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Abstract: Dielectric loss tanδ and partial discharge (PD) are important indicators for status assessment
of oil-pressboard insulation. The correlation characteristics between these two parameters has
significance for understanding the material’s degradation and helps to eliminate the information
asymmetry for diagnostics. In this paper, the symmetric experimental platform is set up to measure
the dielectric loss tanδ and PD for oil-pressboard insulation following the designed testing procedure
consisted of raised and rested voltages. Three sets of samples with different water content were
tested. The variation mechanism of tanδwith voltage is explained by proposed equivalent circuit,
which introduced an asymmetric component representing defect part. PDs are found to be symmetric
in the sinusoidal voltage cycles and their statistical parameters are calculated. Besides, the correlation
between dielectric loss difference from raised voltage to rested voltage and PD is researched. Strong
correlation is observed between dielectric loss and PD, which offers degradation insight for oil-
pressboard insulation and helps to eliminate information asymmetry for material status diagnostics.

Keywords: correlation; dielectric loss; oil-pressboard insulation; partial discharge

1. Introduction

Oil-pressboard insulation material is widely used in transformers, bushings, capaci-
tors, etc. [1–3]. Dielectric loss tanδ and partial discharge (PD) are the two parameters that
are used to assess the insulation status [4–6]. As early as 1976, Takahashi E. et al. analyzed
the PD characteristics for oil-paper under DC and AC voltages [7]. Later on, researchers
studied the PD features under surge voltage [8,9]. Besides the recorded time-resolved data,
statistical parameters are used for PD analysis [10,11]. Regarding dielectric loss, besides its
own diagnostic function for insulation materials, Ruan J. et al. developed the inversion
algorithm to obtain the oil-immersed paper resistivity from dielectric loss for insulation
status assessment [12]. Frequency domain spectroscopy measurement is further developed
based on dielectric loss to diagnose oil-pressboard [13].

The water content in the oil-pressboard may influence its insulation status, leading to
different dielectric loss and/or PD behavior [14–16]. Przybylek P. et al. investigated the
influence of cellulose insulation ageing and moistening on dielectric losses [17]. Cui Y. et al.
proposed a distributed parameter model to reveal the correlation between moisture dis-
tribution and the dielectric response parameters of cellulose insulation [18]. Liao R. et al.
performed quantitative diagnosis of moisture content in oil-paper insulation based on
frequency domain spectroscopy [19].

The relation between PD and water ingress is also researched. Rowland S.M. et al.
measured the PD development for wet oil-paper [20]. Ramya M. et al. found that water
in pressboard papers makes the partial discharge inception voltage (PDIV) low and the
PD occurred frequently, quickly leading to breakdown [21]. Župan T. et al. designed a
capsule that can be used in the assessment of water content influence on the condition of
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the oil-paper insulation [22]. Jiang J. et al. reported that there is a sharp reduction of PDIV
or a sudden increase of PD intensity due to moisture in oil-paper insulation [23].

Although great effort has been devoted into oil-pressboard characteristics, to char-
acterize its degradation based on single parameter, e.g., dielectric loss or PD, may create
information asymmetry and lead to an incorrect result. Understanding their correlation
offers insight into material’s degradation mechanism and new tools for diagnostics, which
helps to eliminate the information asymmetry in material assessment. This paper fo-
cuses on the correlation between dielectric loss tanδ and PD for oil-pressboard material,
which was seldom researched by previous scholars. Parameters with strong correlation
are identified in this paper, and the dielectric loss dependency upon PD is explained. The
scientific goal is to explore the comprehensive degradation characteristics of oil-paper
insulation and understand its mechanism, which is helpful for insulation/equipment con-
dition diagnostics. In this paper, the oil-pressboard samples with different water content
were prepared in this paper. The dielectric loss and PD for oil-pressboard insulation are
measured simultaneously and their correlation is discussed.

This paper is organized, as follows. Section 2 describes the test setup. Section 3 gives
the result of dielectric loss tanδ and PD separately for three samples with different water
content. Section 4 discussed the correlation between these two parameters. Section 5
provides conclusions.

2. Test Setup and Measurement Procedure
2.1. Test Setup

The test model of oil-pressboard insulation was constructed, as in Figure 1, based on
symmetry principle. The voltage electrodes are round plates with 400 mm diameter for
high voltage and 500 mm diameter for grounding electrode, as in Figure 1a. The tested
square oil-pressboard is from Weidmann and it has side length of 480 mm and 2 mm
thickness, as in Figure 1b.
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humidified to have different water content. The samples are weighed hen the humidifying 
process is finished. With the weight difference, water content is calculated. It is obtained 
that the water contents for sample B and C are 2.4% and 3.8% separately. While A is the 
sample without water. More than three samples for each category (A, B, C) were prepared. 
However, only one test result for each is shown here since they are similar. 

Figure 1. Schematic show and constructed setup for testing. (a) Schematic of test setup; (b) Picture of
test setup.

2.2. Sample Preparation

The samples were prepared as in Figure 2. After cutting and drying, the samples are
humidified to have different water content. The samples are weighed hen the humidifying
process is finished. With the weight difference, water content is calculated. It is obtained
that the water contents for sample B and C are 2.4% and 3.8% separately. While A is the
sample without water. More than three samples for each category (A, B, C) were prepared.
However, only one test result for each is shown here since they are similar.
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Figure 2. Sample preparation with different water content.

2.3. Data Extraction

Figure 3 shows the setup. The rated voltage of testing transformer is 110 kV and its
apparent discharge is less than 5 pC. The protection resistor is 10 kΩ. The ratio of voltage
divider is 1500:1. A high frequency current probe (HFCT) is used to measure the PD signal.
The bandwidth of HFCT is 100 kHz–100 MHz with 1 pC sensitivity. The dielectric loss
is characterized by tanδ, which is calculated as (1) by measuring the applied voltage and
leakage current, where ϕi is the current phase for 50 Hz and ϕu is the voltage phase for 50
Hz. The calculation is performed based on FFT spectrum analysis. The Blackman–Harris
window and interpolation technique were applied to eliminate the picket fence effect and
leakage spectrum’s effect on FFT, as in [24].

tan δ = tan[π/2− (ϕi − ϕu)] (1)
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The leakage current is measured with microammeter, whose measurement range is
from 100 µA to 700 mA and angle error is within ±0.01◦. The partial discharge detector’s
sampling frequency is 1 MHz. The test setup fulfills IEC60270. Shielding is considered in
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the laboratory to guarantee a noise level lower than 5 pC. Dedicated error analysis can be
nontrivial [25] and out of the scope of this paper.

Corresponding to Figure 4, the testing procedure is designed, as following:

1. apply 2 kV under which there is no PD. Record voltage and current signal for tanδ
calculation;

2. increase voltage with 1 kV step and keep it stable for 1 min;
3. record PD and tanδ data for 5 min. Tanδ data is registered each 30 s, thus 10 data are

gathered in 5 min. PD is measured every 6s with recording length of 20 ms, leading
to 50 data;

4. decrease the voltage to 2 kV and keep it for 1 min;
5. keep the voltage to be 2 kV for 2.5 min while gathering tanδ data. 5 data are recorded

with 30 s time step; and,
6. repeat 2–5 until the voltage reaches 0.8 × Ub(flashover voltage). For sample group A,

the stop voltage is 16 kV. For sample group B and C, the stop voltages are 14 kV and
12 kV.
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3. Dielectric Loss and Partial Discharge Statistical Parameters

In order to study the correlation between PD and tanδ, firstly their own statistical
parameters are analyzed, as below.

3.1. PD Statistical Parameters

Table 1 lists the derived parameters, provided that Hn(q) is the phase-resolved data
consisted of charge transfer q, and discharge rate n.

Table 1. Derived parameters for PD measurement.

Parameter Unit Meaning

qt pC total discharge magnitude
nt - total number of discharges

qavg pC mean discharge magnitude
qmax pC maximum discharge magnitude

σ ◦ mean pulse width of discharge
Sk - skewness of Hn(q)
Ku - kurtosis of Hn(q)
α - Weibull scale parameter of Hn(q)
β - Weibull shape parameter of Hn(q)
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Figure 5a shows the total discharge magnitude qt. Partial discharge increased with
voltage and higher water content leads to more discharge. Mean discharge magnitude and
maximum discharge magnitude with voltage are shown in Figure 5b,c with a similar trend.
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Figure 6a shows the total number of discharges, which indicates that the voltage
increase firstly enhanced the PD number and then hindered it. For the increase part, the
water content did not have significant effect on the result. However, in the PD decrease
part, water content lowered the PD occurring. Figure 6b is the mean width of discharge
variation with voltage. It can be seen that, with the increase of voltage, the discharge
duration firstly increased and then decreased. For the increase part, water content has
positive effect on the pulse duration.
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Figure 7a,b show the skewness and kurtosis of Hn(q). These two variables decreased
with voltage, while water content also lowered the values. Figure 8 plots the Weibull
parameters of Hn(q). Figure 8a clearly shows that water content affected the scale parameter
α above 7 kV. Higher water content referred to bigger α. Figure 8b shows the shape
parameter β. For samples with water content, β shows a moderate decrease with the
voltage. In contrast, this parameter increases a bit with voltage for samples without water.
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3.2. Tanδ Statistical Parameters

The average tanδ from step 3 and 5 in Section 2.3 was calculated and is shown in
Figure 9. This value increased with voltage and water content. Additionally, there is clear
difference for tanδ between Figure 9a,b, which indicates the dielectric loss variation before
and after the voltage application.
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The difference between these two tanδ is obtained as Equation (2) and it is shown in
Figure 10, where tanδU is the result in Figure 9a and tan δU

2kV is the result in Figure 9b. It
can be seen that the voltage had positive effect on tanδ increase. While under the same
voltage, tanδ increase has a positive dependency on water content.

4 tan δ = tan δU − tan δU
2kV (2)Symmetry 2021, 13, x FOR PEER REVIEW 7 of 15 
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To analyze the tanδ result, an equivalent circuit, as in Figure 11, is proposed. The
grey block represents the defect area. The dielectric can be modelled by the double layer
structure, as in the left figure of Figure 11, where layer I has defect and its equivalent
parameters are R1, C1 while layer II has no defect with equivalent parameters R′ and C′.
Obviously, these two layers have different equivalent parameters. Layer II without defect
has better insulation capability than layer I with defect. Thus, R′ >> R1, and R′ can be
neglected, leading to the circuit in the right part of Figure 11. When voltage U0 is applied,
current can be deduced as:

I = U0
ω2C′2R1 + j[ωC′ + ω3C1C′(C1 + C′)R2

1]

1 + ω2(C1 + C′)2R2
1

(3)

hereω = 2πf and f is frequency.
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Based on Equation (3), tanδ can be expressed as:

tan δ =
1/(ωR1C1)

C1
C′ (1 +

1
ω2C2

1 R2
1
) + 1

=
tan δd

H(1 + tan δ2
d) + 1

(4)

where H = C1/C′ and it is defined as defect factor. When the defect is enlarged, C1 decreases
(layer I gets thicker) and C′ increases, which makes H smaller. Tanδd is the dielectric loss
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for defect part. When tanδd is constant, tanδ is reversely related with H. Figure 12 shows
the dependency of tanδwith tanδd and H, where H1 < H2 < H3.
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the curve decreased (from 8 kV to 10 kV in Figure 14a and point A to B in Figure 14b). 
With the continuous voltage rise, PD enlarged the defect and lowered the defect factor H. 
Together with the increase of tanδd due to PD’s effect, the curve shown in Figure 14a in-
creased above 10 kV and the curve in Figure 14b changed from B to D. 

Figure 12. Tanδ of insulation characteristic upon defect factor H and tanδd.

Figure 13 is the tanδ characteristic of sample A. Figure 13a is the measured result and
Figure 13b is the ideal tanδ curve for sample A based on Figure 12. When the voltage
was lower than 6 kV, PD did not show up severely, both tanδd and H did not vary much,
making tanδ increase gently. For the voltage from 7 KV–12 kV, due to PD’s effect, the
defect’s dielectric loss tanδd increased. Yet, the defect area did not increase much, which
means that H did not change. This can be confirmed by the rather stable curve for sample
A in in Figure 9b between 7 kV and 12 kV (after voltage application, dielectric loss did not
change). Thus, tanδ increased sharply in this range. For voltage above 12 kV, H decreased,
which can be seen in Figure 9b for the rise above 12 kV. Additionally, tanδd increased due
to continuous PDs. The combined effect changed the curve from A to B, then to C, as in
Figure 13b.
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Figure 13. (a) Tanδ characteristic of sample A; (b) Schematic ideal tanδ characteristic for sample A.

For sample B and C, the tanδ characteristic is analyzed in Figure 14 by taking sample
B as an example. There is a tuning point of about 8 kV. This can be explained as tanδd’s
increase surpassed the peak, as in Figure 12, due to water effect. If H keeps constant, then
the curve decreased (from 8 kV to 10 kV in Figure 14a and point A to B in Figure 14b).
With the continuous voltage rise, PD enlarged the defect and lowered the defect factor
H. Together with the increase of tanδd due to PD’s effect, the curve shown in Figure 14a
increased above 10 kV and the curve in Figure 14b changed from B to D.
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Figure 14. (a) tanδ characteristic of sample B; (b) schematic ideal tanδ characteristic for sample B.

4. Correlation between PD and Tanδ

The correlation between PD and tanδ is studied by Pearson’s coefficient. For vector
x = (x1, x2, . . . xn) and y = (y1, y2, . . . yn), Pearson’s coefficient is calculated, as below:
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(5)

when r is 1, the two vectors are completely positively correlated. When r is −1, the
two vectors are completely negatively correlated.

4.1. Correlation between PD and tanδ Statistical Parameters

Table 2 lists the calculated correlation coefficients. All of the shown absolute values
are above 0.7, which indicates strong correlation. The detailed data are listed in Figure 15.
As in the Figure, although disturbance is observed, correlation is clear between dielectric
loss and PD.

Table 2. Correlation coefficient with tanδ.

qt nt qavg qmax σ Sk Ku α

A 0.728 −0.734 0.767 0.712 0.962 −0.734 −0.818 0.718
B 0.804 −0.709 0.819 0.809 0.871 −0.762 −0.812 0.744
C 0.837 −0.708 0.808 0.796 0.847 −0.770 −0.837 0.766
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of Hn(q) with tanδ; (g) Kurtosis of Hn(q) with tanδ; and, (h) Weibull coefficient of Hn(q) with tanδ.

4.2. Correlation between PD and ∆tanδ

Because no PD was observed when the voltage was lowered to 2 kV, as in Figure 4,
∆tanδ can be regarded as the effect the PD during voltage rise.

Tanδ is derived from 50 Hz voltage and current. When there is PD containing 50 Hz
component, it will affect the tanδ result. Thus, the 50 Hz component was taken from the
PD signal and normalized. The result is compared with tanδ and shown in Figure 16. It
can be seen that there is strong correlation between these two variables.

This correlation can be further observed in Figure 17, where a linear relation is shown.
To further analyze this phenomenon, PD is simulated based on measured data. Figure 18
shows the typical recorded waveform of PD with reference voltage. The PDs occurred
at 0–90◦ and 180–270◦, and they were basically symmetric in the positive and negative
cycles. With increase of applied voltage, PD grew, and it covered wider phase range, as in
Figure 18b as compared with Figure 18a. For case of ease, the following assumptions are
taken for simulated PDs:

1. PDs occur symmetrically with respect to positive and negative cycles;
2. square wave is used to simulate PDs;
3. all PDs have the same amplitude, duration and repetition rate; and,
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4. in the positive cycle, the PDs are centered at 45◦, while, in the negative cycle, the PDs
are centered at 225◦.
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Figure 19 shows the simulated PDs. Three simulation tests are performed.

1. PD amplitude A is set to 1. PD duration is set to be 10 µs. The time interval between
each PD is 20 µs. The number of PDs is set to be 20, 40, and 60. Their effect to the
frequency component is analyzed, as in Figure 20. It shows that, with the increase of
PD number, the 50 Hz component is also increased.

2. PD duration is set to be 10 µs. The time interval between each PD is 20 µs. The
number of PDs is set to be 20. While PD amplitude A is set to be 1–3. Their effect on
the frequency component is analyzed, as in Figure 21. Additionally, the amplitude
rise will increase the 50 Hz component.

3. PD amplitude A is set to 2. The time interval between each PD is 20 µs. The number
of PDs is set to be 40. While PD duration varies as 10 µs, 20 µs, and 30 µs. Their
effect on the frequency component is analyzed, as in Figure 22. Again, the duration
enlargement will increase the 50 Hz component.
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5. Conclusions

For oil-pressboard insulation, the discharge magnitude rises with voltage and water
content. Dielectric loss tanδ increased with voltage. However, there is saturation. For
oil-pressboard with water, tanδ can even decrease with voltage. An equivalent circuit
model is proposed to explain this characteristic, which shows that tanδ is dependent on
defect area and the dielectric loss of defect part.

Dielectric loss tanδ is correlated with PD, specifically with total discharge magnitude,
total number of discharges, average discharge magnitude, maximum discharge magnitude,
average pulse duration of discharge, Weibull scale parameter, skewness, and kurtosis of
phase-resolved data consisting of charge transfer and discharge rate. The dielectric loss
difference that is obtained from tanδ at raised voltages and rested 2 kV is almost linearly
correlated with and contributed by 50 Hz component of PDs.

The strong correlations between dielectric loss and PD, especially between the dielec-
tric loss difference and 50 Hz component of PDs, improves the degradation’s understanding
and provides a diagnostic tool for oil-pressboard that helps to eliminate the information
asymmetry from single parameter. With the derived data and model, one can observe the
correlation between tanδ and PD, with which further study of the degradation process of
the oil-pressboard insulation material can be performed, and a multi-source information
fusion insulation evaluation technique can be developed to improve the power equipment
assessment level.
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