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Abstract: Evolution and heating of the universe in R2-modified gravity are considered. It is shown
that the universe’s history can be separated into four different epochs: (1) inflation, (2) heating due to
curvature oscillations (scalaron decay), (3) transition to matter dominated period, and (4) conventional
cosmology governed by General Relativity. Cosmological density of dark matter (DM) particles for
different decay channels of the scalaron is calculated. The bounds on the masses of DM particles are
derived for the following dominant decay modes: to minimally coupled scalars, to massive fermions,
and to gauge bosons.
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1. Introduction

The mystery of dark matter (DM) is one of the central problem of modern cosmology.
There is a large set of independent pieces of observations which unambiguously point to
the existence of a new invisible form of matter disclosing itself through its gravitational
action. For a review and list of references see [1–3].

According to multiple observations, summarized in Ref. [4], the fractional mass
density of dark matter is:

ΩDM =
ρDM
ρcrit

≈ 0.265. (1)

Here ρcrit is the critical energy density of the universe:

ρcrit =
3H2

0 M2
Pl

8π
≈ 5 keV/cm3, (2)

where MPl = 1.22× 1019 GeV = 2.18× 10−5 g is the Planck mass related to the Newton
gravitational constant as GN = 1/M2

Pl (We use the natural system of units with c = k =
h̄ = 1) and H0 is the present day value of the Hubble parameter, for which we took

H0 = 100 h km s−1 Mpc−1 ≈ 70 km s−1 Mpc−1. (3)

Thus, the observed mass density of dark matter in contemporary universe is:

ρDM = 1 keV/cm3. (4)

The existence of DM and the magnitude of its contribution into the total mass density
of the universe follow from the analysis of the data on:

• flat rotational curves around galaxies;
• equilibrium of hot gas in rich galactic clusters;
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• the spectrum of the angular fluctuations of Cosmic Microwave Background (CMB) Radiation;
• onset of Large Scale Structure (LSS) formation at the redshift zLSS = 104 prior to

hydrogen recombination at zrec = 1100.

Presently, possible carriers of dark matter are supposed to belong to two distinct
groups: microscopically small (elementary particles) and macroscopically large. The latter
may include primordial black holes (PBH) with masses starting from 1020 g up to tens
solar masses, topological or non-topological solitons, and possible macroscopic objects
consisting e.g., from the so-called mirror matter. A popular form of elementary particle
dark matter is called WIMPs (Weakly Interacting Massive Particles), while quite a few
other particles types are also discussed in the literature. Macroscopic dark matter of stellar
size is abbreviated as MACHO(Massive Astrophysical Compact Halo Object).

The Zoo of the dark matter particles includes, in particular, axions with masses
10−5 eV or even smaller, heavy neutral leptons with the mass of a few GeV, particles of
mirror matter, the so-called superheavy Wimpzillas, and many others. Until recently, one
of the most popular candidates was the Lightest Supersymmetric Particle (LSP) which,
according to the low energy minimal supersymmetric (SUSY) model, should have a mass of
several hundred GeV. With the interaction strength typical for this model the cosmological
mass density of these particles was predicted to be close to the observed density of DM.
However, the absence of signal from supersymmetric partners at Large Hadron Collider
(LHC), if not excluded, but considerably restrict the parameter space of the minimal
supersymmetric model.

In the present review, we consider cosmological evolution in the theory where the
linear in curvature term is supplemented by the quadratic one. In other words, the
Lagrangian density of General Relativity (GR) is modified as follows:

−
M2

Pl
16π

R −→ −
M2

Pl
16π

(
R− R2

6M2
R

)
, (5)

where R is a curvature scalar and MR is a constant parameter with dimension of mass.
We show that in such a theory, cosmological evolution can be separated into four

distinct epochs.

1. Quasi-exponential (inflationary) expansion, which was realised if the initial value of
R was sufficiently large. During this period, R slowly decreased to zero.

2. Curvature (scalaron) dominated regime, when R oscillated around zero with the
amplitude inversely proportional to time. At this stage oscillations of R led to particle
production and to universe heating.

3. Transition period when R dominance was changing to the dominance of (relativistic)
matter.

4. Onset of the conventional cosmology governed by General Relativity.

In the course of this review, we assume that the cosmological background is described
by the spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW) metric:

ds2 = dt2 − a2(t)δijdxidxj, (6)

where a(t) is the cosmological scale factor and H = ȧ/a is the Hubble parameter at an
arbitrary time moment.

2. Freezing of LSP in Conventional Cosmology

The number density of stable dark matter particles in contemporary universe is deter-
mined by the relation of their annihilation rate to the rate of the cosmological expansion. At
a certain moment, the annihilation efficiently stops and the number density of the particles
tends to a constant value in the comoving volume. This process is called the freezing of
species and was first studied in Refs. [5,6].
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Calculations of the frozen number density of stable relic particles, X, are based on the
kinetic equation, derived by Zeldovich in 1965 [5]:

ṅX + 3HnX = −〈σannv〉
(

n2
X − n2

eq

)
, (7)

where nX is a number density of particles X, σann is XX̄-annihilation cross-section into light
particles, v is the center-of-mass velocity. The angle brackets mean thermal averaging over
the medium. We have made the standard assumption of absence of the charge asymmetry
between X and X̄-particles, i.e., assumed equality of their number densities: nX = nX̄ .

For annihilation of non-relativistic particles in S-wave the thermal averaging is trivially
reduced to the product σannv in the limit of the vanishing velocity of colliding X-particles.
As a guiding example for the cross-section estimate we take the well known cross-section
of non-relativisitc e+e−-annihilation into photons (see e.g., [7]):

σ(e+e− → 2γ) =
πα2

em
2m2

e v
, (8)

where αem = 1/137 is the fine structure constant at low energies and v is the electron
(or positron) center-of-mass velocity. Using this result we estimate the annihilation cross-
section of heavy X-particles into all light relativistic species as

σannv =
πα2βann

2M2
X

, (9)

where MX is the X-particle mass, α is a coupling constant, in supersymmetric theories
α ∼ 10−2, and βann is a numerical parameter proportional to the number of open annihila-
tion channels, which can be of order of ten or even larger. The contribution to βann from
bosons and fermions may be somewhat different but we ignore this complication.

In the case that X-particles are the Majorana fermions, hence they should be in an-
tisymmetric state, the annihilation proceeds in P-wave. So we take for the annihilation
cross-section the expression

〈σannv〉 = 3πα2βann

2M2
X

T
MX

, (10)

where the last factor came from thermal averaging of the squared velocity of X-particles,
equal to 〈v2〉 = 3T/MX .

The equilibrium number density of X-particles, neq, in non-relativistic limit is given
by the expression

neq = gs

(
MXT
2π

)3/2
e−MX/T , (11)

where gs is the number of the spin states of X-particles.
The Zeldovich Equation (7) was first applied to calculations of cosmological number

density of heavy neutral leptons, which could be viable dark matter particles, in Refs. [8,9].
After publication [8] Equation (7) took the name “Lee-Weinberg equation”, but the proper
name, in our opinion, is the Zeldovich equation.

Equation (7) can be solved analytically with quite high accuracy. The standard
procedure of the solution is the following. At high temperatures, the number den-
sity of X-particles should be close to the equilibrium one, since the annihilation rate
Γann = 〈σannv〉neq is typically much larger than the Hubble expansion rate. According to
the Friedmann equation, the Hubble parameter in a spatially flat universe is related to
the energy density of the cosmological matter as ρ = 3H2M2

Pl/(8π). If the cosmic plasma
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is in the state of thermal equilibrium, then ρ = π2T4g∗/30. Hence in the conventional
Friedmann cosmology the Hubble parameter is given by the expression:

H =

(
8π3g∗

90

)1/2 T2

MPl
, (12)

where T is the temperature of the equilibrium cosmological plasma and g∗ is the total
effective number of particle species, to which bosons and fermions contribute respectively
1 and 7/8 for each spin state. Since the number of particle species decreases with dropping
temperature g∗ is a function of temperature and drops down from 100 down to 10 at
T ∼ 1 MeV.

Initially, the reaction rate is supposed to be much higher than the Hubble rate and at
this stage the particle number density is close to the equilibrium one, nX = neq(1 + δ) with
δ� 1. So Equation (7) can be approximately linearized in first order in δ. It is convenient
to consider the dimensionless number density, f (t), in the comoving volume:

nX = nin

( ain
a

)3
f , (13)

where nin is the value of X-particle density at a = ain and T = Tin � MX, where a is the
cosmological scale factor defined below Equation (6), so the X-particles can be considered
to be relativistic and thus

nin ≈ 0.1gsT3
in, (14)

because the number density of massless particles in thermal equilibrium is 0.12gsT3 for
bosons and 0.09T3 for fermions, we have taken the approximate value for the numerical
coefficient equal 0.1 valid for both cases. As we see in what follows, the final result does
not depend upon initial conditions.

During the radiation dominated stage the Hubble parameter and the scale factor
behave as:

H = 1/(2t), a(t) ∼ t1/2. (15)

Using Equation (12) we find the connection between temperature and time in cosmol-
ogy based on General Relativity:

tT2 =

(
90

32π3g∗

)1/2
MPl = const. (16)

Correspondingly,

Ṫ
T

= − 1
2t

. (17)

In terms of new function f Equation (13) and dimensionless variable x = MX/T
Equation (7) takes the form:

d f
dx

= −Q
( ain

a

)3 nin
T3

f 2 − f 2
eq

x2 , (18)

where

Q = MPl MX

(
45

4π3g∗(Tin)

)1/2
〈σannv〉 (19)
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and feq is defined as

feq =
neq

nin

(
a

ain

)3
, (20)

where neq and nin are given by Equations (11) and (14) respectively.
The product a3T3 in Equation (18) is approximately constant up to the corrections

induced by the heating of the plasma by the massive particle annihilation when the tem-
perature drops below these particle masses. That is why the number density of X-particles
calculated in GR cosmology are normalised to the entropy density which is conserved in
the comoving volume. Up to this effect the temperature drops down as the inverse scale
factor, a/ain = Tin/T. According to Equation (14) the coefficient (a3

innin)/(a3T3) in the GR
regime is equal to 0.1gs and Equation (18) turns into:

d f
dx

= − 0.1gs Q
f 2 − f 2

eq

x2 , (21)

where feq is given by Equation (20) with neq and nin defined in Equations (11) and (14)
respectively, so:

feq = 10
( x

2π

)3/2
e−x. (22)

Due to a very large value of Q, the solution, f (x), is initially close to equilibrium:

f = feq(1 + δ) (23)

with δ� 1. In this quasi-equilibrium regime Equation (21) can be algebraically solved as

δ = − x2

0.2 gs Q f 2
eq

d feq

dx
≈ x2

0.2 gs Q feq
=

(2π)3/2 x1/2 ex

2gs Q
, (24)

because d feq/dx ≈ − feq for large x, see Equation (22).
This solution is approximately valid till δ remains smaller than unity. The condition

δ(x f r) = 1 defines the so-called freezing temperature Tf r = MX/x f r, where x f r is equal to:

x f r ≈ ln
2gs Q
(2π)3/2 −

1
2

ln x f r ≈ ln
2gs Q
(2π)3/2 −

1
2

ln ln
2gs Q
(2π)3/2 . (25)

Dimensionless number density f at the moment of freezing is given by the expression:

f f r = f (x f r) = 2 feq(x f r) =
10 x2

f r

gs Q
=

10
gs Q

ln2
(

2gs Q
(2π)3/2

)
. (26)

When x becomes larger than x f r, one can neglect f 2
eq in r.h.s. of Equation (21) and this

equation takes the form

d f
dx

= −0.1 gs Q
f 2

x2 . (27)

We need to integrate Equation (27) with the initial condition fin = f f r at xin = x f r,
where f f r is defined by Equation (26).

For S-wave annihilation Q does not depend upon x and using Equations (19) and (9)
we find:

Q =
α2βann

4

(
45

πg∗(Tin)

)1/2 MPl
MX

. (28)
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and Equation (27) is integrated as:

f (x) =
f f r

1− 0.1 gs Q f f r

(
1
x −

1
x f r

) −→
x→∞

f f r

1 + 0.1 gs Q
f f r
x f r

−→
10x f r

gs Q
≡ fas. (29)

The last limit transition is true if (0.1 gs Q f f r)/x f r � 1. Remind that the asymptotically
constant value, fas = const, is the dimensionless concentration of X-particles in the present
day universe, defined according to Equation (13). It means that asymptotically the number
density of X-particles drops down as 1/a3, or, in other words, it is conserved in the
comoving volume. Let us denote as Tas the temperature below which the asymptotically
constant value fas is reached.

For P-wave annihilation we have to substitute into Equations (24) and (27) the factor
QP = 3Q/x instead of Q and take into account that Equations (25) and (26) are changed as:

xP
f r ≈ ln

6 gs Q
(2π)3/2 −

3
2

ln xP
f r ≈ ln

6 gs Q
(2π)3/2 −

3
2

ln ln
6 gs Q
(2π)3/2 . (30)

f P
f r = f (xP

f r) = 2 feq(xP
f r) =

10 (xP
f r)

3

3 gs Q
=

10
3 gs Q

ln3
(

6 gs Q
(2π)3/2

)
. (31)

In this case, Equation (27) is transformed into:

d f P

dx
= −0.3 gs Q

( f P)2

x3 , (32)

with initial conditions (30) and (31). The solution has the form

f P(x) = f P
f r

(
1−

0.3 gs Q f P
f r

2

(
1
x2 −

1
(xP

f r)
2

))−1

−→
x→∞

f P
f r

1 + 0.3 gs Q f P
f r/(2(xP

f r)
2)

−→
20(xP

f r)
2

3 gs Q
≡ f P

as. (33)

We apply the obtained above results for calculations of the present day number and
energy densities of relic X-particles. To this end we will use the law of entropy conservation
in the comoving volume, see e.g., [10]:

s =
ρ + P

T
∼
( aas

a

)3
, (34)

where T, ρ, and P are respectively the temperature, energy density and pressure of the
cosmological matter, which is predominantly relativistic. We normalised entropy at the
value of the scale factor, aas, at the temperature Tas, when f reaches its asymptotic value
fas. For relativistic matter

ρ =
π2 g∗

30
T4, P =

ρ

3
, (35)

where g∗ ∼ 100 at T ∼ MX .
Since the asymptotic number density of X-particles conserves in the comoving volume,

its ratio to the entropy stays constant:

nX(a > aas)

s(a > aas)
= const. (36)
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According to Equations (13) and (14):

nX(a) = 0.1 gs T3
as

( aas

a

)3
fas. (37)

Entropy density is equal to:

s(T) =
4π2 g∗(T)

90
T3. (38)

Hence the ratio (36) is:

nX
s

=
9gs fas

4π2 g∗(T)

( aas

a

)3
(

Tas

T

)3
, (39)

where g∗(Tas) ≈ 100 is the number of effective degrees of freedom at T = Tas. Due to
entropy conservation the quantity g∗(T) T3 remains constant in comoving volume for
the primeval plasma in thermal equilibrium. So we can rely on this conservation down
to temperatures T1 ≈ 1 MeV, when g∗(T1) = 10.75. Below this temperature neutrinos
decouple from the primeval plasma, while photons and e+e−-pairs remain in equilibrium
with the effective number of degrees of freedom gem

∗ (T1) = 5.5. After e+e−-annihilation
the effective number of degrees of freedom in electromagnetic component of the plasma
becomes gem

∗ (T � me) = 2, where me = 0.511 MeV is the electron mass. The issues of
neutrino decoupling and the effective number of degrees of freedom are described in detail
in Ref. [11].

The number density of X-particles at T = T1, as follows from the conservation
law (36), is:

nX(T1) = s(T1)
nas

sas
, (40)

where according to Equation (37)

nas = nX(aas) = 0.1 gs T3
as fas (41)

and sas is given by Equation (38) at T = Tas.
Below T = T1 entropy is conserved only in the electromagnetic part of the plasma, so

nX(T1)

sem(T1)
=

nX0

sem0
, (42)

where sem is the entropy of electromagnetic component of the plasma consisting of photons
and e+e−-pairs and sub-zero indicates that the corresponding quantities are taken in the
present day universe.

The entropy of photons in the contemporary universe is expressed through the photon
number density, nγ0 = 0.24T3

0 , as

sem0 =
4π2

90
gem
∗ T3

0 =
4π2

0.24 · 90
gem
∗ nγ0, (43)

where nγ0 = 412 cm−3, see e.g., astrophysics summery table in [4].
So the present day number density of X-particles is:

nX0 =
nX(T1)

sem(T1)
sem0 =

s(T1)

sem(T1)

nas fas

sas
sem0 =

g∗(T1)

gem∗ (T1)

0.1gs fas

g∗(Tas)

gem
∗ nγ0

0.24

= 13.4 fas cm−3. (44)
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Let us apply the obtained above results for determination of cosmological energy
density, ρX0 = MXnX0, of LSP in the low energy supersymmetric model. Substituting
in (28) α = 10−2, βann = 10, and g∗(Tin) = 100, we achieve by an order of magnitude
the estimate:

Q =
1.15 · 1012

MTeV
, (45)

where MTeV = MX/TeV. With the chosen values of parameters the cosmological energy
density of X-particles at the present time would be:

ρ ≈ 0.33 M2
TeV keV/cm3, (46)

which is quite close to the observed value of the dark matter energy density (4).
Typical lower bounds on masses of supersymmetric partners, according to LHC data,

are in TeV region, see e.g., [4,12]. LSPs with the masses of order of a few TeV or higher
would overclose the universe and so they should be excluded from the pool of possible
dark matter candidates, provided the conventional Friedmann cosmology is valid. In what
follows we consider modified cosmological scenario which allows lifting this constraint
and to reopen the chance for superheavy particles with interaction strength typical for
SUSY to be DM carriers.

3. Cosmological Evolution in R2-Gravity Prior to the Universe Heating
3.1. Action Modification

The canonical action of General Relativity, the Einstein-Hilbert action [13–15], has
the form:

SEH = −
M2

Pl
16π

∫
d4x
√
−g R, (47)

where R is the curvature scalar and g is the determinant of the metric tensor gµν with
the signature convention (+,−,−,−). The Riemann tensor describing the curvature of
space-time is determined according to Rα

µβν = ∂βΓα
µν + · · · , Rµν = Rα

µαν, and R = gµνRµν.
This action is supplemented by the action of matter, Sm, which provides the source of

gravitational field, the energy-momentum tensor of matter, Tµν:

Tµν =
2√−g

δSm

δgµν . (48)

Taking variation of the total action, SEH + Sm, over δgµν we arrive to the classical
Einstein equations:

Rµν −
1
2

gµνR =
8π

M2
Pl

Tµν . (49)

In Refs. [16–18] corrections to vacuum Einstein action have been calculated by per-
forming quantum averaging of Tµν in external curved space-time. In particular the addition
to the action contains the following terms:

δS ∼ BR2 + CR2 ln R, (50)

where the coefficient C = 1/(144πM2
Pl), while B depends upon the renormalisation and

is unknown. According to Ref. [18] sufficiently large coefficient B leads to exponential
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expansion of the universe (inflation) at the early stage. The corresponding effective action
is taken as:

Stot = −
M2

Pl
16π

∫
d4x
√
−g

(
R− R2

6M2
R

)
+ Sm , (51)

where MR is a parameter with the dimension of mass and, according to assumption,
MR � MPl .

The modified Einstein equations for theory (51) are the following:

Rµν −
1
2

gµνR− 1
3M2

R

(
Rµν −

1
4

Rgµν + gµνD2 − DµDν

)
R =

8π

M2
Pl

Tµν , (52)

where D2 ≡ gµνDµDν is the covariant D’Alembert operator.
Taking the trace of Equation (52) yields

D2R + M2
RR = −

8πM2
R

M2
Pl

Tµ
µ . (53)

The General Relativity limit can be recovered when MR → ∞. In this case, we expect
to obtain the usual algebraic relation between the curvature scalar and the trace of the
energy-momentum tensor of matter:

M2
Pl RGR = −8πTµ

µ . (54)

3.2. Modified Evolution Equations

Let us start from an empty universe, where Tµ
µ = 0 and the curvature R does not

depend on space coordinates, R = R(t). In FLRW-metric (6), Equation (53) takes the form:

R̈ + 3HṘ + M2
RR = 0. (55)

This is exactly the same equation as the Klein-Gordon equation for a homogeneous
massive scalar field in curved space-time background. That is why R has the name
“scalaron” with MR being the scalaron mass.

In metric (6) the curvature scalar is expressed through the Hubble parameter as:

R = −6Ḣ − 12H2 . (56)

Equations (55) and (56) completely define the cosmological evolution in the absence
of matter.

We assume that the cosmological matter distribution is homogeneous and isotropic
with the equation of state

P = wρ, (57)

where ρ is the energy density, P is the pressure of matter, and w is a constant parameter
during a certain sufficiently long-lasting cosmological epoch e.g., for non-relativistic matter
w = 0, for relativistic matter w = 1/3, and for the vacuum-like state w = −1.

Correspondingly, the energy-momentum tensor of matter Tµ
ν has the following diago-

nal form:

Tµ
ν = diag(ρ,−P,−P,−P). (58)

The energy-momentum tensor satisfies the covariant conservation condition DµTµ
ν = 0,

which in FLRW-metric (6) has the form:

ρ̇ = −3H(ρ + P) = −3H(1 + w)ρ . (59)
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In the presence of matter Equation (55) turns into:

R̈ + 3HṘ + M2
RR = −

8πM2
R

M2
Pl

(1− 3w)ρ . (60)

It is convenient to introduce dimensionless time variable and dimensionless functions:

τ = MR t, H = MR h, R = M2
R r, ρ = M4

R y. (61)

Equations (56), (59) and (60) now become:

h′ + 2h2 = −r/6, (62)

r′′ + 3hr′ + r = −8πµ2(1− 3w)y, (63)

y′ + 3(1 + w)h y = 0, (64)

where prime means derivative over τ and µ = MR/MPl .

3.3. Inflationary Stage

Here we show that with sufficiently large initial value of R, the devoid of matter
universe would expand quasi exponentially [18] long enough to provide solution of flatness,
horizon and homogeneity problems existing in Friedmann cosmology, for the review see
e.g., textbook [19].

We perform a numerical and analytical solution of the system of Equations (55) and (56),
which in terms of dimensionless quantities (61) take the form:

r′′ + 3hr′ + r = 0,

h′ + 2h2 = −r/6. (65)

The initial conditions should be chosen in such a way that at least 70 e-foldings during
inflation are ensured:

Ne =
∫ τin f

0
h dτ ≥ 70, (66)

where τin f is the moment when inflation terminated, to be determined in what follows.
This can be achieved if the initial value of r is sufficiently large, practically independent on
the initial value of h.

Following Refs. [18,20] (see also the subsequent work [21]), we can roughly estimate
the duration of inflation neglecting higher derivatives in Equations (65), so we arrive to the
simplified set of equations:

h2 = −r/12, (67)

3hr′ = −r. (68)

These equations are solved as:√
−r(τ) =

√
−r0 − τ/

√
3, (69)

where r0 is the initial value of r at τ = 0. According to Equation (67), the Hubble parameter
behaves as h(τ) = (

√
−3r0 − τ)/6. The duration of inflation is roughly determined by the

condition h = 0:

τin f =
√
−3r0. (70)

After h(t) reaches zero it started to oscillate with the amplitude decreasing as 2/(3t)
and the exponential (inflationary) rise of the scale factor turns into a power law one.
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The number of e-folding is equal to the area of the triangle below the line h(τ), thus
Ne ≈ |r0/4|. It is in excellent agreement with numerical solutions of Equation (65) depicted
in Figure 1.

10 20 30 40 50
τ

1

2

3

4

5

h

10 20 30 40 50
τ

1

2

3

4

5

6

7

h

Figure 1. Evolution of h(τ) at the inflationary stage with the initial values of dimensionless curvature
r = 300 (left) and 600 (right). Initially h is taken to be zero, hin = 0, but it quickly reaches the value
given by Equation (67), h(0) =

√
−r0/12. The numbers of e-foldings, according to Equation (66), are

respectively 75 and 150.

The evolution of the dimensionless curvature scalar, r, during inflation is presented
in the left panel of Figure 2. Inflation terminates when both h and r reach zero. After
that, curvature starts to oscillate, as is presented in the right panel of Figure 2, efficiently
producing elementary particles.

10 20 30 40 50
τ

-600

-500

-400

-300

-200

-100

r

60 70 80 90 100
τ

-0.2

-0.1

0.1

0.2

r

Figure 2. Evolution of the dimensionless curvature scalar for rin = −300 (solid) and
rin = −600 (dotted). Left panel: evolution during inflation; right panel: evolution after the
end of inflation when curvature scalar starts to oscillate.

3.4. Post-Inflationary Stage Prior to the Universe Heating

In this subsection we consider the evolution of r and h solving numerically Equation (65)
for the values of τ exceeding duration of inflation, τ > τin f (70). We assume that the density
of matter is negligibly small and take y = 0. Numerical solution for r(τ) immediately
after the end of inflation is presented in the right panel of Figure 2. For larger τ the
solutions, r(τ)τ and h(τ)τ, take very simple forms depicted in Figure 3. Both r(τ)τ and
h(τ)τ oscillate with constant amplitudes, so that the curvature, τr(τ), oscillates around
zero, while the Hubble parameter, τh(τ), oscillates around 2/3 almost touching zero at
the minima.
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Figure 3. Evolution of the curvature scalar r(τ)τ (left panel) and the Hubble parameter h(τ)τ
(right panel) at post-inflationary epoch as functions of dimensionless time τ.

Simulated by the numerical solution and following Refs. [22,23] we search for the
asymptotic expansion of h and r at τ � 1 in the form:

r =
r1 cos(τ + θr)

τ
+

r2

τ2 , (71)

h =
h0 + h1 sin(τ + θh)

τ
. (72)

Here rj and hj, j = 1, 2, are some constant coefficients to be calculated from Equation (65),
while the constant phases θr, h are determined from the initial conditions and will be
adjusted by the best fit of the asymptotic solution to the numerical one.

Substituting expressions (71) and (72) into the r.h.s. of second equation of system (65)
we obtain:

h′ = −2[h0 + h1 sin(τ + θh)]
2

τ2 − 1
6

(
r1 cos(τ + θr)

τ
+

r2

τ2

)
, (73)

where h′ is found by the differentiation of (72):

h′ =
h1 cos(τ + θh)

τ
−
[

h0 + h1 sin(τ + θh)

τ2

]
. (74)

Comparison of the 1/τ and 1/τ2 leads respectively to the equations:

h1 = −r1/6, θh = θr ≡ θ, (75)

h0 + h1 sin(τ + θh) = 2[h0 + h1 sin(τ + θh)]
2 + r2/6. (76)

Neglecting the oscillating sine-terms, which vanish on the average, and taking the
average of sin2(τ + θ) = 1/2, we find:

h0 = 2h2
0 + h2

1 + r2/6. (77)

Similarly, we explore the first equation of system (65) for r and to this end we need to
find expressions for r′, and r′′ from Equation (71):

r′ = − r1 sin(τ + θr)

τ
− r1 cos(τ + θr)

τ2 − 2r2

τ3 , (78)

r′′ = − r1 cos(τ + θr)

τ
+

2r1 sin(τ + θr)

τ2 +
2r1 cos(τ + θr)

τ3 +
6r2

τ4 . (79)
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Now, substituting the expressions for r, r′, r′′, and h into Equation (65) we arrive at:

− r1 cos(τ + θ)

τ
+

2r1 sin(τ + θ)

τ2 +
2r1 cos(τ + θ)

τ3 +
6r2

τ4

−3
[

r1 sin(τ + θ)

τ
+

r1 cos(τ + θ)

τ2 +
2r2

τ3

](
h0 + h1 sin(τ + θ)

τ

)
+

r1 cos(τ + θ)

τ
+

r2

τ2 = 0 (80)

The leading terms proportional to τ−1 neatly cancel out. The terms of the order of τ−2

leads to:

h0 = 2/3, and r2 = 3h1r1/2. (81)

Here, as usually, we have taken sin2(τ + θ) = 1/2. Now using Equations (75) and (77),
we find:

h1 = 2/3 and r1 = r2 = −4, (82)

so finally:

h =
2

3τ
[1 + sin(τ + θ)], (83)

r = −4 cos(τ + θ)

τ
− 4

τ2 . (84)

These asymptotic solutions perfectly well agree with numerical ones presented in
Figure 3.

The law of the scale factor evolution corresponding to the Hubble parameter (83) was
obtained in Ref. [18].

The effect of particle production on the evolution of curvature, R(t), is usually de-
scribed by an addition of ΓṘ-term into the l.h.s. of Equation (55) with a constant Γ:

R̈ + (3H + Γ)Ṙ + M2
R R = 0. (85)

This is exactly the same as the Klein-Gordon equation for unstable scalar particle with
the decay width Γ. For Γ� MR and negligible H the solution of Equation (85) looks as

R(t) ∼ cos(MRt + θ) exp(−Γt/2). (86)

The value of Γ depends on the decay channel of the scalaron and is calculated in the
following section for different types of the decay.

Note in conclusion that this simple description of the decay by ΓṘ-term in Equation (85)
is valid only for harmonic oscillations of R(t). For arbitrary temporary evolution of R the
equation becomes integro-differential, non-local in time one [22,24].

4. Calculation of the Scalaron Decay Widths
4.1. Decay into Minimally Coupled Scalars

The scalaron decay width into two massless (or very low mass) scalar bosons was
calculated in refs. [18,22,25]. Here we follow our paper [22], where more rigorous approach
was used based on the paper [24], which allows deriving closed equation for an arbitrary
time evolution of the source field (in our case the scalaron, R(t)), while the traditional
methods are valid only for the harmonic oscillations of the source.

The action of a real scalar field φ with an arbitrary non-minimal coupling to curvature
has the form:

S(0)
φ =

1
2

∫
d4x

√
−g
(

gµν∂µφ ∂νφ− ξRφ2
)

. (87)
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Minimal coupling to gravity means that ξ = 0, this is the case which is considered in
the present subsection.

In spatially flat FLRW background (6) action (87) with ξ = 0, leads to the following
equation of motion:

φ̈ + 3Hφ̇− 1
a2 ∆φ = 0 . (88)

In turn field φ enters the equation of motion for R (53) via the trace of its energy-
momentum tensor:

Tµ
µ (φ) = −gµν∂µφ ∂νφ ≡ −(∂φ)2 .

It is convenient to study particle production in terms of the conformally rescaled field
and the conformal time defined according to the equations:

χ = a(t)φ, (89)

dη = dt/a(t). (90)

Using these quantities we can rewrite the equations of motion as:

∂2
η R + 2

∂ηa
a

∂η R + a2M2
RR =

8π

a2
M2

R
M2

Pl

[
(∂ηχ)2 − (~∇χ)2 +

(∂ηa)2

a2 χ2 −
∂ηa

a
[χ∂ηχ + (∂ηχ)χ]

]
, (91)

R = −6
∂2

ηa
a3 , (92)

∂2
ηχ− ∆χ +

1
6

a2 R χ = 0 , (93)

while action (87) turns into:

Sχ =
1
2

∫
dη d3x

(
(∂ηχ)2 − (~∇χ)2 − a2R

6
χ2
)

. (94)

Above and below ∂η denotes derivative with respect to conformal time.
Our aim is to derive a closed equation for R taking the average value of the χ-

dependent quantum operators in the r.h.s. of Equation (91) over vacuum, in the presence
of an external classical gravitational field R. Our arguments essentially repeat those of
Ref. [24], where the equation was derived in one-loop approximation.

The free field χ(0) is quantized in the usual way:

χ(0)(x) =
∫ d3k

(2π)3 2Ek

[
âk e−ik·x + â†

k eik·x
]

, (95)

where xµ = (η, x), kµ = (Ek, k), and kµkµ = 0. The creation-annihilation operators satisfy
the commutation relations:[

âk, â†
k

]
= (2π)3 2Ek δ(3)(k− k′). (96)

Equation (93) can be transformed into the following integro-differential equation
convenient for perturbative solution:

χ(x) = χ(0)(x)− 1
6

∫
d4y G(x, y) a2(y)R(y)χ(y) ≡ χ(0)(x) + δχ(x) , (97)
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where the massless Green’s function is

G(x, y) =
1

4π|x− y| δ((x0 − y0)− |x− y|) ≡ 1
4πr

δ(∆η − r) . (98)

The particle production effects are assumed to weakly perturb the free solution, so
Equation (97) can be solved as

χ(x) ' χ(0)(x)− 1
6

∫
d4y G(x, y) a2(y)R(y)χ(0)(y) ≡ χ(0)(x) + χ(1)(x) . (99)

Now we calculate the vacuum expectation values of the various terms in the r.h.s. of
Equation (91), keeping only the contribution from the terms linear in χ(1). The terms of zero
order which contain only χ(0) and its derivatives have nothing to do with particle production
and can only change the parameters of the theory through the renormalization procedure.

The terms relevant to the particle production are calculated on the basis of the equations:

∂x

∫
d4y G(x, y) a2(y)R(y)χ(y) =

∫
d4y G(x, y)

[
a2R∂yχ + ∂y(a2R)χ

]
, (100)∫ ∞

0
dk eiαk = πδ(α) + iP

(
1
α

)
. (101)

Thus we obtain:

〈χ2〉 ' − 1
48π2

∫ η

η0

dη1
a2(η1)R(η1)

η − η1
, (102)

〈(∂ηχ)2 − (~∇χ)2〉 ' − 1
96π2

∫ η

η0

dη1
∂2

η1
(a2(η1)R(η1))

η − η1
, (103)

〈χ∂ηχ + (∂ηχ)χ〉 ' − 1
48π2

∫ η

η0

dη1
∂η1(a2(η1)R(η1))

η − η1
. (104)

Inserting these expressions into (91), we obtain a closed integro-differential equation
for R, which will be transformed into ordinary differential equation for harmonic oscilla-
tions of R neglecting the slow power law decrease of their amplitude at the scale of very
fast oscillation time.

By the same reason the scale factor a varies very little during many oscillation times
ω−1 = M−1

R . Thus, we expect that dη/η ∼ dt/t and that the dominant part in the integrals
in Equations (102)–(104) is given by derivatives of R, since R′ ∼ ωR + t−1R ' ωR. So the
dominant contribution of particle production is given by Equation (103), and is reduced to:

R̈ + 3HṘ + M2
RR ' − 1

12π

M2
R

M2
Pl

1
a4

∫ η

η0

dη1
∂2

η1
(a2(η1)R(η1))

η − η1

' − 1
12π

M2
R

M2
Pl

∫ t

t0

dt1
R̈(t1)

t− t1
. (105)

The equation is naturally non-local in time since the effect of particle production
depends upon all the history of the system evolution.

The rigorous determination of the decay width of the scalaron is described in Ref. [22].
Here we present it in a simpler and intuitively clear way. We will look for the solution of
Equation (105) in the form:

R = Ramp cos(ωt + θ) exp(−Γt/2), (106)

where Ramp is the slowly varying amplitude of R-oscillations, θ is a constant phase depend-
ing upon initial conditions, and ω and Γ is to be determined from Equation (105). The term
3HṘ is not essential in the calculations presented below and will be neglected.
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Assuming that Γ is small, so the terms of order of Γ2 are neglected and treating the
r.h.s. of Equation (105) as perturbation we obtain:[(

−ω2 + M2
R

)
cos(ωt + θ) + Γω sin(ωt + θ)

]
e−Γt/2 =

ω2M2
R

12πM2
Pl

e−Γt/2
∫ t−t0

0

dt1

t1
[cos(ωt + θ) cos ωt1 + sin(ωt + θ) sin ωt1] (107)

The first, logarithmically divergent, term in the integrand leads to mass renormal-
ization and can be included into physical MR, while the second term is finite and can be
analytically calculated at large upper limit of integration, ωt� 1, according to:

∫ t−t0

0

dt1

t1
sin ωt1 =

∫ ω(t−t0)

0

dτ

τ
sin τ =

∫ ∞

−∞

dτ

τ

eiτ − e−iτ

4i
=

π

2
, (108)

by closing the integration contour in the upper complex half-plane.
Comparing the l.h.s. and r.h.s. of Equation (107) we can conclude that ω = MR and

Γφ,0 =
M3

R
24M2

Pl
, (109)

where sub-indices (φ, 0) indicate that we consider the decay width of scalaron into a pair
of scalar bosons φ minimally coupled to curvature, i.e., ξ = 0.

Our result coincides with the width of the scalaron decay into two massless minimally
coupled scalars calculated in paper [25] and presented also in Ref. [26]. However, the
width of the same process obtained in Ref. [27] is twice smaller, seemingly because of a
numerical error.

4.2. Decay into Minimally Coupled Scalars, another Method

Now we calculate the rate of the scalaron decay into the same channel in a different
way dealing with the energy loss of the scalaron into the produced particles. To this end
we will use the equation of motion of the decay products and calculate the energy density
of particles, φ, created by the oscillating gravitational field of the scalaron per unit time, ρ̇φ.
Then we compare it to the energy density of the canonically normalized scalaron field [23]:

Φ =
MPl√

48π M2
R

R. (110)

In what follows we use for R the dominant part of solution (84), which in physical
time has the form:

R =
4MR cos(MRt + θ)

t
, (111)

where θ is a constant phase determined by the initial conditions.
For this R the energy density of the scalaron is equal to:

ρR =
Φ̇2 + M2

RΦ2

2
=

M2
Pl(Ṙ2 + M2

RR2)

96πM4
R

≈
M2

Pl
6πt2 . (112)

Please note that this is formally equal to the critical energy density of matter domi-
nated universe.

Due to the energy conservation ρ̇φ = −ρ̇R. So for the rate of the energy dissipation of
the scalaron we find:

Γ = ρ̇φ/ρR, (113)
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where ρ̇φ is calculated along the standard lines of particle production theory in external
time-dependent fields [28].

According to the Parker theorem [29,30] massless particles conformally coupled to
gravity are not created by the gravitational field induced by the conformally flat FLRW met-
ric. This is fulfilled for massless spin 1/2-fermions, massless gauge boson (up to conformal
anomaly [31,32]), but is not always true for scalar bosons, as in the following lines.

The action of a real massive scalar field φ with non-minimal coupling to gravity, ξφ2R,
has the form:

S(m)
φ =

1
2

∫
d4x

√
−g
(

gµν∂µφ ∂νφ− ξRφ2 −m2
φφ2
)

, (114)

leading to the equation of motion:

φ̈ + 3Hφ̇− 1
a2 ∆φ +

(
ξR + m2

φ

)
φ = 0 . (115)

It is convenient to study particle production in terms of the conformally rescaled field, and
the conformal time according to Equation (90). In terms of these variables, Equation (115)
transforms into

∂2
ηχ− ∆χ +

(
ξ − 1

6

)
a2R χ + m2

φa2χ = 0 , (116)

where R = −6 ∂2
ηa/a3.

The particle production by external time-dependent field V(t) was studied in many
works dedicated to the universe heating, see e.g., [33,34]. In particular, the production rate
was calculated perturbatively (but not only) in textbook [10] for the (inflaton) field with the
harmonic dependence on time:

V(η) = V0 cos(Ωcη + θ), (117)

where V0 as well as Ωc may slowly depend on time. The field χ satisfies the equation:

∂2
ηχ− ∆χ + V(η)χ = 0. (118)

Since dt = adη, and Ωdt = Ωcdη, the conformal frequency is Ωc = aΩ = aMR.
It was shown in Ref. [33] that the number density of particles created per unit of

conformal time is:

∂η Nχ =
V2

0
32π

, (119)

where the number density is expressed in canonical way through the transformed field
χ = φ/a, namely

Nχ ∼ χ∂ηχ ∼ a3Nφ. (120)

Hence in physical time

Ṅφ =
V2

0
32πa4 . (121)

Now we apply this result for χ satisfying Equation (116) with ξ = 0, mφ = 0, R
determined by Equation (84), and the potential:

V(t) = −1
6

a2 R = − 4a2MR cos(MRt + θ)

6t
. (122)
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Keeping in mind that each particle χ carries energy MR/2 we find for the energy
production rate per unit of physical time:

ρ̇φ =
1
2

MRṄφ =
M3

R
144πt2 . (123)

And finally

Γ(ξ = 0, mφ = 0) =
ρ̇φ

ρR
=

M3
R

24M2
Pl

, (124)

which coincides with the result obtained in the previous subsection.

4.3. Decay into Fermions

Here we calculate the probability of fermion-antifermion pair production by scalar
field Φ:

Φ = Φ0 cos MRt = Φ0
eiMRt + e−iMRt

2
. (125)

We start from the calculation of the decay width of the Φ-meson with mass MR into a
pair of light fermions, assuming that the interaction Lagrangian has the form:

Lψ = gΦψ̄ψ, (126)

where g is a dimensionless coupling constant and ψ and ψ̄ are the quantum field operators
of the Dirac fermions. Making standard calculations we need to take matrix element
of operators of the above Lagrangian between one-particle initial Φ-state with zero mo-
mentum and fermion-antifermion final state, using the plane wave decomposition of
the wave-function operators. In particular the positive energy projection of state (125)
Φ→ aΦ exp(−iMRt), where aΦ is the annihilation operator of one-particle Φ state, hope-
fully it is not confused with the cosmological scale factor a. Taking matrix element squared
and integrating over the phase space we find for the decay width the known expression

Γdecay =
1

2MR

∫
dτ2|Aψ|2 =

g2MR
8π

. (127)

Here dτ2 is the invariant phase space of the fermion-antifermion pair and the factor
1/(2MR) is related to standard relativistic normalisation of the plane wave function of
Φ (see any introductory book on elementary particle physics, e.g., [35]). The chosen
normalisation corresponds to a single particle over all space.

Now let us turn to the number density of fermions produced by the oscillating field (125).
In the case of the decay the initial scalar particle is described by the plane wave exp(−iMRt)
with positive energy. The number density of the initial particles is equal to:

NΦ = i Φ∗
←→
∂ Φ = i (Φ∗Φ̇− Φ̇∗Φ) =

1
2

MR Φ2
0. (128)

So the densities of fermions and antifermions produced per unit time can be obtained
from Equation (127) by multiplication with MRΦ2

0/2:

Ṅψ = Ṅψ̄ =
1
2

Γdecay MRΦ2
0 =

g2

16π
M2

RΦ2
0. (129)

Now we have to go to conformal time and conformally transformed field, ψ = ψc/a3/2,
Φ = Φc/a. The equation of motion for ψc becomes as is well know the free Dirac equation



Symmetry 2021, 13, 877 19 of 43

with mass scaled as mψ → mψa. The relation between the conformally transformed
quantities and the physical ones on the l.h.s of Equation (129) has the form:

∂η Nψc = a4Ṅψ. (130)

Analogously the factor a4 arises in the r.h.s. of Equation (129).
The time dependence a(t) is determined by the Hubble parameter (83):

H =
ȧ
a
=

2
3t

[1 + sin(MRt + θ)]. (131)

Integrating this equation we obtain up to unessential constant factor:

a(t) ∼ t2/3
(

1− 2
3t MR

cos(MRt + θ)

)
∼ ac(t)

(
1− 2

3t MR
cos(MRt + θ)

)
, (132)

where ac(t) ∼ t2/3 and transition to conformal time is achieved with the relation dη = dt/ac(t).
In the considered case the particle production is induced by the oscillating part of the

scale factor and we have to substitute in Equation (129) instead of gΦ the product of the
fermion mass, mψ, by the amplitude of the oscillating part of the scale factor:

gΦ0 →
2mψ

3tMR
. (133)

Therefore, we obtain:

Ṅψ =
m2

ψ

36π t2 . (134)

The decay width of scalaron by definition is Γ = −ρ̇R/ρR. Due to energy conservation
ρ̇R = −2ρ̇ψ. Produced by the oscillating curvature, fermions have the energy MR/2 each,
so ρ̇ψ = MRṄψ/2. Consequently, the width of the scalaron decay into a pair of massive
fermions is:

Γψ =
MRṄψ

ρR
, (135)

where Ṅψ and ρR are given by Equations (134) and (112) respectively. Finally we obtain:

Γψ =
m2

ψ MR

36πt2 ·
6πt2

M2
Pl

=
m2

ψ MR

6M2
Pl

. (136)

This result coincides with that presented in Refs. [18,26].

5. Heating of the Universe in R2-Gravity
5.1. Generalities

In this section we consider the impact of particle production on the damping of the
curvature oscillations and the effect of the created matter on the cosmological evolution.
Consequently, Equations (55) and (60) acquire respectively the damping term, ΓṘ. The
equation for the curvature evolution in the presence of matter with the equation of state
P = wρ takes the form:

R̈ + (3H + Γ)Ṙ + M2
RR = −

8πM2
R

M2
Pl

(1− 3w)ρ . (137)
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Due to particle production the covariant conservation (59) of the energy density of the
primeval plasma is no longer valid:

ρ̇ + 3H(ρ + P) = ρ̇ + 3H(1 + w)ρ = S̄[R] 6= 0. (138)

For the description of the energy influx we introduced in the right hand side of this
equation non-zero source term, S̄[R], to be identified in what follows, see Equations (143)
and (144). Equation (56) for the Hubble parameter remains the same.

For dimensionless functions and time (61) we obtain the following system of equations:

h′ + 2h2 = −r/6, (139)

r′′ + (3h + γ)r′ + r = −8πµ2(1− 3w)y, (140)

y′ + 3(1 + w)h y = S[r], (141)

where µ = MR/MPl and γ = Γ/MR.
In what follows we solve these equations for different decay modes of the scalaron.

5.2. Minimally Coupled Scalar Mode

According to the calculations of Sections 4.1 and 4.2, the width of the scalaron decay
into two minimally coupled scalars is equal to:

Γ =
M3

R
24M2

Pl
. (142)

Hence the source which is the contribution to ρ̇φ = ΓρR according to Equations (123)
and (112) is:

S̄[R] = ρ̇φ =
M3

R
144πt2 =

MRR2
ampl

2304π
, (143)

where Rampl = 4MR/t is the amplitude of R(t)-oscillations. In terms of the dimensionless
quantities the source term can be written as:

S[r] =
〈r2〉

2304π
. (144)

Here 〈r2〉 means amplitude squared of harmonic oscillations, r2
ampl , of the dimen-

sionless curvature r(τ). However, r(τ) not always oscillates harmonically. In this case
we approximate 〈r2〉 as 2(r′)2 or (−2r′′r). For harmonic oscillations these expressions
averaged over oscillation period coincide with r2

ampl . The function 〈r2〉 slowly changes
with time.

5.2.1. Asymptotic Solution at t� 1, but Γt ≤ 1.

Let us find asymptotic behaviour of the solutions of Equations (139)–(141), assuming
that the matter is relativistic (w = 1/3) and considering τ � 1, but γτ ≤ 1. In such case
we can neglect γ in comparison with h in Equation (140) and the system (139)–(141) takes
the following simple form:

h′ + 2h2 = −r/6, (145)

r′′ + 3hr′ + r = 0, (146)

y′ + 4h y =
< r2 >

2304π
. (147)

The first two equations of this system coincide with Equation (65), so we can use
asymptotic solutions (83) and (84) for the dimensionless Hubble parameter and the cur-
vature scalar to find the energy density, y(τ), from Equation (147). In the r.h.s. of
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Equation (147) 〈r2〉 can be understood as the square of the amplitude of the harmonic
oscillations of r, i.e., 〈r2〉 = 16/τ2. Equation (147) can be analytically integrated as:

y(τ) =
1

144π

∫ τ

τ0

dτ2

τ2
2

exp
[
−4

∫ τ

τ2

dτ1h(τ1)

]
, (148)

where τ0 � τ is some initial value of the dimensionless time. The asymptotic result weakly
depends upon τ0.

Taking h(τ) from Equation (83) we can partly perform integration over dτ1 as∫ τ

τ2

dτ1h(τ1) =
2
3

ln
τ

τ2
+
∫ τ

τ2

dτ1

τ1
sin(τ1 + θ). (149)

It is convenient to introduce new integration variables:

η1 = τ1/τ, η2 = τ2/τ. (150)

In terms of these variables we lastly obtain:

y(τ) =
1

144πτ

∫ 1

η0

dη2 η2/3
2 exp

[
−8

3

∫ 1

η2

dη1

η1
sin(τη1 + θ)

]
. (151)

As we see below, the integral in the exponent is small, so the exponential factor in ex-
pression (151) is close to unity and thus the dominant asymptotic term is y(τ) ∼ 1/(240πτ).
Higher order oscillating corrections we estimate as follows. To calculate the asymptotic
behavior of the integral

I =
∫ 1

η2

dη1

η1
sin(τη1 + θ) (152)

at large τ we present the oscillating factor as

sin(τη1 + θ) =
1
2i

[
ei(τη1+θ) − e−i(τη1+θ)

]
. (153)

The integral over η1 along the real axis from η2 to 1 can be reduced to two integrals
over ζ from 0 to ∞ along η1 = η2± iζ and η1 = 1± iζ. The signs in front of iζ are chosen so
that the corresponding exponent in Equation (153) vanishes at infinity. Finally we obtain:

I =
∫ ∞

0
dζe−τζ

[
η2 cos(τη2 + θ) + ζ sin(τη2 + θ)

η2
2 + ζ2

− cos(τ + θ) + ζ sin(τ + θ)

1 + ζ2

]
. (154)

The effective value of ζ in this integral is evidently ∼ 1/τ, thus I is inversely propor-
tional to τ in the leading order. At large τ it is much smaller than unity, so we can expand
the exponential function exp(−8I/3), see Equation (151), up to the first order and obtain:

y1/3 =
1

240πτ
+

1
90π

cos(τ + θ)

τ2 − 1
54πτ2

∫ 1

ε

dη2

η1/3
2

cos(τη2 + θ), (155)

where the subindex (1/3) indicates that w = 1/3 and ε = τ0/τ � 1. The last integral is
proportional to 1/τ2/3 and is subdominant. We neglect it in what follows.

In Figure 4 the dimensionless energy density 240πy(τ) is presented as a result of
numerical calculation of the integral (148) or equivalently (151) (solid), which is the exact
solution of the differential Equation (147). It is compared with the analytic asymptotic
expansion (155) of the same integral (148) (dotted). The calculations are done for mildly
and very large τ. One can see that the agreement is very good.
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Figure 4. Comparison of the numerical solution for the dimensionless energy density 240πτ y(τ)
(solid) for w = 1/3 with the asymptotic expression (155) (dotted) for moderately large τ (left panel)
and very large τ (right panel). The agreement is very good.

Now let us consider the asymptotic solution at τ � 1, γτ ≤ 1 for non-relativistic
matter with w = 0.

In this case Equations (62)–(64) take the form

h′ + 2h2 = −r/6, (156)

r′′ + 3hr′ + r = −8πµ2y, (157)

y′ + 3h y = S[r], (158)

Since µ � 1 the impact of the r.h.s. in Equation (157) is not essential and we can
use the expressions (83) and (84) for h and r from the previous subsection. Moreover, the
numerical solutions presented in Figure 3 strongly support this presumption. The only
essential difference with the w = 1/3 case arises in Equation (158) governing the evolution
of the energy density. So to calculate y(τ) we can use slightly modified obtained above
results. We need to solve Equation (158). Correspondingly, there appears a coefficient (−3)
in the exponent, instead of (−4), as in Equation (148):

y(τ) =
1

144π

∫ τ

τ0

dτ2

τ2
2

exp
[
−3

∫ τ

τ2

dτ1h(τ1)

]
. (159)

Repeating the same calculations as above we obtain instead of Equation (155):

y0 =
1

144πτ
+

cos(τ + θ)

72πτ2 . (160)

5.2.2. LSP Density for the Scalaron Decay into Minimally Coupled Scalars

In this section, we find the frozen number density of X-particles assuming that the
scalaron decays into two minimally coupled scalars with the decay width (142). According
to the solution (155) the energy density of relativistic massless scalars, ρs, created by the
oscillating curvature, R(t), drops down with time as:

ρs =
M3

R
240πt

. (161)

This expression can be compared with the energy density of matter in the standard
GR cosmology:

ρGR =
3H2M2

Pl
8π

≈
3M2

Pl
32πt2 . (162)

Because of the difference between the cosmological evolution in the R2-theory and
General Relativity, the conditions for thermal equilibrium in the primeval plasma also
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differs very much. Assuming that the equilibrium with temperature T is established, we
estimate the particle reaction rate as

Γscat ∼ α2βscatT, (163)

where α is the coupling constant of the particle interactions, typically α ∼ 10−2, and
βscat is the number of scattering channels, βscat ∼ 100, see discussion below Equation (9).
Equilibrium is enforced if Γscat > H ∼ 1/t or α2βscatTt > 1. The energy density of
relativistic matter in thermal equilibrium is expressed through the temperature as:

ρtherm =
π2g∗

30
T4, (164)

where g∗ is the number of relativistic species in the plasma. We take g∗ ∼ 100. This number
is generally accepted and includes 3 families of coloured quarks and antiquarks (36), gluons
(16), intermediate bosons and photons (6), three families of leptons (12), Higgs bosons (4)
and possibly supersymmetric partners. All together this is the number about 100.

Using Equations (161) and (164), we find the equilibrium condition for the case of
scalaron decay into a pair of massless scalars:

(
α2βscatTt

)
s
=

α2βscat

8π3g∗

(
MR
T

)3
≈ 4 · 10−7

(
MR
T

)3
> 1. (165)

On the other hand, for the GR-cosmology, it follows from Equations (162) and (164)
that the equilibrium is established when:

(
α2βscatTt

)
GR

= α2βscat

(
90

32π3g∗

)1/2 MPl
T
≈ 3 · 10−4 MPl

T
> 1. (166)

Let us estimate now the so-called heating temperature, i.e., the temperature of the
cosmological plasma after complete decay of the scalaron. It can be estimated from the
expression for the energy density of matter at the time moment equal to the inverse decay
width td = 1/Γ. For the decay into scalars, Γ is given by Equation (142) and

ρs(td = 1/Γs) =
M3

R
240πtd

=
M6

R
5760πM2

Pl
=

π2

30
g∗T4

hs . (167)

Hence the heating temperature for the dominant decay of the scalaron into scalar
particles is equal to:

Ths ≈
MR

(192π3g∗)1/4

(
MR
MPl

)1/2
. (168)

For MR = 3× 1013 GeV and g∗ = 100 the heating temperature is Ths ≈ 109 GeV.
We see that the heating temperature is considerably lower than the temperature at

which thermal equilibrium is established, see Equation (165).
Equating the energy density (161) to the energy density of relativistic plasma with

temperature T given by Equation (164)

ρs =
M3

R
240πt

=
π2g∗T4

30
, (169)

we obtain:

tT4 =
M3

R
8π3g∗

= const (170)
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and

Ṫ
T

= − 1
4t

. (171)

Comparing Equations (170) and (171) with analogous Equations (16) and (17), we see
that the connection between temperature and time in R2-theory very much differs from
that in the conventional cosmology governed by GR.

Considering relations (170) and (171) we find that the Zeldovich Equation (7) for the
dimensionless function f (13) with the annihilation cross-section (9) takes the form:

d f
dx

= −α2βann

4π2g∗

(
MR
MX

)3 ( ain
a

)3 nin
T3

(
f 2 − f 2

eq

)
. (172)

In R2 theory T ∼ t−1/4, a ∼ t2/3, and a3T3 ∼ 1/T5, so the ratio (ain/a(t))3 can be
estimated as (

ain
a(t)

)3
=

(
tin
t

)2
=

(
Tin
T

)−8
=

1
x8 , (173)

where x = MX/T. The initial number density of X-particles can be taken as nin = 0.12gs
T3

in = 0.12gs M3
X (the final asymptotic result does not depend upon the intial value), and so

nin
T3 = 0.12gs

(
MX
T

)3
= 0.12gsx3. (174)

Since the density of X-particles is given by Equation (13), its ratio to the number
density of photons, nγ = 0.24T3, is equal to:

nX
nγ

=
gs

2
f

x5 . (175)

Equation (172) governing the evolution of X-particles in the scalaron dominated
regime is transformed to

d f
dx

= −0.03gsα2βann

π2g∗

(
MR
MX

)3 f 2 − f 2
eq

x5 ≡ −Qsc
f 2 − f 2

eq

x5 , (176)

where

Qsc =
0.03 gs α2βann

π2g∗

(
MR
MX

)3
. (177)

Since the coefficient Qsc in front of ( f 2 − f 2
eq) in Equation (176) is normally huge, then

initially the solution is close to the equilibrium one, f = feq(1 + δ), with δ equal to

δ = − x5

2Qsc f 2
eq

d feq

dx
≈ x5

2Qsc feq
. (178)

Please note that d feq/dx ≈ − feq for large x. This solution is valid till δ remains small,
δ ≤ 1. According to Equations (11), (13), and (173)

feq =
1

0.12

( x
2π

)3/2
e−xx5. (179)
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and according to Equations (178) and (173) we have:

δ =
x5

2Qsc feq
=

0.06
Qsc

( x
2π

)−3/2
ex, (180)

where Qsc is given by Equation (177).
The freezing temperature Tf r = MX/x f r at which deviation from equilibrium becomes

of order of unity in this case is approximately:

x f r ≈ ln Qsc +
3
2

ln(ln Qsc)−
3
2

ln(2π) + ln 0.06 ≈ ln Qsc +
3
2

ln(ln Qsc)− 5.7 . (181)

Since Qsc � 1, then x f r is also large, typically x f r ∼ (10− 100) depending upon the
interaction strength.

After x becomes larger than x f r, f 2
eq can be neglected in comparison to f 2 and

Equation (176) with the initial condition f = f f r at x = x f r is simply integrated giving the
asymptotic result at x → ∞:

f (x) =
f f r

1 +
Qsc f f r

4

(
1

x4
f r
− 1

x4

) −→
x→∞

4x4
f r

Qsc
≡ fas. (182)

The last asymptotic limit is valid when x � x f r and Qsc f f r/(4x4
f r) > 1. It is fulfilled

because x f r ∼ ln Qsc is sufficiently large and according to Equations (180) and (179)

Qsc f f r

4x4
f r
∼ x5/2

f r � 1. (183)

Thus, f (x) tends to a constant value, fas (182), but, according to Equation (175), the
ratio of the number densities of X-particles with respect to photons drops down strongly, as
1/x5, in contrast to the analogous ratio in GR regime. This decrease is induced by the rise
of the density of relativistic species created by the scalaron decay. This drop continues till
Γt ∼ 1, when scalaron field disappears and the cosmology returns to the usual GR one. It
happens at the temperature given by Equation (168). This temperature should be compared
with the temperature of the establishment of thermal equilibrium Teq ≈ 2× 10−3MR, as
follows from Equation (165).

Our results are valid if Teq > MX > Ths. However, if the condition Teq > MX is not
fulfilled, the cosmological number density of heavy massive particles with masses larger
than Ths would still be suppressed and even stronger than in the case of Teq > MX .

After the complete scalaron decay, the ratio of the number densities of X-particles
to that of photons remains essentially constant, as it normally happens in GR cosmology.
Therefore, the present day ratio nX/nγ can be estimated as the value of this ratio at T = Ths
(168), i.e., at x equal to:

xhs = (192π3g∗)1/4
(

MX
MR

)(
MPl
MR

)1/2
. (184)

Using Equations (175), (177) and (182) we estimate the number density of the X-
particles at the present time as

(
nX
nγ

)
now

=
2gsx4

f r

Qscx5
hs

=
2π2g∗x4

f r

0.03(192π3g∗)5/4α2βann

(
MR
MX

)2( MR
MPl

)5/2
, (185)

where x f r is determined by Equation (181).
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To calculate the present day energy density of X-particles one needs to multiply
the r.h.s. of Equation (185) by MX and by the present day number density of photons
nγ,0 = 412/cm3. Taking g∗ ≈ 100, α ≈ 0.01, βann ≈ 10, and MR = 3× 1013 GeV we obtain
the estimate:

ρX ≈ 108
(

1010GeV
MX

)
GeV/cm3. (186)

This is to be compared with the observed energy density of dark matter ρDM ≈ 1 keV/cm3.
We see that X-particles must have huge mass, much higher than MR to make reasonable
dark matter density. However, if MX > MR, the decay of the scalaron into XX̄-channel
would be strongly suppressed and such LSP with the mass slightly larger than MR could
successfully make the cosmological dark matter. We will not further pursue this possibility
here but turn in the next section to LSP being a fermion.

5.3. Fermion Decay Mode

Let us assume now that the scalaron decays only to fermions. According to the
calculations in Section 4.3 the width of the scalaron decay into a pair of massive fermions
with mass m f , as given by Equation (136) is equal to:

Γ f =
MRm2

f

6M2
Pl

, (187)

which agrees with Refs. [18,26].
Decay probability is dominated by the heaviest fermion. The largest contribution into

the cosmological energy density at scalaron dominated regime is presented by the decay
into heaviest fermion species.

According to Equation (134):

ρ̇ f =
MRṄψ

2
=

MR m2
f

72π t2 . (188)

This expression can be rewritten in terms of the amplitude of the curvature oscillations,
Rampl = 4MR/t as:

ρ̇ f =
m2

f R2
ampl

1152 π MR
. (189)

Integrating Equation (147) and making transformation to physical quantities, we
achieve that the energy density of the produced relativistic fermions is equal to:

ρ f =
MRm2

f

120πt
. (190)

From (164) and (190) follows that thermal equilibrium in the case of the decay into a
pair of fermions is established, when

(
α2βscatTt

)
f
=

α2βscat

4π3g∗

MRm2
f

T3 ≈ 8 · 10−7
MRm2

f

T3 > 1. (191)

Using Equations (187) and (190), we find the temperature of the universe heating for
the case of scalaron decay into fermions is:

Th f =
1

(24π3g∗)1/4

(
MR
MPl

)1/2
m f ≈ 10−4m f . (192)
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We assume that the mass of the lightest supersymmetric particle is considerably
smaller than the masses of the other decay products, mX << m f , at least as mX ≤ 0.1m f .
Then the direct production of X-particles by R(t) can be neglected. In such a case LSP are
dominantly produced by the secondary reactions in the plasma, which was created by the
scalaron production of heavier particles.

Using expression (192) for the temperature of the universe heating after the scalaron
decay, we find

xh f ≡
mX
Th f
≈ 104 mX

m f
. (193)

According to Equation (191) cosmic plasma thermalised at temperatures below

Teq f ≈ 10−2m f

(
MR
m f

)1/3

. (194)

The time-temperature dependence, as follows from Equations (190) and (164), is:

tT4 =
MRm2

f

4π3g∗
. (195)

Kinetic equation for freezing of fermionic species can be solved in complete analogy
with what was done in the previous section. The relative number density, f , is defined by
the same relation (13) and the kinetic equation for f has the same form:

d f
dx

= −Q f
f 2 − f 2

eq

x5 , (196)

where

Q f =
α2βann

2π2g∗

MRm2
f

m6
X

nin, (197)

and nin = 0.09gsm3
X is the initial number density of X-particles at the temperatures T ∼ mX .

We take as in Section 5.2.2

f ≈ feq(1 + δ), (198)

where

δ ≈ x5

2Q f feq
. (199)

The equilibrium relative number density, feq, is slightly different from the similar
quantity for bosons (179) and is equal to:

feq =
1

0.09

( x
2π

)3/2
e−xx5. (200)

The freezing temperature is defined by

x f r ≈ ln Q f +
3
2

ln(ln Q f )−
3
2

ln(2π) + ln 0.045 ≈ ln Q f +
3
2

ln(ln Q f )− 5.86 , (201)
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and the so-called frozen value of f is equal to

f f r =
x5

f r

Q f
. (202)

Using expression (197) for Q f we find that the frozen number density of X-particles,
i.e., taken at T = Tf r = mX/x f r is

nX f r =
π2g∗

2α2βann ln3 Q f

m6
X

MRm2
f
. (203)

Some additional burning of X-particles takes place during the period, when f > feq
and Equation (196) is simplified to:

d f
dx

= −Q f
f 2

x5 . (204)

The solution of this equation with the initial condition f (x f r) = f f r for the asymptotic
value at large x � x f r is trivially found:

f (x) =
f f r

1 +
Q f f f r

4

(
1

x4
f r
− 1

x4

) x → ∞ −→
4x4

f r

Q f
≡ fas. (205)

This would be the asymptotic value of the relative number density of the heavy stable
relics in the standard approach. However, nX does not drop down as 1/a3, but much faster
due to the extra heating of plasma by the scalaron decay, which does not create X-particles
if their coupling to the scalaron is sufficiently weak, as is assumed above. One should,
however, remember that there exists a continuous production of heavier fermions, which
as is mentioned in the second paragraph of this Section, is much stronger than the direct
production of LSP, i.e., of the X-particles. However, the heavy fermions f are produced
with huge energy E f ∼ MR/2. This energy is thermalized and is transformed into the
energy of relativistic species producing MR/T relativistic particles per one X particles
created by the f decays. Moreover, some heavy fermions could annihilate without creation
of X particles, but this effect is rather weak, even with an account of relativistic delay of
the decay.

Let us calculate now the ratio of the number densities of X-particles, to the density of
the relativistic species. The latter is taken as m3

X at the initial temperature, Tin = mX , but in
realistic case it can be higher by a factor of a few. E.g. the number density of photons is
0.24T3 and the same is true for other relativistic species: leptons, quarks, gluons, and even
for the electroweak bosons, so our assumption leads to some overestimate of X density.
The precise value depends upon the concrete model.

After freezing, the number density of X-particles remains constant in the comoving
volume, i.e.,

nX = n f r

( a f r

a

)3
= n f r

( t f r

t

)2
= n f r

( x f r

x

)8
, (206)

where n f r is frozen number density of X-particles, a f r is the value of the cosmological scale
factor at the moment of freezing, and we used the expansion law a ∼ t2/3 and the relation
between time and temperature tT4 = const.
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The energy density of the relativistic particles drops in the course of expansion from
the moment of X-freezing as:

ρrel = ρrel
f r

( t f r

t

)
= ρrel

f r

( x f r

x

)4
, (207)

where

ρrel
f r =

π2g∗
30

T4
f r , (208)

is the energy density of relativistic matter at the moment of X-freezing.
The number density of relativistic particles is related to their energy density according to

nrel ≈ ρrel

3T
= nrel

f r

( x f r

x

)3
, (209)

where nrel f ≈ π2g∗T3
f r/90. We neglected here the difference between the effective number

of relativistic species, g∗, in the expression for the energy density and the similar coefficient
in the expression for the number density.

Correspondingly:

nX

nrel =
nX f r

nrel
f r

( x f r

x

)5
=

n(in)
X

nrel
f r

( x f r

x

)5
(

xin
x f r

)8 x5
f r

Q f
. (210)

Substituting Q f from Equation (197) we find:

nX

nrel =
180

α2βann

m3
X

MRm2
f

( x f r

x

)5
. (211)

This ratio would evolve in this way as a function of x till the complete decay of the
scalaron at T = Th f (192). Using (193) and (201) we ultimately find:

( nX

nrel

)
h
=

180(ln(Q f ))
5

α2βannx5
h f

m3
X

MRm2
f
=

180(ln(Q f ))
5

α2βann(24π3g∗)5/4

(
MR
MPl

)5/2 m3
f

MRm2
X

. (212)

Later on at GR stage this ratio does not change much, decreasing only due to the
heating of the plasma by the massive particle annihilation.

As is discussed above, after Equation (205), there could be an additional production of
X-particles by the decays of heavier fermions f . However, the contribution of such decays
into the ratio nX/nrel (211) at the freezing temperature Tf r is Tf r/MR and decreases with
dropping temperature. The freezing temperature is determined by Equation (201). Hence
the extra contribution to the number density of X-particles can be safely neglected, if

180π

α2βann

(
mX
m f

)2

ln Q f > 1. (213)

In fact, the effect of the additional X-production is somewhat weaker due to f f̄ -
annihilation, which eliminates the creation of X-particles. An account of several types of
bosonic and fermionic superpartners does not change our estimates if they are heavier than
X roughly by factor ten.

The contemporary energy density of X-particle can be approximately estimated as

ρX = mXnγ

(
nX
nrel

)
h
= 7 · 10−9

m3
f

mX MR
cm−3, (214)
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where nγ ≈ 412/cm3 and we take α = 0.01, βann = 10, g∗ = 100, m f = 105 GeV, and
mX = 104 GeV. For the chosen values of the parameters Q f ≈ 2.7× 104, and ln Q f ≈ 10.

This energy density should be close to the energy density of the cosmological dark mat-
ter, ρDM ≈ 1 keV/cm3. It can be easily achieved with mX ∼ 106 GeV and m f ∼ 107 GeV:

ρX = 0.23
( m f

107 GeV

)3(106 GeV
mX

)
keV
cm3 . (215)

5.4. Gauge Bosons Mode

In this section we consider the scalaron decay induced by the conformal anomaly.
Production of massless gauge bosons by conformally flat gravitational field was first
studied in Refs. [31,32] and applied to the problem of heating in R2-inflation in Ref. [36].
The scalaron decay width for this channel is equal to:

Γanom =
β2

1α2N
96π2

M3
R

M2
Pl

, (216)

where β1 is the first coefficient of the beta-function, N is the rank of the gauge group, and α
is the gauge coupling constant. We take β2

1 = 49, N = 8. The coefficient β2
1N includes also

the contribution from fermionic loops into charge renormalisation. However, the fermion
corrections are relatively unimportant and are not included.

The coupling constant α at very high energies depends upon the theory and is, strictly
speaking, unknown. The evolution of α in the minimal standard model (MSM) is presented
in Figure 5, left panel, and the same in the minimal standard supersymmetric model
(MSSM) with supersymmetry at TeV scale is presented in the right panel. We can conclude
that at the scalaron mass scale, Q = 3× 1013 GeV, α3 ≈ 0.025 in MSM, while in MSSM it is
α3 ≈ 0.04. At Q = 1010 GeV they are α3 ≈ 0.033 for MSM and α3 ≈ 0.05 for MSSM.

Figure 5. Evolution of the coupling constants of U(1), SU(2) and and SU(3) (color) groups as
function of the momentum transfer [37].

The values of the running coupling constants are known to depend upon the set
of contributing particles. In the case of MSM we take into account all known particles,
while in MSSM there is some freedom depending on the explicit form of the SUSY model.
However, the variation of the couplings related to this uncertainty does not lead to strong
variation of our estimates of the allowed range of massess of dark matter particles.

Here we have taken into account the evolution of the coupling constants only, because
their values are known at low energies and the values at high energies can be calculated
knowing the underlying theory. The variation of the couplings is quite significant. On
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the other hand, the mass of the scalaron is fixed at high energies by the magnitude of the
density perturbations generated at inflation. As for the masses of the decay products they
are fixed on their mass shell and the quantum renormalization corrections are relatively
weak. They can acquire some temperature corrections, which could lead to a difference
of mass values over vacuum and high temperature plasma. However, we do not claim to
know the exact values of masses of the possible DM particles with the interaction strength
typical for supersymmetry. We have only presented an order of magnitude estimates of
their masses.

Since, according to our results presented below, supersymmetry may possibly be
realized at energies about 1012–1013 GeV, the running of couplings according to MSM
without inclusion of SUSY particles is probably correct below the SUSY scale. Recall that
for particles produced at the scalaron decay Q = 3 × 1013 GeV, while at the universe
heating temperature after the complete decay of the scalaron it is near 1010 GeV.

So numerically the decay width is:

Γanom = 2.6× 10−4
( α

0.025

)2 M3
R

M2
Pl

. (217)

The calculations of the energy density of created gauge bosons can be done in complete
analogy with calculations of the energy density of massless scalars bosons performed in
Section 5.2. Of course we need to take into account the difference of the corresponding
decay width (142) and (216). Correspondingly, the energy density of matter created by the
scalaron decay into a pair of massless gauge bosons would be:

ρanom =
β2

1α2N
4π2

M3
R

240πt
≈ 0.8× 10−5

( α

0.025

)2 M3
R

t
. (218)

Following our paper [38] we present alternative, more rigorous arguments leading to
introduction of canonically normalised field Φ (110). To this end we rewrite the first term of
action (51) in the Jordan frame in the high frequency limit in terms of the cosmological scale
factor a(t) in the way analogous to the derivation of the Friedmann equations performed
in Ref. [39]. For high frequency oscillations and large value of MRt we have found the
solutions (83) and (84), which in physical quantities have the form:

H =
2
3t

[1 + sin(MRt + θ)], R = −4MR cos(MRt + θ)

t
. (219)

Curvature scalar is related to the Hubble parameter according to:

R = −6Ḣ − 12H2 → −6Ḣ. (220)

The last relation is valid in high frequency limit and for the oscillating parts of H and
R which presumably give dominant contribution to the energy density.

Keeping this in mind we can rewrite action (51) as:

S(a) =
6M2

Pl
16πM2

R

∫
d4xa3

[
M2

R(Ḣ + 2H2) + Ḣ2
]

=
3M2

Pl
4πM2

R

∫
d4x a3

[
−

M2
R H2

2
+

Ḣ2

2

]
. (221)

The last equality is obtained through integration by parts.
Varying action (221) over the scalar field H we obtain the equation of motion:

Ḧ + M2
RH = −4πMR

3M2
Pl

(1− 3w)ρ , (222)
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compare to Equation (137). This equation has the oscillating solution multiplied by a slow
function of time, such as the presented above solution H ∼ sin(MRt + θ)/t.

Now we need to introduce canonically normalized scalar field Φ linearly connected
with H for which the kinetic term in the Lagrangian is equal to (∂Φ)2/2:

Φ =

√
3

4π

MPl
MR

H. (223)

In high frequency limit it is essentially the same field as defined above in Equation (110).
According to the standard theory the energy density of the scalar field Φ is

ρΦ =
Φ̇2 + M2

RΦ2

2
. (224)

In high frequency limit Equation (220) leads to identification R = −6Ḣ ∼ MR cos(MRt)
and Equation (224) can be rewritten in terms of R as

ρR =
M2

Pl(Ṙ2 + M2
RR2)

96πM4
R

=
M2

Pl
6πt2 , (225)

where expression (219) has been used. This result coincides with the expression (112) for
the total cosmological energy density in spatially flat matter dominated universe. This
agreement confirms the validity of our approach.

The presented equations are valid if the energy density of matter remains smaller than
the energy density of the scalaron until it decays.

It is instructive to compare the rate of the energy transferred to matter produced in
three different cases of the scalaron decay into minimally coupled scalars, fermions, and
gauge bosons due to conformal anomaly with the energy density of the scalaron. Com-
paring Equations (161), (190), and (218) with (225) we find that in all the cases tcrΓ = 5/3,
where tcr is the time when the matter energy density, formally taken, is equal to the scalaron
energy density. So the used above equations are not unreasonable. Let us note that the
energy density of matter in the case of scalaron decay into fermion-antifermion pair is
equal to doubled energy density of fermions (190).

The scalaron completely decays at t ∼ 1/Γ (up to log-correction) and the cosmology
turns into the usual Friedmann one governed by the equations of General Relativity. Before
that moment the universe expansion was dominated by the scalaron.

If the primeval plasma is thermalized, the following relation between the cosmological
time and the temperature is valid:

ρanom = 1.3× 10−2α2
R

M3
R

t
=

π2g∗
30

T4, (226)

where subindex R at αR means that the coupling is taken at the energies equal to the
scalaron mass, since the energy influx to the plasma is supplied by the scalaron decay, and
g∗ ≈ 100 is the number of relativistic species. Consequently,

tT4 ≈ 0.4
π2g∗

α2
R M3

R ≡ C ≡ C0M3
R , (227)

with C0 = 2.5× 10−7(αR/0.025)2.
Thermal equilibrium is established if the reaction rate is larger than the Hubble

expansion rate H = 2/(3t). The reaction rate is determined by the cross-section of two-
body reactions between relativistic particles. The typical value of this cross-section at high
energies, E� m, is [40]:

σrel =
4πβα2

s

(
ln

s
4m2 + 1

)
, (228)
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where β ∼ 10 is the number of the open reaction channels and s = (p1 + p2)
2 = 4E2 is the

total energy of the scattering particles in their center-of-mass frame, where E is the energy
of an individual particle.

Hence the reaction rate is

Γrel ≡
ṅ
n
= 〈σrelvnrel〉, (229)

where angular brackets mean averaging over thermal bath with temperature T, nrel ≈ 0.1g∗T3

(we do not distinguish between bosons and fermions in the expression), v = 1 is the parti-
cle velocity in the center-of-mass system. We perform thermal averaging naively taking
E = T in all expressions so s→ 4T2, instead of m2 we substitute the particle thermal mass
in plasma, i.e., m2 → 4παT2/3 [41–43]. Since thermal equilibrium is established when
the reaction rate Γ exceeds the Hubble parameter H = (2/3t) we obtain the following
equilibrium thermal condition:

3
2

tΓrel = 0.15πα2βg∗

(
ln

3
4πα

+ 1
)

Tt > 1. (230)

Using Equation (227), we find that equilibrium is established at the temperatures below

Teq =
(

0.15πα2βg∗C0

)1/3
MR = 7.3× 10−3MR. (231)

Here we took αR = 0.025 and α = 0.033, where αR is defined below Equation (226) and we
took the value of coupling constant from Figure 5. Constant α determines the scattering
of relativistic particles (228), which for the energies of the order of temperature is equal
to 0.033.

The time corresponding to this temperature is equal to

teq = C/T4
eq ≈ 90M−1

R , (232)

where C is defined in Equation (227). Hence MRteq � 1, which is sufficiently long time for
efficient particle production.

Another essential temperature for our consideration, is the temperature of the uni-
verse heating, when scalaron essentially decayed and the expansion regime turned to the
conventional GR one. This temperature is determined by the scalaron energy density at the
moment t = 1/Γanom:

ρR =
M2

PlΓ
2
anom

6π
=

π2g∗
30

T4
h , (233)

so
Th = 3.2× 10−3

√
MR/MPl MR = 5.1× 10−6MR. (234)

5.4.1. Direct X-Particle Production through the Scalaron Decay

There are two possible channels to produce massive stable X-particles: first, directly
through the scalaron decay into a pair of XX̄ and another by inverse annihilation of
relativistic particles in plasma.

First, let us consider the scalaron decay. The probability of the scalaron decay into
a pair of fermions is determined by decay width (187) with the substitution MX instead
of m f :

ΓX =
MR M2

X
6M2

Pl
. (235)
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The branching ratio of this decay is equal to:

BR(R→ XX̄) =
ΓX

Γanom
≈ 6.4× 102

(
MX
MR

)2
. (236)

The number density of X-particles created by the scalaron decay only, but not by
inverse annihilation of relativistic particles in plasma, is governed by the equation:

ṅX + 3HnX = ΓXnR, (237)

where ΓX is given by Equation (235), nR = ρR/MR, and ρR is defined in Equation (225). So
Equation (237) turns into

ṅX + 3HnX =
M2

X
36πt2 . (238)

In the scalaron dominated regime non-oscillating part of the Hubble parameter is
H = 2/(3t) and the equation is solved as

nX =
M2

X
36π t

. (239)

The equations presented above are valid if the inverse decay of the scalaron can be
neglected. This approximation is true if the produced particles are quickly thermalized
down to the temperatures much smaller than the scalaron mass.

We are interested in the ratio of nX to the number density of relativistic species at the
moment of the complete scalaron decay when the temperature dropped down to Th (234)
after which the universe came to the conventional Friedmann cosmology and the ratio
nX/nrel remained constant to the present time. This ratio is equal to:

F ≡ nX
nrel
|T=Th =

[
0.04M2

X
6πth

]
×
[

π2g∗T4
h

90Th

]−1

= 2.3× 10−3
(

0.025
αR

)2(MX
MR

)2
. (240)

If dark matter totally consists of X-particles, their energy density in the present day
universe should be equal to the observed energy density of dark matter:

ρ
(0)
X = 412cm−3MX F = ρDM ≈ 1 keV/cm3. (241)

From this condition it follows that MX ≈ 107 GeV. For larger masses ρ
(0)
X would be

unacceptably larger than ρDM. On the other hand, for such a small, or smaller MX, the
probability of X-particle production through the inverse annihilation would be too strong
and would again lead to very large energy density of X-particles, see the following section.

A possible way out of this “catch-22” is to find a mechanism to suppress the scalaron
decay into a pair of X-particles. In addition, it does exist. If X-particles are the Majorana
fermions, then in this case particles and antiparticles are identical and so they must be
in antisymmetric state. Thus, the decay of a scalar field, scalaron, into a pair of identi-
cal fermions is forbidden, since the scalaron can produce a pair of identical particles in
symmetric state only.
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5.4.2. Production of X-Particles in Thermal Plasma

Here we turn to the X-production through the inverse annihilation of relativistic
particles in the thermal plasma. The number density nX is governed by the Zeldovich
Equation (7):

ṅX + 3HnX = 〈σannv〉
(

n2
eq − n2

X

)
, (242)

where 〈σannv〉 is the thermally averaged annihilation cross-section of X-particles and neq is
their equilibrium number density.

The thermally averaged annihilation cross-section of non-relativistic X-particles,
which enters Equation (7), for our case can be taken as (see Equation (10)):

〈σannv〉 = 3πα2βann

2 M2
X

T
MX

, (243)

where the last factor came from thermal averaging of the velocity squared of X-particles,
equal to 〈v2〉 = T/MX, which appears because the annihilation of Majorana fermions
proceeds in P-wave. We take the coupling constant at the energy scale around MX equal to
α = 0.033 and the number of the annihilation channels βann = 10. This expression is only
an order of magnitude estimate. The exact form depends upon particle spins, the form of
the interaction, and may contain the statistical factor 1/n!, if there participate n identical
particles. In what follows we neglect these subtleties.

The equilibrium distribution of non-relativistic X-particles has the form:

neq = gs

(
MXT
2π

)3/2
exp

(
−MX

T

)
= gs M3

X(2πy)−3/2 exp(−y), (244)

where y = MX/T and gs is the number of spin states of X-particles. The non-relativistic
approximation is justified if MX > Teq ≈ MR/100 = 3× 1011 GeV, see Equation (231).

Equation (242) will be solved with the initial condition nX(tin) = 0. This condition
is essentially different from the solution of this equation in the canonical case, when it
is assumed that initially nX = neq and in the course of the evolution nX becomes much
larger than neq, reaching the so-called frozen density. As we see in what follows, for certain
values of the parameters the similar situation can be realized, when nX approaches the
equilibrium value and freezes at much larger value. The other limit when nX always
remains smaller than neq is also possible.

For better insight into the problem we first make simple analytic estimates of the
solution when nX � neq and after that solve exact Equation (242) numerically.

In the limit nX � neq Equation (242) is trivially integrated:

nX0(y) =
6πα2βanng2

s
(2π)3

C0M3
R

y8

∫ y

yin

dy1y7
1e−2y1

= 2× 10−7 α2βanng2
s

π2

( αR
0.025

)2
M3

R

∫ 1

yin/y
dzz7e−2zy, (245)

where the new integration variable is defined as z = y1/y, the subindex “0” means that
the solution is valid for nX � neq, y = MX/T and we have used Equation (227) and the
expression for C0 below this equation.

For the initial temperature we take Tin = Teq ≈ 7× 10−3MR, according to Equation (231),
and Tf in = Th = 5.1 × 10−6MR (234). Correspondingly yin = 1.4 × 102MX/MR, and
y f in = 2× 105MX/MR and so y f in/yin ≈ 103.
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To check validity of this solution we have to compare nX0(y) to neq (244):

F2(y) ≡
nX0(y)

neq
= 4
√

2× 10−7 α2βanngs√
π

( αR
0.025

)2
eyy3/2

∫ 1

yin/y
dzz7e−2zy

≈ 7× 10−9
(

MR
MX

)3
eyy3/2

∫ 1

yin/y
dzz7e−2zy, (246)

where we have taken gs = 2, βann = 10 and lastly, according to the line below Equation (231),
α = 0.033 and αR = 0.025.

The ratio F2(y) is depicted in Figures 6 and 7 as function of y for different values of yin.
The ratio remains smaller than unity for sufficiently small y < ymax = 50− 150 depending
upon yin. If y f in < ymax, the assumption nX � neq is justified and the solution (245) is a
good approximation to the exact solution. In the opposite case, when y f in > ymax, we have
to solve Equation (242) numerically.

To solve Equation (242) it is convenient to introduce the new function according to:

nX = gs

(
ain
a(t)

)3
M3

Xz(t) = gs M3
X

(
Tin
T

)−8
z, (247)

where a(t) is the cosmological scale factor and ain is its initial value at some time t = tin,
when X-particles became non-relativistic. In terms of z, Equation (242) is reduced to:

ż = 〈σannv〉M3
X

( ain
a

)3(
z2

eq − z2
)

, (248)

Figure 6. Log of ratio of the calculated number density of X-particles to the equilibrium number
density (246) calculated in the limit nX � neq; left panel: yin = 0.1 and right panel: yin = 5.

Figure 7. Log of the ratio of the calculated number density of X-particles to the equilibrium number
density (246) calculated in the limit nX � neq; left panel: yin = 20 and right panel: yin = 50.
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Next, let us change the variables from t to y = MX/T. Evidently ẏ = −y(Ṫ/T). Using
time-temperature relation (227), we find

dz
dt

=
M4

X
4C0M3

R y3
dz
dy

. (249)

Keeping in mind that

( ain
a

)3
=

(
tin
t

)2
=

(
yin
y

)8
, (250)

we find finally:
dz
dy

= 6π gsC0α2βann µ3 y8
in

y6

(
y13

8π3y16
in e2y − z2

)
, (251)

where µ = MR/MX .
With the chosen above values of αR and α, see the discussion after Equations (227)

and (243), we find that the value of the coefficient in the r.h.s. of Equation (251) is
6πgsC0α2βann ≈ 10−7.

Numerical solution of this equation indicates that z(y) tends asymptotically at large
y to a constant value zasym. The energy density of X-particles is expressed through zasym
as follows. We assume that below T = Th the ratio of number density of X-particles to
the number density of relativistic particles remains constant and hence is equal to the
ratio nX/nCMB at the preset time, where nCMB = 412/cm3 is the contemporary number
density of photons in cosmic microwave background radiation. The number density of
X-particles is expressed through z according to Equation (247). Thus, the asymptotic ratio
of the number densities of X to the number density of relativistic particles is

Fasym =
nX(Th)

nrel(Th)
=
[

M3
X(yin/yh)

8zasym

]
·
[
π2g∗T3

h /90
]−1

. (252)

We assume that yin ≈ 102/µ, y f in = yh = 2× 105/µ, according to the discussion after
Equation (245), and so y f in/yin ≈ 2× 103. Hence the energy density of X-particles today
would be equal to:

ρ
(0)
X = (412/cm3)MX Fasym = 3× 109µ−4zasym

keV
cm3 , (253)

where zasym is the asymptotic value of z(y) at large y but still smaller than yh. The value of
zasym can be found from the numerical solution of Equation (251). However, the solution
demonstrates surprising feature: its derivative changes sign at y ≤ 10, when nX � neq,
as is seen from the value of F2 presented in Figures 6 and 7. Probably this evidently
incorrect result for z(y) originated from a very small coefficient in front of the brackets in
Equation (251).

The problem can be avoided if we introduce the new function u(y) according to:

z(y) =
u(y)

(2π)3/2y3/2
in exp(yin)

. (254)

In terms of u(y), kinetic equation (251) takes the form:

du
dy

=
10−7 µ3 y13/2

in
(2π)3/2y6 exp(yin)

[(
y

yin

)13
e2(yin−y) − u2

]
. (255)
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The numerical solution of this equation does not show any pathological features and
may be trusted, so we express the contemporary energy of dark matter made of stable
X-particles through the asymptotic value of u(y) as

ρ
(0)
X =

3× 109µ−4uasym

(2π)3/2y3/2
in exp(yin)

keV
cm3 . (256)

Remind that yin ≈ 100/µ and presumably µ > 1.
The asymptotic value uasym is found from the numerical solution of Equation (255)

and is depicted in Figures 8 and 9 for different values of µ.

Figure 8. Evolution of u(y) for µ = 100 (left) and µ = 50 (right).

Figure 9. Evolution of u(y) for µ = 30 (left) and µ = 20 (right).

The logarithm of the energy density of X-particles (256) with respect to the ob-
served energy density of dark matter as a function of MX is presented in Figure 10. If
MX ≈ 5× 1012 GeV, X-particles may be viable candidates for the carriers of the cosmologi-
cal dark matter.

Figure 10. Log of the ratio of the energy density of X-particles (256) to the observed energy density
of dark matter as a function of µ = MR/MX .
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5.5. Possible Observations

This section contains a discussion of some possibilities of observation of the products
of X-particle slow decay or enhanced annihilation in ultra high energy cosmic rays. More
detailed study of the phenomena considered below demands more work.

There are two possibilities to make X-particles visible: first, due to possible high
density of XX̄-systems and, secondly, because of hypothetical instability of X-particles.

According to results of our papers [23,38,44] the mass of dark matter particles, with
the interaction strength typical for supersymmetric ones, can be in the range from 106 to the
value exceeding the scalaron mass, MR = 1013 GeV. It is tempting to find if and how they
could be observed, except for their gravitational effects on galactic and cosmological scales.

The average cosmological energy/mass density of dark matter particles in the universe
is approximately 1 keV/cm3, while in galaxies it is about 1 GeV/cm3. So their number
densities should respectively be:

ncosm = 10−12M−1
6 /cm3, ngal = 10−6M−1

6 /cm3, (257)

where M6 = MX/(106GeV).
The characteristic annihilation time in a galaxy is:

τann
gal = 1/

[
σannvngal

]
≈ 1037M3

6 s, (258)

where we have taken σannv ≈ 10−2/M2
X .

The total energy flux from all annihilations in the Galaxy of the size Rgal ≈ 10 kpc =

1022 cm would be

Lgal = ngalERgal/τann
gal ≈ 10−15M−3

6 GeV/cm2/s

= 3× 102M−3
6 GeV/km2/year, (259)

with characteristic energy of the order of E ∼ MX .
The annihilation would be strongly enhanced in clusters (clumps) of dark matter [45],

especially in neutralino stars [46]. Based on the latter reference, for the annihilation
cross-section σannv = 4× 10−42M−2

6 cm2 ≈ 10−31M−2
6 cm3/s, we can conclude that the

observation of XX̄-annihilation from neutralino stars is not unrealistic.
Due to their huge mass, relic X-particles might form gravitationally bound states

and then annihilate such as positronium. Instead of fine structure constant α = 1/137
we must use the gravitational coupling constant αG = (MX/MPl)

2. In complete analogy
with para-positronium decay the lifetime of such bound state with respect to annihilation
would be

τG ∼ (α5
G MX)

−1 ≈ 5× 1023M−11
13 s, (260)

where M13 = MX/(1013 GeV).
The flux of ultra-high energy cosmic rays (UHECR) with energies 1021–1022eV pro-

duced by the population of the bound states of XX̄, say, from the sphere of the radius of
R = 1 Gpc would be:

F = ngal R f /τG = 2× 105 f M10
13 cm−2s−1, (261)

where f is the fraction of the gravitationally bound states of XX̄ with respect to the total
number of X-particles.

Comparing this result with the data presented in ref. [47] we can conclude that the
flux of the UHECR produced in the decay of XX̄ bound states would agree with the data if
f ∼ 10−11.

Calculation of f is subject to many uncertainties and demand an extensive work. It
will be done elsewhere.
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Another chance for observation of X-particles appears if they are unstable. Heavy X-
particles would decay though formation of virtual black holes, according to the Zeldovich
mechanism [48,49]. If X-particles are composite states of three fundamental constituents,
as proton made of three quarks, their life-time with respect to virtual BH simulated decay
would be

τX,BH ∼
M4

Pl
M5

X
∼ 10−13s

(
1013GeV

MX

)5

. (262)

To make the time τX,BH larger than the universe age tU ≈ 4 × 1017 s, we need
MX < 107 GeV. In this case the products of the decays of X-particles with such masses
could be observable in the flux of the cosmic rays with energy somewhat below 107 GeV.

The life-time may be further diminished if we apply the conjecture of Ref. [50] which
leads to a strong suppression of the decay through virtual black holes for spinning or
electrically charged X-particles. However, this suppression does not operate for spinless
neutral particles. Moreover it would not be efficient enough to sufficiently suppress the
decay probability of the superheavy particles of dark matter with masses of the order of
1013 GeV. The decay rate may be strongly diminished if X-particles consist of more than
three fundamental constituents. For example, if X-particles consist of six fundamental
constituents, then the decay life-time would be

τ′X,BH ∼
M10

Pl
M11

X
∼ 1023s

(
1013GeV

MX

)5

. (263)

This life-time is safely above the universe age tU ≈ 4× 1017 s.

6. Conclusions and Discussion

There is general agreement that the conventional Friedmann cosmology is in tension
with the existence of stable particles with interaction strength typical for supersymmetry
and heavier than several TeV. A possible way to save the life of such particles, we call them
here X-particles, may be a modification of the standard cosmological expansion law in
such a way that the density of such heavy relics would be significantly reduced. A natural
way to realize such a reduction is the now popular Starobinsky inflationary model [18].
If the epoch of the domination of the curvature oscillations (the scalaron domination)
lasted after freezing of massive species, their density with respect to the plasma entropy
could be noticeably suppressed by the production of the relativistic species created by the
scalaron decay.

The concrete range of the allowed mass values of X-particles, if they constitute the
cosmological dark matter, depends upon the dominant decay mode of the scalaron. If
the scalaron is minimally coupled to scalar particles XS, the decay amplitude does not
depend upon the scalar particle mass and leads to too high energy density of X-particles, if
MXS � MR. An acceptably low density of XS can be achieved if MXS ≥ MR ≈ 3× 1013 GeV,
since in this case X-particles should be produced in multi-scalaron processes.

If scalaron decays into fermion-antifermion pair, its decay width is proportional to m2
f

and the decay probability is dominated by the heaviest fermion. In this case X-particles
could be produced in secondary reactions in plasma. For sufficiently small m f the energy
density of the produced fermions would be small enough and respectively the energy
density of X-particles produced either through the fermion decays or annihilation could be
close to the observed density of dark matter for MX ∼ 106 GeV [23].

The scalaron could also decay into a pair of gauge bosons due to existence of conformal
anomaly. In this case, the cosmological plasma initially would dominantly consist from the
gauge bosons. In the process of thermalisation of this primeval plasma the X-particles of
would-be dark matter could be created. There are two possible processes through which
X-particles could be produced: direct decay of the scalaron into a pair of X̄X and the
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thermal production of X’s in plasma. If scalaron decays into a pair of XX̄-fermions, the
energy density of X-particles would be close to the observed energy density of dark matter
for the X-particle mass below 107 GeV. However, in this case the thermal production of X’s
would be too strong. We can resolve this inconsistency if the direct decay of the scalaron
into X-particles is suppressed and due to the fact that a larger MX is allowed, so the thermal
production would not be dangerous. The direct decay can be very strongly suppressed if
X-particles are Majorana fermions, which cannot be created by a scalar field in the lowest
order of perturbation theory. This opens the possibility for X-particles to make proper
amount of dark matter, if their mass is about 5× 1012 GeV [38].

However, conformal anomaly is not necessarily present in supersymmetry inspired
theories. There are some versions of SUSY theories where conformal anomaly is absent, for
example N = 4 supersymmetry for which beta-function vanishes, see e.g., review ([51],
Section 13.2), and references therein.

On the other hand, N = 4 super Yang-Mills theories are believed to be unrealistic
because they do not allow introducing chiral fermions, even if the symmetry is broken
spontaneously. Though spontaneous symmetry breaking is considered to be the most
appealing way to deal with the theories with broken symmetries, it is not obligatory and
the symmetry can be broken explicitly. It is possible to break the symmetry “by hand”
introducing different masses to particles in the same multiplet. This would allow to
construct a phenomenologically acceptable model. Since the symmetry is broken by mass,
the theory would remain renormalizable. At higher energies, much larger than the particle
masses, it would behave as N = 4 super Yang-Mills theory and at this energy scale the
trace anomaly would vanish.

Apart from that there are phenomenologically acceptable N = 1 and N = 2 supersym-
metric theories which possess the so-called conformal window, i.e., in this theories with a
certain set of the multiplets trace anomaly vanishes. For a review and the list of references
see [52].

Thus, a supersymmetric type of dark matter particles seems to be possible if their
mass is quite high from 106 up to 5× 1012 GeV, or even higher than the scalaron mass,
MR = 3× 1013 GeV. There is not a chance to discover these particles in accelerator ex-
periments in foreseeable future, but they may be observable through cosmic rays from
their annihilations in high density clumps of dark matter, or from annihilation in their
gravitationally bound two-body states, or through the products of their decays, since they
naturally should be unstable.

It is worth mentioning that with the standard inflation is impossible to relax the
conventional bounds on the masses of dark matter particles. The reason for the difference
between the scalaron and inflaton cosmologies, implicitly mentioned in the review, is that
the scalaron decays much slower than the inflaton and due to that there is a constant
and slow influx of energy to the plasma from the scalaron, which diluted the fraction of
very massive DM particles. As is mentioned in the review the essential processes of the
scalaron decay took place during long time with Γt ≤ 1, while for the inflaton decay the
thermalization took place almost instantly. The difference between inflaton and scalaron
is related to a huge difference between their couplings to matter. The typical value of the
coupling constant of the inflaton decay into a pair of fermions through the interaction
gΦψ̄ψ is g ∼ 10−3, while in the case of the scalaron it is inversely proportional to the Planck
mass squared. The equivalent of g for the scalaron is m2

ψ/M2
Pl . Even for the case of the

minimally coupled scalars g2 ∼ (MR/MPl)
2 ≈ 10−11.

Let us note that according to Equations (168), (192), and (234) the temperature of the
primordial plasma after the complete scalaron decay is higher than the temperature of BBN
by several orders of magnitude. So the temperature when the universe turned to the usual
FLWR cosmology is much higher than the BBN temperature equal to 1 MeV and thus BBN
remained undisturbed. The energy density of stable would-be particles of dark matter is
negligibly small at BBN.
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Let us summarise. In the conventional cosmology masses of the stable supersymmetric
relics (candidates for the DM particles) should be typically below 1 TeV. This is in conflict
with the LHC bounds on the low energy SUSY. On the other hand, in R2-gravity the masses
of the stable particles with the interaction strength typical for SUSY could be much higher
depending upon the dominant decay mode of the scalaron. As we showed, for the decay
into minimally coupled scalars the mass of the stable relics could be as large as the scalaron
mass, MR = 3× 1013 GeV. If the scalaron predominantly decays into a pair of massive
fermions the mass of DM particles could be about 106 GeV. If the scalaron predominantly
decays into gauge bosons due to trace anomaly, the allowed value of mass of DM particles
could be about 5× 1012 GeV.

Author Contributions: Conceptualization, E.A., A.D. and R.S.; methodology, E.A., A.D. and R.S.;
software, E.A., A.D. and R.S.; validation, E.A., A.D. and R.S.; formal analysis, E.A., A.D. and R.S.;
investigation, E.A., A.D. and R.S.; resources, E.A., A.D. and R.S.; data curation, E.A., A.D. and R.S.;
writing—original draft preparation, E.A., A.D. and R.S.; writing—review and editing, E.A., A.D.
and R.S.; visualization, E.A., A.D. and R.S.; supervision, E.A., A.D. and R.S.; project administration,
E.A., A.D. and R.S.; funding acquisition, E.A., A.D. and R.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by RSF grant number 19-42-02004.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lin, T. Dark matter models and direct detection. arXiv 2019, arXiv:1904.07915.
2. Fox, P.J. TASI Lectures on WIMPs and Supersymmetry. In Proceedings of the Theoretical Advanced Study Institute in Elementary

Particle Physics: Theory in an Era of Data (TASI 2018), Boulder, CO, USA, 4–29 June 2018; PoS(TASI2018): Trieste, Italy, 2019;
p. 005.

3. Cline, J.M. TASI Lectures on Early Universe Cosmology: Inflation, Baryogenesis and Dark Matter. arXiv 2019, arXiv:1807.08749.
4. Particle Data Group; Zyla, P.A.; Barnett, R.M.; Beringer, J.; Dahl, O.; Dwyer, D.A.; Pomarol, A. The Review of Particle Physics.

Prog. Theor. Exp. Phys. 2020, 083C01, 10001.
5. Zeldovich, Y.B. Survey of Modern Cosmology. Adv. Astron. Astrophys. 1965, 3, 241–379.
6. Zeldovich, Y.B.; Okun, L.B.; Pikelner, S.B. Quarks, astrophysical and physico-chemical aspects. Phys. Lett. 1965, 17, 164–166.

[CrossRef]
7. Berestetskii, V.B.; Lifshitz, E.M.; Pitaevskii, L.P. Quantum Electrodynamics, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1982.
8. Lee, B.W.; Weinberg, S. Cosmological Lower Bound on Heavy Neutrino Masses. Phys. Rev. Lett. 1977, 39, 165–168. [CrossRef]
9. Vysotsky, M.I.; Dolgov, A.D.; Zeldovich, Y.B. Cosmological Restriction on Neutral Lepton Masses. JETP Lett. 1977, 30, 188–190.
10. Bambi, C.; Dolgov, A.D. Introduction to Particle Cosmology, 1st ed.; Springer: Heidelberg/Berlin, Germany, 2016.
11. Dolgov, A.D. Neutrinos in cosmology. Phys. Rep. 2002, 370, 333–535. [CrossRef]
12. Kim, J.S.; Pokorski, S.; Rolbiecki, K.; Sakurai, K. Gravitino vs Neutralino LSP at the LHC. J. High Energy Phys. 2019, 9, 082.

[CrossRef]
13. Hilbert, D. Die Grundlagen der Physik, Konigl. Gesell. d. Wiss. Göttingen Nachr. Math.-Phys. Kl. 1915, 53, 76.
14. Einstein, A. Die Feldgleichungen der Gravitation. Sitz. Phys.-Math. Kl. 1915, 25, 844–847.
15. Einstein, A. The Foundation of the General Theory of Relativity. Annalen Phys. 1916, 49, 769–822. [CrossRef]
16. Ginzburg, V.L.; Kirzhnits, D.A.; Lyubushin, A.A. The role of quantum fluctuations of the gravitational field in general relativity

and cosmology. Sov. Phys. JETP 1971, 33, 242–246.
17. Gurovich, V.T.; Starobinsky, A.A. Quantum effects and regular cosmological models. Sov. Phys. JETP 1979, 50, 844–852.
18. Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 1980, 91, 99–102. [CrossRef]
19. Linde, A. Particle physics and inflationary cosmology. arXiv 2005, arXiv:hep-th/0503203.
20. De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Rel. 2010, 13, 3. [CrossRef]
21. Koshelev, A.S.; Modesto, L.; Rachwal, L.; Starobinsky, A.A. Occurrence of exact R2 inflation in non-local UV-complete gravity.

J. High Energy Phys. 2016, 11, 067. [CrossRef]
22. Arbuzova, E.V.; Dolgov, A.D.; Reverberi, L. Cosmological evolution in R2 gravity. J. Cosmol. Astropart. Phys. 2012, 2, 49. [CrossRef]

http://doi.org/10.1016/0031-9163(65)90284-2
http://dx.doi.org/10.1103/PhysRevLett.39.165
http://dx.doi.org/10.1016/S0370-1573(02)00139-4
http://dx.doi.org/10.1007/JHEP09(2019)082
http://dx.doi.org/10.1002/andp.19163540702
http://dx.doi.org/10.1016/0370-2693(80)90670-X
http://dx.doi.org/10.12942/lrr-2010-3
http://dx.doi.org/10.1007/JHEP11(2016)067
http://dx.doi.org/10.1088/1475-7516/2012/02/049


Symmetry 2021, 13, 877 43 of 43

23. Arbuzova, E.V.; Dolgov, A.D.; Singh, R.S. Distortion of the standard cosmology in R + R2 theory. J. Cosmol. Astropart. Phys. 2018,
7, 19. [CrossRef]

24. Dolgov, A.D.; Hansen, S.H. Equation of motion of a classical scalar field with back reaction of produced particles. Nucl. Phys. B
1999, 548, 408–426. [CrossRef]

25. Vilenkin, A. Classical and quantum cosmology of the Starobinsky inflationary model. Phys. Rev. D 1985, 32, 2511. [CrossRef]
[PubMed]

26. Gorbunov, D.S.; Panin, A.G. Scalaron the mighty: producing dark matter and baryon asymmetry at reheating. Phys. Lett. B 2011,
700, 157–162. [CrossRef]

27. Faulkner, T.; Tegmark, M.; Bunn, E.F.; Mao, Y. Constraining f(R) Gravity as a Scalar Tensor Theory. Phys. Rev. D 2007, 76, 063505.
[CrossRef]

28. Grib, A.A.; Mamayev, S.G.; Mostepanenko, V.M. Vaccum Quantum Effects in Strong Fields, 1st ed.; Friedmann Laboratory
Publishing: St. Petersburg, Russia, 1994.

29. Parker, L. Particle Creation in Expanding Universes. Phys. Rev. Lett. 1968, 21, 562. [CrossRef]
30. Parker, L. Quantized Fields and Particle Creation in Expanding Universes. Phys. Rev. 1969, 183, 1057. [CrossRef]
31. Dolgov, A.D. Massless particle production by conformally flat gravitation field. Pisma Z. Eksp. Teor. Fiz. 1980, 32, 673.
32. Dolgov, A.D. Conformal Anomaly and the Production of Massless Particles by a Conformally Flat Metric. Sov. Phys. JETP 1981,

54, 223–228.
33. Dolgov, A.D.; Kirilova, D.P. On particle creation by a time-dependent scalar field. Sov. J. Nucl. Phys. 1990, 51, 172–177.
34. Dolgov, A.D.; Linde, A.D. Baryon Asymmetry in Inflationary Universe. Phys. Lett. B 1982, 116, 329. [CrossRef]
35. Okun, L.B. Leptons and Quarks, 2nd ed.; North-Holland Physics Publishing: North Holland, The Netherlands, 1984.
36. Gorbunov, D.; Tokareva, A. R2-inflation with conformal SM Higgs field. J. Cosmol. Astropart. Phys. 2013, 12, 021. [CrossRef]
37. Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Quadt, A. [Particle Data Group] Review of

Particle Physics. Phys. Rev. D 2018, 98, 030001. [CrossRef]
38. Arbuzova, E.V.; Dolgov, A.D.; Singh, R.S. Superheavy dark matter in R + R2 cosmology with conformal anomaly. Eur. Phys. J. C

2020, 80, 1047. [CrossRef]
39. Blinnikov, S.I.; Dolgov, A.D. Cosmological acceleration. Phys. Usp. 2019, 62, 529. [CrossRef]
40. Akhiezer, A.I.; Berestetsky, V.B. Quantum Electrodynamics, Revised ed. (Translated); Interscience Publishers: New York, NY,

USA, 1965.
41. Kraemmer, U.; Rebhan, A.K.; Schulz, H. Resummations in hot scalar electrodynamics. Ann. Phys. 1995, 238, 286–331. [CrossRef]
42. Kapusta, J.I.; Gale, C. Finite temperature field theory: Principles and Applications, 2nd ed.; Cambridge Monographs on Mathematical

Physics, Cambridge University Press: Cambridge, UK, 2006.
43. Le Bellac, M. Quantum And Statistical Field Theory, 1st ed.; Clarendon Press: Oxford, UK, 1992.
44. Arbuzova, E.V.; Dolgov, A.D.; Singh, R.S. Dark matter in R + R2 cosmology. arXiv 2019, arXiv:1811.05399.
45. Berezinsky, V.S.; Dokuchaev, V.I.; Eroshenko, Y.N. Small-scale clumps of dark matter. Phys. Usp. 2014, 57, 1–36. [CrossRef]
46. Berezinsky, V.; Bottino, A.; Mignola, G. On neutralino stars as microlensing objects. Phys. Lett. B 1997, 391, 355–359. [CrossRef]
47. Supanitsky, A.D.; Medina-Tanco, G. Ultra high energy cosmic rays from super-heavy dark matter in the context of large exposure

observatories. J. Cosmol. Astropart. Phys. 2019, 11, 036. [CrossRef]
48. Zeldovich, Y.B. A new type of radioactive decay: Gravitational annihilation of baryons. Phys. Lett. A 1976, 59, 254. [CrossRef]
49. Zeldovich, Y.B. A Novel Type of Radioactive Decay: Gravitational Baryon Annihilation. Zh. Eksp. Teor. Fiz. 1977, 72, 18–21.
50. Bambi, C.; Dolgov, A.D.; Freese, K. A Black Hole Conjecture and Rare Decays in Theories with Low Scale Gravity. Nucl. Phys. B

2007, 763, 91–114. [CrossRef]
51. Sohnius, M.F. Introducing Supersymmetry. Phys. Rep. 1985, 128, 39–204. [CrossRef]
52. Chaichian, M.; Chen, W.F.; Montonen, C. New superconformal field theories in four-dimensions and N = 1 duality. Phys. Rep.

2001, 346, 89–341. [CrossRef]

http://dx.doi.org/10.1088/1475-7516/2018/07/019
http://dx.doi.org/10.1016/S0550-3213(99)00158-3
http://dx.doi.org/10.1103/PhysRevD.32.2511
http://www.ncbi.nlm.nih.gov/pubmed/9956022
http://dx.doi.org/10.1016/j.physletb.2011.04.067
http://dx.doi.org/10.1103/PhysRevD.76.063505
http://dx.doi.org/10.1103/PhysRevLett.21.562
http://dx.doi.org/10.1103/PhysRev.183.1057
http://dx.doi.org/10.1016/0370-2693(82)90292-1
http://dx.doi.org/10.1088/1475-7516/2013/12/021
http://dx.doi.org/10.1103/PhysRevD.98.030001
http://dx.doi.org/10.1140/epjc/s10052-020-08627-y
http://dx.doi.org/10.3367/UFNe.2018.10.038469
http://dx.doi.org/10.1006/aphy.1995.1023
http://dx.doi.org/10.3367/UFNe.0184.201401a.0003
http://dx.doi.org/10.1016/S0370-2693(96)01495-5
http://dx.doi.org/10.1088/1475-7516/2019/11/036
http://dx.doi.org/10.1016/0375-9601(76)90783-0
http://dx.doi.org/10.1016/j.nuclphysb.2006.11.010
http://dx.doi.org/10.1016/0370-1573(85)90023-7
http://dx.doi.org/10.1016/S0370-1573(00)00101-0

	Introduction
	Freezing of LSP in Conventional Cosmology  
	Cosmological Evolution in R2-Gravity Prior to the Universe Heating 
	Action Modification 
	Modified Evolution Equations 
	Inflationary Stage 
	Post-Inflationary Stage Prior to the Universe Heating 

	Calculation of the Scalaron Decay Widths 
	Decay into Minimally Coupled Scalars 
	Decay into Minimally Coupled Scalars, another Method 
	Decay into Fermions 

	Heating of the Universe in R2-Gravity  
	Generalities 
	Minimally Coupled Scalar Mode 
	Asymptotic Solution at t 1, but t 1.  
	LSP Density for the Scalaron Decay into Minimally Coupled Scalars 

	 Fermion Decay Mode 
	Gauge Bosons Mode 
	Direct X-Particle Production through the Scalaron Decay 
	Production of X-Particles in Thermal Plasma 

	Possible Observations 

	Conclusions and Discussion 
	References

