕ0(x) have same sign. Thus, this term is also positive
for anti-solitons. The energy E[σ0] + EI[{σ0, ϕ0}] is concentrated around 0 in a region of
radius r0. In fact, since u decays exponentially, from the physical perspective, it can be
considered null for |x| larger that a suitable r0. The field energy EF[ϕ0] is not concentrated;
by Equation (47), it decays as |x|−4. Finally, notice that the e.m. field energy of a soliton
does not diverge as the energy of a pointwise particle would.

3.3. Travelling q-Solitons

The action functional is invariant for the group of the Lorentz boosts:

t′ =
t− vx1√

1− v2
; x′ =

(
x1 − vt√

1− v2
, x2, x3

)
. (67)

Hence, if u(t, x), S(t, x), ϕ(t, x), A(t, x) is a solution to (11)–(14), also u(t′, x′), S(t′, x′),
ϕ′(t′, x′), A′(t, x) is a solution.

Since (ϕ, A) is a 4-vector, it transforms as follows

ϕ′(t, x) =
ϕ(t′, x′)− vA1(t′, x′)√

1− v2

A′(t, x) =
(

A1(t′, x′)− vϕ(t′, x′)√
1− v2

, A2
(
t′, x′

)
, A3

(
t′, x′

))
As usual, we set

γ =
1√

1− v2

If σ0 denotes the stationary q-soliton defined by (60) and if v = (v, 0, 0), we obtain the
following family of solutions:

uv(t, x) := u0(γ(x1 − vt), x2, x3) = u0(x′) (68)
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Sv(t, x) := −ω0γ(t− vx1) = −ω0t′ = k · x−ωvt (69)

where

k = (k, 0, 0) = (γω0v, 0, 0); (70)

ωv = γω0; (71)

ϕv(t, x) = γϕ0
(
x′
)

(72)

Av(t, x) = −γ
(
vϕ0(x′), 0, 0

)
(73)

If v =(v, 0, 0), |v| < 1, we define a moving solitons as follows

σv(x) =
[

(uv(0, x), Sv(0, x), 0, 0)
(∂tuv(0, x), ∂tSv(0, x), 0, 0)

]
=

[
(u0(x′), k, 0, 0)

(∂tu0(x′),−γω0, 0, 0)

]
t=0

.

The configuration

σv(x) +
[

(0, 0, γϕ0(x′),−γ(vϕ0(x′)))
(0, 0, γ∂t ϕ0(x′),−γv∂t ϕ0(x′))

]
t=0

is the initial condition of the solution (68), (69), (72), (73) of Equations (11)–(14).
If v is any vector with |v| < 1, R ∈ O(3) is a rotation such that Rv =(|v|, 0, 0), we set,

σv(x) = σR−1
v v(x)

Definition 1. A moving q-soliton with velocity v ∈ R3 in the point x̄ ∈ R3 is a function of
the form

σv(x− x̄).

The evolution of a free moving soliton is given by

σv(x− vt− x̄) = σR−1
v
(x− R(vt− x̄)). (74)

3.4. Mechanical Properties of q-Solitons

First, we will investigate the intrinsic quantities of a moving q-soliton. Since these
properties are independent of R and x̄, we will just consider σv with v =(v, 0, 0) and x̄ = 0.

The simplest quantity to describe of a q-soliton is the electric charge. It is defined
by (34) and, in this case, is

q[σ0] = ω0β
∫

u0dx (75)

This depends only on the soliton and not on the configuration of the surrounding
field. Moreover, it has the following property:

Proposition 3. The electric charge of a moving soliton is independent of the motion:

q[σv] := q[σ0]

Proof. By (34) and (71), making a change in variable x1 = 1/γx′1 + vt, we have that

q[σv] = −β
∫

∂tSv dx = βωv

∫
uv(0, x) dx

= γω0β
∫

uv(x′)dx = γω0β
∫

uv(x′)
1
γ

dx′

= ω0β
∫

u0dx.
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From now on, q will denote the charge of a q-soliton. Next, let us consider the mass:

Definition 2. If the momentum of the matter field,

P[σv] = PM[{σv, ϕv}] =
∫ (

∂tuv∇uv + ∂tSv∇Su2
v

)
dx

(see Proposition 2) is proportional to v, the constant of proportionality is called the mass the moving
q-soliton, namely

P[σv] = m[σv]v

Remark 4. Notice that this definition of mass is intrinsic to the Equations (11)–(14) and it is
independent of any physical interpretation; it can be interpreted as a “physical” mass whenever x
and t are interpreted as variables of the physical space-time.

Let us explicitly compute the momentum:

Theorem 4. The momentum of a q-soliton takes the following form:

PM[σv] = γv
[

1
3

∫
|∇u0|2dx + ω2

0

∫
u2

0dx
]

(76)

Proof. By Proposition 2,

P[σv] =
∫ (

∂tuv∇uv + ∂tSv∇S u2
v

)
dx;

assuming v = (1, 0, 0), by (68)–(71)

P1[σv] =
∫ (

∂tuv∂x1 uv + ∂tSv∂x1 S u2
v

)
dx

=
∫

∂tu0(x′)∂x1 u0(x′)dx + kωv

∫
u2

0(x′)dx

=
∫ [

∂x′1
u0(x′)∂tx′1

][
∂x′1

u0(x′)∂x1 x′1
]
dx + vγ2ω2

0

∫
u2

0(x′)dx

= vγ2
∫ [

∂x′1
u0(x′)

]2
dx + vγ2ω2

0

∫
u2

0(x′)dx

Making a change of variable x1 = 1/γx′1 + vt, we get

P1[σv] = vγ2
∫ [

∂x′1
u0(x′)

]2 1
γ

dx′ + vγω2
0

∫
u2

0(x′)
1
γ

dx′

= vγ

[∫
[∂x1 u0(x)]2dx + ω2

0

∫
u2

0(x)dx
]

Since u0 is radially symmetric,∫
∂x1 u2

0dx =
1
3

∫
|∇u0|2dx

then

P1[σv] = vγ

[
1
3

∫
|∇u0|2dx + ω2

0

∫
u2

0(x)dx
]

It is immediate to see that P2[σv] = P3[σv] = 0, and hence we obtain the conclu-
sion.

Therefore, we have obtained the following result.
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Corollary 2. The mass of a q-soliton is well defined and it takes the following value:

m[σv] = γm[σ0] = γ

[
1
3

∫
|∇u0|2dx + ω2

0

∫
u2

0dx
]

(77)

From now on, m will denote the rest mass of a q-soliton.
We define the energy of a moving soliton as follows:

E[σv] = EM[{σv, ϕv}]

The next proposition describes how the energy transforms in a moving soliton:

Theorem 5. The energy of a q-soliton is given by

E[σv] := γm +
1
γ

(
5
3

ω0β
∫

ϕ0u0dx
)
= γm− 1

γ

(
5
3

∫
ϕ0ρ0dx

)
where ρ0(x) = ω0βu0(x) (see (34)).

Remark 5. In a theory with β = 0, the energy of a soliton coincides with its mass γm, and hence
it transforms as the time-component of a time-like vector. If β 6= 0, part of the energy transforms
differently. This fact is not so surprising since the energy of a q-soliton includes the energy of the
self-interaction of the soliton with the e.m. field generated by itself. The energy-momentum of
the e.m. field does not transform as the energy of a space-like vector since it is a light-like vector.
Hence, there is a small term of the order β, which transforms differently. Since this term is related to
the interaction of the matter field with the e.m. field it might be related to a sort of not quantistic
counterpart of the fine-structure constant; however, this point needs further investigation.

In order to prove Theorem 5, we need the following lemma, which is a variant of the
Pohozaev–Derrik theorem [21,22]:

Lemma 1. If u is any solution of Equations (46) and (47), then∫
W(u)dx =

1
2

ω2
∫

u2dx− 1
6

∫
|∇u|2dx− 5

3
ω2β2

∫
(G ∗ u)udx

Proof. Let

J[u] =
∫ [1

2
|∇u|2 + W(u)dx− 1

2
ω2u2dx + ω2β2(G ∗ u)u

]
dx (78)

be the functional J defined by (56). Then, if u is a solution of Equations (46) and (47),
we have that dJ[u] = 0. Now, let us consider the “curve” λ 7−→ uλ in V = H1 + D1.2

defined by

uλ = u
( x

λ

)
Then, (

d
dλ

J[uλ]

)
λ=1

= 0.

Making the change in variable x 7−→ xλ−1, we get that

J[uλ] =
λ

2

∫
|∇u|2dx + λ3

∫
W(u)dx− 1

2
λ3
∫

ω2u2dx + λ5β2
∫

ω2(G ∗ u)udx
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Then,

0 =
d

dλ
J[uλ]λ=1

=

[
1
2

∫
|∇u|2dx + 3λ3

∫
W(u)dx− 3

2
λ2
∫

ω2u2dx + 5λ4β2
∫

ω2(G ∗ u)udx
]

λ=1

=
1
2

∫
|∇u|2dx + 3

∫
W(u)dx− 3

2

∫
ω2u2dx + 5β2

∫
ω2(G ∗ u)udx

Hence ∫
W(u)dx =

1
2

∫
ω2u2dx− 1

6

∫
|∇u|2dx− 5

3
ω2β2

∫
(G ∗ u)udx.

Corollary 3. Given a stationary q-soliton σ0, we have that

E[σ0] =
1
3

∫
|∇u0|2dx + ω2

0

∫
u2

0dx− 5
3

β2
∫
(G ∗ u0)u0dx

Proof. Replacing W in (66), and using Lemma 1, we get

E[σ0] =
1
2

∫ [
|∇u0|2 + ω2

0u2
0

]
dx +

1
2

∫
W(u0)dx

=
1
2

∫ [
|∇u0|2 + ω2

0u2
0

]
dx +

1
2

∫
ω2u2dx

−1
6

∫
|∇u|2dx− 5

3
ω2β2

∫
(G ∗ uλ)uλdx

=

(
1
2
− 1

6

) ∫
|∇u0|2dx +

(
1
2
+

1
2

)
ω2

0

∫
u2

0dx− 5
3

β2
∫
(G ∗ u0)u0dx

Proof of Theorem 5. By Proposition 1 and (68)–(73) we have that

E[σv] =
1
2

∫ ∣∣∂tu0(x′)
∣∣2dx +

1
2

∫ ∣∣∇u0(x′)
∣∣2dx

+
1
2

(
k2 + ω2

v

) ∫
u0(x′)2dx +

∫
W
(
u0(x′)

)
dx

making the change of the integration variable x1 = 1/γx′1 + vt, we get

E[σv] =
1

2γ

∫ ∣∣∂tu0(x′)
∣∣2dx′ +

1
2γ

∫ ∣∣∇u0(x′)
∣∣2dx′

+
1

2γ

(
k2 + ω2

v

) ∫
u0(x′)2dx′ +

1
γ

∫
W
(
u0(x′)

)
dx′

Let us compute each piece individually

A =
1

2γ

∫ ∣∣∂tu0(x′)
∣∣2dx′ =

1
2

∫ ∣∣∣∂x′1
u0(x′)∂tx′1

∣∣∣2dx′

=
1
2

∫ ∣∣∣∂x′1
u0(x′)γ2v2

∣∣∣2dx′ =
v2γ

2

∫ ∣∣∣∂x′1
u0(x′)

∣∣∣2dx′

=
v2γ

2

∫
|∂x1 u0(x)|2dx
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Since u is radially symmetric,∫
|∂xi u0(x)|2dx =

1
3

∫
|∇u0|2dx (79)

Then,

A =
v2γ

6

∫
|∇x′u0|2dx

Let us compute the second piece using (79) again

B =
1

2γ

∫ ∣∣∇u0(x′)
∣∣2dx′

=
1

2γ

∫ [∣∣∣∂x′1
u0(x′)∂x1 x′1

∣∣∣2]dx′ +
1

2γ

∫ [∣∣∣∂x′2
u0(x′)

∣∣∣2 + ∣∣∣∂x′3
u0(x′)

∣∣∣2]dx′

=
1

2γ

∫ ∣∣∣∂x′1
u0(x′)γ

∣∣∣2dx′ +
1

2γ

∫ [∣∣∣∂x′2
u0(x′)

∣∣∣2 + ∣∣∣∂x′3
u0(x′)

∣∣∣2]dx′

=
γ

6

∫
|∂x1 u0(x)|2dx +

1
2γ

∫ [
|∂x2 u0(x)|2 + |∂x3 u0(x)|2

]
dx

=
γ

6

∫
|∇u0|2dx +

1
3γ

∫
|∇u0|2dx =

(
γ

6
+

1
3γ

) ∫
|∇u0|2dx

In order to compute the third piece, we need (70) and (71):

C =
1

2γ

(
k2 + ω2

v

) ∫
u0(x)2dx =

1
2γ

[
(γω0v)2 + (γω0)

2
] ∫

u0(x)2dx

=
1
2

ω2
0γ
(

v2 + 1
) ∫

u0(x)2dx

The computation of the fourth piece uses Lemma 1:

1
γ

∫
W
(
u0(x′)

)
dx′ =

1
γ

∫
W(u0(x))dx

= − 1
6γ

∫
|∇u0|2dx +

1
2γ

ω2
0

∫
u2

0dx− 5
3

ω2
0 β2

∫
(G ∗ u0)u0dx

= E + F + G

Then,
E[σv] = A + B + C + E + F = (A + B + E) + (C + F) + G

We have that

γ2v2 + γ2 + 1 =
v2 + 1
1− v2 + 1 =

2
1− v2 = 2γ2

then,

A + B + E =

(
v2γ

6
+

γ

6
+

1
3γ
− 1

6γ

) ∫
|∇u0|2dx

=
1

6γ

(
v2γ2 + γ2 + 1

) ∫
|∇u0|2dx

=
γ

3

∫
|∇u0|2dx
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and

C + F =

[
1
2

ω2
0γ
(

v2 + 1
)
+

1
2γ

ω2
0

] ∫
u0(x)2dx

=
1
2

ω2
0

γ

[
γ2
(

v2 + 1
)
+ 1
] ∫

u0(x)2dx

=
1
2

ω2
0

γ
2γ2

∫
u0(x)2dx = γω2

0

∫
u0(x)2dx

Concluding, using Corollary 3, we have that

E[σv] =
γ

3

∫
|∇u0|2dx + γω2

0

∫
u0(x)2dx− 5

3γ
ω2

0 β2
∫
(G ∗ u0)u0dx

Placing a stationary q-soliton in an generic electromagnetic field with gauge potential
(ϕ, A) and using the notation (60), we get the following configuration,

σ0 +

[
(0, 0, ϕ, A)

(0, 0, ∂t ϕ, ∂tA)

]
=

[
(u0, 0, ϕ, A)

(0,−ω0, ∂t ϕ, ∂tA)

]
;

By Proposition 1, the energy of this configuration is

E[{σ0, ϕ, A, ∂tA}] = EM[{σ0, ϕ}] + EI[{σ0, ϕ, A, ∂tA}] + EF[{ϕ, A, ∂tA}]

= E[σ0] + ω0β
∫

ϕ u0dx +
1
2

∫ (
E2 + H2

)
dx

If the soliton is small with respect to ∇ϕ, (namely, if r0 = k` is small), then, by (75),

ω0

∫
ϕ(x)u0(x) dx ∼= ω0 ϕ(0)β

∫
u0(x) dx = qϕ(0)

where “∼=” means that the accuracy of this approximation is good if the quantities involved
are large with respect to β (and to the radius of the soliton). In fact, the field ϕ0(x) produced
by the q-soliton, is of the order of β� 1, and hence, if ϕ ≈ 1, we have that ϕ− ϕ0 ∼= ϕ and
∇(ϕ− ϕ0) ∼= ∇ϕ. Then

E[{σ0, ϕ, A}] ∼= E[σ0] + qϕ(0) +
1
2

∫ (
E2 + H2

)
dx

Therefore, thanks to Proposition 1 and our analysis if a soliton is placed in an e.m.
field, we can distinguish the soliton energy E[σ0], the potential energy qϕ(0) and the e.m.
field energy 1

2

∫ (
E2 + H2)dx. This distinction is crucial for the study of the dynamics of

the soliton (see Section 3.5). Finally, we remark that, the potential energy qϕ(0) is localized
within the radius of the soliton. This fact eliminates one of the difficulties posed by the
dualism particle-field where the localization of the potential energy of a particle is a
meaningless problem.

If the q-soliton is moving, extending the above arguments, we have the following result:

Proposition 4. If the q-soliton is small with respect to ∇ϕ and ∇A and β� 1, then

E[{σv, ϕ, A}] = EM[{σv, ϕv}] + EF[{σv, ϕv, A}]
∼= γm + q[ϕ(0) + v ·A(0)] (80)

Proof. By Theorem 5, EM[{σv, ϕv}] = γE[σ0] ∼= γm. Then, by Proposition 1 and (70),
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we get

E[{σv, ϕ, A}] = γm−
∫
(ϕ∂tSv + A · ∇Sv)uvdx

= γm + ω0

∫
ϕ(x)uv(x)γdx + ω0v ·

∫
A(x)uv(x)γdx

and, using (67), (68), (72), (73) and causing a change in variables, we have that

E[{σv, ϕ, A}] = γm + ω0

∫
ϕ(x)u0

(
x′
)
dx′ + ω0v ·

∫
A(x)u0(x′)dx′

= γm + ω0

∫
ϕ(L−1x)u0(x)dx + ω0v ·

∫
A(L−1x)u0(x)dx

where L denotes the Lorentz boost defined by (67), namely Lx = x′. If the soliton is small
with respect to ∇ϕ and ∇A, then, using the definition (75) of q,

ω0

∫
ϕ(L−1x)u0(x)dx ∼= ϕ(L−10)ω0

∫
u0(x)dx = qϕ(0)

and similarly

ω0v ·
∫

A(L−1x)u0(x)dx ∼= v ·A(L−10)ω0

∫
u0(x) dx = qϕv ·A(0)

Notice that (80) is the energy of the soliton, namely the matter field energy plus the
interaction energy contained in the radius of the soliton; the total energy of a configuration
which contains a soliton also depends on ∂tA and, by Proposition 1 and Proposition 4, it
takes the following form:

Etot[{σv, ϕ, A, ∂tA}] ∼= γm + q[ϕ(0) + v ·A(0)] +
1
2

∫ (
E2 + H2

)
dx.

Now, let us examine a configuration containing several solitons

σvk ,x̄k := σv(· − x̄k), k = 1, .., N

where σvk (· − x̄k) was defined by Definition 1. We assume that

|x̄k − x̄h| ≥ 2r0, k 6= h (81)

where r0 denote the radius of the solitons. We remember that u decays exponentially, so the
matter field is essentially null out of a neighborhood of each soliton, and hence

E

[
N

∑
k=1

σvk ,x̄k

]
∼=

N

∑
k=1

E
[
σvk ,x̄k

] ∼= m
N

∑
k=1

γk (82)

where
γk =

1√
1− |vk|2

Notice that, in the configuration (82), the q-antisolitons can be included. They have
the same mass of solitons, but opposite electric charges.
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If we embed this configuration in an external e.m. field, the total energy takes the
following form

Etot

[{
N

∑
k=1

σvk ,x̄k , ϕ, A, ∂tA

}]

∼= m
N

∑
k=1

γk + q
N

∑
k=1

[ϕ(x̄k) + vk·A(x̄k)] +
1
2

∫ (
E2 + H2

)
dx.

3.5. Dynamics of q-Solitons

Now, let us examine the dynamics of a solitons in the presence of an “external”
electromagnetic field. More exactly, we want to examine the behavior of the solution of the
Cauchy problem with the following initial conditions

U0 =
N

∑
k=1

σvk ,x̄k +

[
(0, 0, ϕ0, A0)
(0, 0, ϕ1, A1)

]
(83)

where vk ∈ R3 is such that |vk| < 1.
It is well known that, thanks to the invariance of the hylenic ratio, the soliton is

orbitally stable (see, e.g., [10]). This means that if the perturbation field generated by
(ϕ0(x), A0(x)), (ϕ1(x), A1(x)) is small (with respect to β−1) around the soliton, then the
solution of the Cauchy problem has the following form

U0(t, x) =
N

∑
k=1

σvk(t),x̄k(t) +

[ (
up(t, x), Sp(t, x), ϕ(t, x), A(t, x)

)(
∂tup(t, x), ∂tSp(t, x), ∂t ϕ(t, x), ∂tA(t, x)

) ] (84)

where

• up(t, x), Sp(t, x) are essentially null thanks to the orbital stability of the soliton and
they will be neglected;

• ∑N
k=1 σvk(t),x̄k(t) is the configuration of the q-solitons and its structure is determined by

a N function ξk : R→ R3 such that ξk(t) = x̄k(t); ξ̇k(t) = vk(t);

Our aimis to investigate the dynamics of the q-solitons under the following assumptions:

• (A-1) β� 1—as we have seen, this condition implies that the Cauchy problem is well
posed and that the energy of a q-solitons equals its mass (Theorem 5);

• (A-2) The solitons are far from each other (i.e., (81) holds) during the time interval
considered; this happens if

– (i) This assumption is satisfied by the initial condition (83);
– (ii) All the q-solitons have the same charge (namely, there are not q-antisolitons),

so that, during the evolution, the q-solitons repel each other;
– (iii) The e.m. field is not locally too strong, so that the q-solitons cannot collide;

• (A-3)
∣∣ξ̈k(t)

∣∣� 1; this fact avoids the q-soliton to produce a strong radiation and, from
the technical point of view, it simplifies the computations. Clearly, this happens if the
e.m. field is not too strong.

We will show, that, under these assumptions, the q-solitons behave as classical particles.
To this aim, we analyze the action functional relative to the configuration (84)

A =
∫∫

(LM + LI + LF)dxdt (85)

=
∫∫
LM

[
N

∑
k=1

σξ̇k(t),ξk(t)

]
dxdt

+
∫∫
LI

[{
N

∑
k=1

σξ̇k(t),ξk(t)
, ϕ, A

}]
dxdt +

∫∫
LF[{ϕ, A}]dxdt
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Since we have assumed (A-2), then

∫
LMdx ∼=

N

∑
k=1

∫
LI

[
σξ̇k(t),ξk(t)

; ϕ, A
]
dx

and ∫
LIdx ∼=

N

∑
k=1

∫
LI

[{
σξ̇k(t),ξk(t)

, ϕ, A
}]

dx

Let us compute each piece of the action separately

Lemma 2. Under the assumptions (A-1),(A-2),(A-3), we have that∫
LM

[
σξ̇k(t),ξk(t)

]
dx ∼= −m

√
1−

∣∣ξ̇k(t)
∣∣2.

Proof. Since the Lagrangian LM does not depend explicitly on t and x,, we can choose a
reference frame where, for a fixed t,

ξk(t) = 0 and ξ̇k(t) = (vk, 0, 0)

so that ∫
LM

[
σξ̇k(t),ξk(t)

]
dx =

∫
LM

[
σvk (x)

]
dx

We recall that by (68) and (69),

σvk (x) =
[

(u0(x′),−γkω0, 0, 0)
(0, γkω0vk, 0, 0)

]
where we have set

γk =
1√

1−
∣∣ξ̇k(t)

∣∣2 .

Then, by (7), and (68)–(71)∫
LM

[
σξ̇k(t),ξk(t)

]
dx =

∫
LM

[
σvk

]
dx

=
1
2

∫ ∣∣∂tu0(x′)
∣∣2dx−

∫ ∣∣∇u0(x′)
∣∣2dx

+
1
2

(
k2

k −ω2
vk

) ∫
u0(x′)2dx−

∫
W
(
u0(x′)

)
dxdt

If we assume that ξ̈k is not too large (i.e., (A-2)),

∂tx′1 = ∂t
x′ − ξ̇k(t)t√
1−

∣∣ξ̇k(t)
∣∣2 ∼= vkγk;

then, arguing as in the proof of Theorem 5 and using similar notations for each k,∫
LM

[
σξ̇k(t),ξk(t)

]
dx = Ak − Bk + Ca

k − Cb
k − Ek − Fk − Gk

where
Ca

k =
1
2

ω2
0γkv2

k

∫
u0(x)2dx; Cb

k =
1
2

ω2
0γk

∫
u0(x)2dx.
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Continuing with our computation,

Ak − Bk − Ek =

[
γkv2

k
6
− γk

6
− 1

3γk
+

1
6γk

] ∫
|∇u0|2dx

=
1

6γk

[
v2

kγ2
k − γ2

k − 1
] ∫
|∇u0|2dx

=
1

6γk

[
v2

k − 1
1− v2

k
− 1

] ∫
|∇u0|2dx = − 1

3γk

∫
|∇u0|2dx

Ca
k − Cb

k − Fk =

[
1
2

ω2
0γk

(
v2

k − 1
)
− 1

2γk
ω2

0

] ∫
u2

0dx

=

[
− 1

2γk
ω2

0 −
1

2γk

] ∫
u0(x)2dx

= −
ω2

0
γk

∫
u0(x)2dx

The term Gk will be ignored, since we have assumed β� 1 (i.e., (A-2). Then, by (77),

∫
LM

[
σξ̇k(t),ξk(t)

]
dx = − 1

3γk

∫
|∇u0|2dx−

ω2
0

γk

∫
u0(x)2dx

= − 1
γk

m = −m
√

1−
∣∣ξ̇k(t)

∣∣2

Now let us compute
∫
LIdx.

Lemma 3. If (A-1) and (A-2) hold, then∫
LI

[
σξ̇k(t),ξk(t)

; ϕ, A
]
dx ∼= q

[
ϕ(t, ξk(t))−A(t, ξk(t)) · ξ̇k(t)

]
dt.

Proof. As in the previous lemma, we can choose a reference frame where, for a fixed t,
ξ̇k(t) = v and ξk(t) = 0. Then, following the same arguments as used in the proof of
Proposition 4, we have that∫

LI[σv,x̄; ϕ, A]dx ∼= q(v ·A(x̄)− ϕ(x̄)).

The above lemmas give the following result

Theorem 6. Let U0(t, x) be the solution of the Cauchy problem relative to Equations (11)–(14)
with the initial condition (83). Then If (A-1), (A-2) and (A-3) hold, we have that

d
dt

 mξ̇k√
1−

∣∣ξ̇k
∣∣2
 ∼= q

(
E + ξ̇k ×H

)
(86)

∇ · E =
N

∑
k=1

ρ0(x− ξk)

∇×H− ∂tE =
N

∑
k=1

j0(x− ξk)



Symmetry 2021, 13, 760 27 of 29

∇× E + ∂tH = 0

∇ ·H = 0

Proof. The action (85) becomes

A = AM +AI +AF

=
N

∑
k=1
−m

∫ [√
1−

∣∣ξ̇k(t)
∣∣2 + qk

[
A(t, ξk(t)) · ξ̇k(t)− ϕ(t, ξk(t))

]]
dt

+
∫∫
LF[ϕ, A]dxdt

Making the variation in AM +AI with respect to ξk, we get the Lorentz Equation (86);
making the variation in A given by (25), we obtain the Maxwell equations.

Remark 6. Theorem 6 states that Equations (11)–(14) provide a model for material particles which,
at low energies, agree with the well known physics. It is interesting to investigate the predictions
of this model when the assumptions (A-2), (A-3) are violated. If (A-2)-(ii) is violated, there are
antisolitons which attract solitons since they have opposite charges; then (A-2)-(i) will eventually
be violated and the two particles will annihilate. Since our equation is invariant for time-reversal,
the creation of an particle–antiparticle couple might occur; of course, this can happen only if
there is sufficient energy, namely if (A-2),(iii) does not hold. If (A-3) does not hold, a numerical
computation of the radiation when ξ̈ is large gives a spectrum which can probably be compared with
the experimental data.

4. Conclusive Remarks

More than 50 years ago, De Broglie wrote:

Des considèrations sur lesquelles je reviendrai me conduisent aujourd’hui a penser que
le corpuscule doit etre assimilé non pas à un véritable singularité punctuelle de u, mais
à un trés petite région singuliére de l’espace où u prenderait une très grande valeur et
obéirait à une équation non linéaire dont l’équation linéaire de la Mécanique ondulatoire
ne serait qu’une forme approximative valable en dehors de la region singulière. L’idée que
l’équation de propagation de u, contrairement è l’équation classique du Ψ, est en principe
non linéaire m’apparait meme maintenant comme tout à fait essentielle. ([23], Chap. IX,
1, p. 95.)

The development of the nonlinear analysis of the last half century allows the construc-
tion of models of particles in line with the ideas of De Broglie. The model presented here is
strongly based on a Classical Field Theory and “a priori” has nothing to do with Quantum
Mechanics (QM), in contrast with the ideas of De Broglie. Nevertheless, it is interesting to
notice that it presents some features which are considered peculiar to QM.

The first thing to note is the fact that particle-like solutions of nonlinear equations
with positive energy, in dimension 3, seem possible only if they have at least one internal
degree of freedom, namely ψ takes values in C and not in R (see, e.g., Derrik theorem [21]).
This fact implies that

ψ(t, x) = u(t, x)ei(k·x−ωt)

presents an undulatory aspect, as was desired by De Broglie. Furthermore, since the
energy/momentum (E, p) of the particle and the wave number (ω, k) are 4-vectors, they
must be proportional and hence

E = }ω and p = }k

where h̄ is a constant depending on the parameters of the problem. Therefore, we can
say that Equations (11)–(14) present one kind of intrinsic Plank constant. However, this
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similarity does not imply the De Broglie pilot wave theory or the Bohmian mechanics, since
the “interference” or the “entanglement” phenomena cannot be reproduced by this model.

The second remarkable fact is the existence of anti-particles, and the fact that an
antiparticle is produced by time-reversion (or by charge inversion).

Another peculiarity is that the q-solitons are equal to each other and two of them
cannot be in the same position. This fact implies that they are forced to follow the Bose–
Einstein statistics, which is also considered a quantum phenomenon.

However, we do not think that the q-solitons could be considered a model for ele-
mentary particles. They are just an example (and probably the simplest one) showing the
possibility of a classical theory of electrodynamics and the fact that some quantum phe-
nomena are consequences of a consistent field theory, independently of the quantization.

Nevertheless, it is possible to implement the ideas presented here to build a “classical”
model of elementary particles. It is necessary to take ψ-functions with spinor values and
a Lagrangian with a suitable symmetry. For example, in [24], a U(1)× SU(2) symmetry
is considered.

The final conclusion is the following: if the Maxwell equations are weakly coupled
in the simplest way with a linear equation, invariant for the Poincaré group, then a small
nonlinear perturbation (see Theorem 3) is sufficient to produce not only a consistent electro-
dynamics theory, but also solitons which share some characteristics with quantum particles.
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