An Application of the Madelung Formalism for Dissipating and Decaying Systems
Abstract
:1. Introduction
2. Schrödinger-Type Equations of Dissipative Systems
2.1. Derivation
2.2. Madelung Decomposition of DSE
3. Applications
3.1. Continuity Equation with Source or Sink
3.2. The Fokker–Plank Equation
3.3. Convection–Diffusion Equation
3.4. Quantum Boltzmann Equation
4. Summery and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Salesi, G. Spin and Madelung Fluid. Mod. Phys. Lett. A 1996, 11, 1815–1823. [Google Scholar] [CrossRef] [Green Version]
- Hirschfelder, J.; Tang, K. Quantum mechanical streamlines. III. Idealized reactive atom-diatomic molecule collision. Diatomic Mol. Collis. 1976, 64, 760. [Google Scholar] [CrossRef]
- Nagasawa, M. Schrödinger Equations and Diffusion Theory; Springel Basel: Boston, MA, USA, 2012. [Google Scholar]
- Weiss, U. Quantum Dissipative Systems; Singapore World Sientific: Singapore, 2012. [Google Scholar]
- Celeghini, E.; Rasetti, M.; Vitiello, G. Quantum dissipation. Ann. Phys. 1992, 215, 156–170. [Google Scholar] [CrossRef]
- Madelung, E. Eine anschauliche Deutung der Gleichung von Schrödinger. Naturwissenschaften 1926, 14, 1004. [Google Scholar] [CrossRef]
- Madelung, E. Quantentheorie in hydrodynamischer Form. Eur. Phys. J. A 1927, 40, 322–326. [Google Scholar] [CrossRef]
- Wallstrom, T.C. Inequivalence between the Schrödinger equation and the Madelung hydrodynamic equations. Phys. Rev. A 1994, 49, 1613–1617. [Google Scholar] [CrossRef]
- Nelson, E. Quantum Fluctuations; Princeton University: Princeton, NY, USA, 1985. [Google Scholar]
- Wang, M. Derivation of Feynman’s path integral theory based on stochastic mechanics. Phys. Lett. A 1989, 137, 437–439. [Google Scholar] [CrossRef]
- Köppe, J.; Patzold, M.; Grecksch, W.; Paul, W. Quantum Hamilton equations of motion for bound states of one-dimensional quantum systems. J. Math. Phys. 2018, 59, 062102. [Google Scholar] [CrossRef]
- Yasue, K. Stochastic calculus of variations. J. Funct. Anal. 1981, 41, 327–340. [Google Scholar] [CrossRef] [Green Version]
- Bohm, D. A Suggested Interpretation of the Quantum Theory in Terms of “Hidden” Variables. II. Phys. Rev. 1952, 85, 180–193. [Google Scholar] [CrossRef]
- de Broglie, L. Current Interpretation of Wave Mechanics, A CriticaL Study; Elsevier: Amsterdam, The Netherlands, 1964. [Google Scholar]
- Holland, P.R. The Quantum Theory of Motion; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Jammer, M. The Philosophy of Quantum Mechanics; Wiley: NewYork, NY, USA, 1974. [Google Scholar]
- Razavy, M. Classical and Quantum Dissipative Systems; Imperial College Press: London, UK, 2005. [Google Scholar]
- Kostin, M. On the Schrödinger-Langevin equation. J. Chem. Phys. 1972, 57, 3589–3591. [Google Scholar] [CrossRef]
- Kostin, M.D. Friction and dissipative phenomena in quantum mechanics. J. Stat. Phys. 1975, 12, 145–151. [Google Scholar] [CrossRef]
- Bialynicki-Birula, I.; Mycielski, J. Nonlinear wave mechanics. Ann. Phys. 1976, 100, 62–93. [Google Scholar] [CrossRef]
- Guerrero, P.; López, J.L.; Montejo-Gámez, J.; Nieto, J. Wellposedness of a Nonlinear, Logarithmic Schrödinger Equation of Doebner–Goldin Type Modeling Quantum Dissipation. J. Nonlinear Sci. 2012, 22, 631–663. [Google Scholar] [CrossRef] [Green Version]
- Nassar, A.; Miret-Arte, S. Dividing Line between Quantum and Classical Trajectories in a Measurement Problem:Bohmain Time Constant. Phys. Rev. Lett. 2013, 111, 150401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldeira, A.; Leggett, A. Influence of damping on quantum interference: An exactly soluble model. Phys. Rev. A 1985, 31, 1059. [Google Scholar] [CrossRef] [PubMed]
- Yuen-Zhou, J.; Tempel, D.; Rodríguez-Rosario, C.; Aspuru-Guzik, A. Time-Dependent Density Functional Theory for Open Quantum Systems with Unitary Propagation. Phys. Rev. Lett. 2010, 104, 043001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoker, W.; Albrecht, K. A formalism for the construction of quantum friction equations. Ann. Physic 1979, 117, 436–446. [Google Scholar] [CrossRef]
- Xiang-Yao, W.; Bai-Jun, Z.; Xiao-Jing, L.; Xiao, L.; Yi-Heng, W.; Yan, W.; Qing-Cai, W.; Cheng, S. Derivation of Nonlinear Schrödinger Equation. Int. J. Theor. Phys. 2010, 49, 2437–2445. [Google Scholar]
- Greiner, W.; Reinhardt, J. Field Quantization; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Yourgrau, W.; Mandelstam, S. Variational Principles in Dynamics and Quantum Theory; Dover Publications: Philadelphia, PA, USA, 1968. [Google Scholar]
- Cassel, K. Variational Methods with Applications in Science and Engineering; Cambridge University Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Fujita, T. Symmetry and Its Breaking in Quantum Field Theory; New York Nova Science Publishers: New York, NY, USA, 2006. [Google Scholar]
- Nassar, A.B. Time-dependent invariant associated to nonlinear Schrödinger-Langevin equation. J. Math. Phys. 1986, 27, 2949–2952. [Google Scholar] [CrossRef]
- Hasse, R.W. On the quantum mechanical treatment of dissipative systems. J. Math. Phys. 1975, 16, 2005–2011. [Google Scholar] [CrossRef]
- Schuch, D.; Chung, K.; Hartmann, H. Nonlinear Schrödinger-type field equation for the description of dissipative systems. I. Derivation of the nonlinear field equation and one-dimensional example. J. Math. Phys. 1983, 24, 1652–1660. [Google Scholar] [CrossRef]
- Zander, C.; Plastino, A.; Diaz-Alonso, J. Wave packet dynamics for a non-linear Schrödinger equation describing continuous position measurements. Ann. Phys. 2015, 362, 36–56. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, L.; Olavo, L.S.F. Schrödinger equation for general linear velocity-dependent forces. Phys. Rev. A 2018, 97, 022102. [Google Scholar] [CrossRef]
- Petrasso, R.D.; Chi-Kang, L. Fokker-Planck equation for moderately coupled plasmas. Phys. Rev. Lett. 1993, 70, 3063–3066. [Google Scholar]
- Sanz, A.S.; Miret-Artes, S. A Trajectory Description of Quantum Processes. In Fundamentals: A Bohmian 1prespective; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Reddiger, M. The Madelung Picture as a Foundation of Geometric Quantum Theory. Found. Phys. 2017, 47, 1317–1367. [Google Scholar] [CrossRef] [Green Version]
- Wyatt, R.E. Quantum Dynamics with Trajectories, Introduction to Quantum Hydrodynamics; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Reginatto, M. Derivation of the equations of nonrelativistic quantum mechanics using the principle of minimum Fisher information. Phys. Rev. A 1998, 58, 1775–1778. [Google Scholar] [CrossRef]
- Tsekov, R. Towards nonlinear quantum Fokker-Plank equation. Int. J. Theor. Phys. 2009, 48, 1431–1435. [Google Scholar] [CrossRef] [Green Version]
- Carroll, R.W. Flactuations, Information, Gravity and the Quantum Potential; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Carollo, A.; Fuentes-Guridi, I.; Santos, M.F.; Vedral, V. Geometric phase in open systems. Phys. Rev. Lett. 2003, 90, 160402. [Google Scholar] [CrossRef] [Green Version]
- Licata, I.; Fiscaletti, D. Quantum Potential: Physics, Geometry And Algebra; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Doebner, H.D.; A Goldin, G. Properties of nonlinear Schrodinger equations associated with diffeomorphism group representations. J. Phys. A Math. Gen. 1994, 27, 1771–1780. [Google Scholar] [CrossRef]
- Doebner, H.D.; Goldin, A.G. On a general nonlinear Schrodinger equation admitting diffusion currents. Phys. Lett. A 1992, 162, 397–401. [Google Scholar] [CrossRef]
- Risken, H. The Fokker-Planck Equation: Methods of Solution and Applications; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Nattermann, P.; Scherer, W.; Ushveridze, A. Exact solutions of the general Doebner-Goldin equation. Phys. Lett. A 1994, 184, 234–240. [Google Scholar] [CrossRef]
- Atangana, A. Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology; Academic Press: Cambridge, MA, USA, 2018; pp. 49–72. [Google Scholar]
- Castella, F. On the derivation of a quantum Boltzmann equation from the periodic Von-Neumann equation. ESAIM Math. Model. Numer. Anal. 1999, 33, 329–349. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekhar, S. Principle of Stellar Dynamics; Dover Publications: New York, NY, USA, 1943. [Google Scholar]
- Rosenbluth, M.N.; Macdonald, W.M.; Judd, D.L. Fokker-Planck Equation for an Inverse-Square Force. Phys. Rev. 1957, 107, 1–6. [Google Scholar] [CrossRef] [Green Version]
Quantum Equations | ||
---|---|---|
Continuity equation with Source or Sink | ||
Fokker–Planck equation | ||
Convection–diffusion equation | ||
Quantum Boltzmann equation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mollai, M.; Saberi Fathi, S.M. An Application of the Madelung Formalism for Dissipating and Decaying Systems. Symmetry 2021, 13, 812. https://doi.org/10.3390/sym13050812
Mollai M, Saberi Fathi SM. An Application of the Madelung Formalism for Dissipating and Decaying Systems. Symmetry. 2021; 13(5):812. https://doi.org/10.3390/sym13050812
Chicago/Turabian StyleMollai, Maedeh, and Seyed Majid Saberi Fathi. 2021. "An Application of the Madelung Formalism for Dissipating and Decaying Systems" Symmetry 13, no. 5: 812. https://doi.org/10.3390/sym13050812
APA StyleMollai, M., & Saberi Fathi, S. M. (2021). An Application of the Madelung Formalism for Dissipating and Decaying Systems. Symmetry, 13(5), 812. https://doi.org/10.3390/sym13050812