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Abstract: We investigate the relation of the Lie point symmetries for the geodesic equations with
the collineations of decomposable spacetimes. We review previous results in the literature on the Lie
point symmetries of the geodesic equations and we follow a previous proposed geometric construc-
tion approach for the symmetries of differential equations. In this study, we prove that the projective
collineations of a (n + 1) -dimensional decomposable Riemannian space are the Lie point symmetries
for geodesic equations of the n-dimensional subspace. We demonstrate the application of our results
with the presentation of applications.
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1. Introduction

The theory of Lie point symmetries for the study of differential equations provides
a systematic approach for the investigation of similarity solutions for nonlinear dynamical
systems. This powerful method established by Sophus Lie at the end of the 19th cen-
tury [1–3]. The novelty of the S. Lie approach is that he moved the resolution of differential
equations from a study of continuous transformations within the context of geometry.
The geometric background brought with it the constriction of mapping from a point to
a point through transformations. The symmetry analysis has been widely studied in the
literature. The simplicity on the steps of the theory and the unexpectedly number of new
results which were found the last decades on nonlinear systems, in all areas of applied
mathematics [4–17], established the Lie symmetry analysis as one of the most important
methods for the study of nonlinear differential equations. Indeed, there are many important
results in real world problems which followed by Lie symmetry analysis. An interesting
discussion on the Lie symmetries in epidemiology is presented in [18], while the analysis of
the differential equations of financial mathematics with the use of Lie symmetries provided
a new point of view for this area [19,20]. Moreover, an application of Lie’s theory in the
dynamics of meteorology is discussed in [21].

One of the most important direct result of the Lie point symmetry analysis is the lin-
earization of second-order ordinary differential equations. Sophus Lie on his work proved
that for every second-order ordinary differential equation which admits eight Lie point sym-
metries there exists a transformation in which the given differential equation can be written
in the equivalent form of the free particle [1]. Other linearization criteria established in the lit-
erature for higher-order differential equations and for partial differential equations [22–25].
In addition, it was found that differential which admit the same symmetries has similar
properties, Ovsiannikov carried [26] the first group classification problem and demonstrate
the construction of the one-dimensional optimal system for the Lie algebra.

The concept of symmetry is essential in essential in geometry and on physical theories
such is general relativity and cosmology. The determination of symmetries in Riemannian
manifolds is essential for the derivation of new exact solutions of Einstein’s field equa-
tions [27–32]. Moreover, the admitted conformal algebra of a manifold is used to perform
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a classification of Riemannian spaces [33,34]. A special class of conformal symmetries are
the isometries, which has been used in numerous applications, such as to simplify the grav-
itational field equations not only in General Relativity [35,36] but in other theories such is
the Einstein–Skyrme model [37–39] or to study the geometric properties of the background
space, such is the decomposition property of the metric tensor [40].

In Riemannian spaces, the Levi–Civita connection is inherently a system of differential
equations defined by the paths of the connection. In terms of differential geometry, these
curves remain invariant under the projective collineations. Consequently, there should be
a connection between the Lie point symmetries of differential equations with the space
collineations. This was the subject of study from different scientific groups, such is that of
Katzin et al. [41–43], Aminova [44] and others [45–49]. In [50], Tsamparlis and Paliathanasis
found a systematic method for the construction of the Lie point symmetries for the geodesic
equations of Riemannian spacetimes by using the elements of the projective algebra for
the background space. Furthermore, a similar geometric construction approach was
applied for the construction of Noether symmetries [51]. The geodesic Lagrangian Noether
symmetries were found to be constructed by the elements of the homothetic algebra for
the metric tensor. Some recent extension of this approach on holonomic and unholonomic
systems can be found in [52–54].

In this piece of work, previous results on the relation between Lie point and Noether
point symmetries for the geodesic equations with the collineations of the background space
are reviewed. In Section 2, we present the basic properties and definitions for point trans-
formations and invariant functions. These definitions are extended in the case of geometric
objects in Section 3. Moreover, the concept of geometric collineations is discussed, where
we focus on the collineations of the metric tensor and of the connection. The Lie point
symmetries for differential equations are discussed in Section 4. In addition, Noether’s
two theorems are presented. In Section 5 we present two Theorems which gives the ex-
plicitly relation of the point symmetries for the geodesic equations with the collineations.
Furthermore, in Section 6 we present the new results of this study where we show that
the Lie point symmetries for the geodesic equations of n-dimensional Riemannian manifold
form the projective algebra for a (n + 1)-dimensional decomposable Riemannian space.
Indeed, we prove by using the symmetries of differential equations that the projective
algebra of the (n + 1)-dimensional decomposable space can be constructed by the projec-
tive collineations of the n-dimensional subspace. Until now, collineations have been used
mainly for the construction of the symmetries of differential equations. However, in this
study we focus on the inverse approach. Finally in Section 7, we summarize our results
and we draw our conclusions.

2. Point Transformations and Invariant Functions

Consider M to be a manifold of class Cp with p � 2 and U to be a neighborhood in M.
For the two points P, Q ∈ U with coordinates (xP, yP) and

(
x′Q, y′Q

)
respectively, the point

transformation on U which drags point P on Q is defined as

x′Q = x′(xP, yP) , y′Q = y′(xP, yP) (1)

in which functions x′(x, y), y′(x, y) are Cp−1 and det
∣∣∣ ∂(x′ ,y′)

∂(x,y)

∣∣∣ 6= 0.The later condition is

necessary in order the functions x′(x, y), y′(x, y) to be independent, otherwise the point
transformation degenerates. When the point transformation depends on one parameter ε,
is called one parameter point transformation [55].

Therefore, if Φ is the one parameter point transformation Φ : P→ Q, then

x′Q = x′(xP, yP; ε) , y′Q = y′(xP, yP; ε). (2)

By definition, Φ it admits the group properties, that is, which means that for every
function Φ ant on P ∈ U, Φ : P→ P′ the resulting point P′ ∈ U.
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Moreover, the identity transformation exists, ΦI : P→ P , there exists the associativity,
and the inverse element. A group of one parameter point transformation defines a family
of curves in M, which are parametrized by the parameter ε and are called the orbits of the
group of transformations.

When parameter ε is infinitesimal we can define the tangent vector a the point P as

XP =
∂x′

∂ε
|ε→0∂x|P +

∂y′

∂ε
|ε→0∂y|P. (3)

where now for ε2 → 0 it follows

x′ = x + εξP , y′ = y + εηP (4)

where ξP = ∂x′
∂ε |ε→0 , η = ∂y′

∂ε |ε→0.
The vector field XP is called the generator of the infinitesimal point transformation

(4). The infinitesimal transformation is the local transformation for the one parameter point
transformation (2). The novelty of the point transformations is that for a given local infinitesimal
point transformation there can be always defined the global point transformations and vice
verse. Indeed, the corresponding point transformation of an infinitesimal transformation can
be found by the derivation of integral curve for the infinitesimal generator XP.

Consider the function F(x, y) in manifold M. Hence, under the action of point trans-
formation Φ it follows Φ : F(x, y)→ F′(x′(x, y; ε), y′(x, y; ε)). Hence, function F is invari-
ant under the point transformation Φ if and only if F(x, y) = F′(x′(x, y; ε), y′(x, y; ε)) or
F(x, y) = λ(F′(x′(x, y; ε), y′(x, y; ε))) with F(x, y) = 0, where λ is a function, at all points
where the one parameter point transformation acts

Equivalently, function, or equation, F(x, y) = 0, is invariant under the action of
an infinitesimal point transformation if the following condition is true

X(F) = 0, (5)

that is
ξ

∂F
∂x

+ η
∂F
∂y

= 0. (6)

The invariant functions of the vector field X are derived from the Lagrange dx
ξ(x,y) =

dy
η(x,y) . Hence, every function of the form F(x, y) = F(W), in which W is the zero-order

invariant dW = dx
ξ(x,y) −

dy
η(x,y) , is invariant under the infinitesimal transformation with

generator the vector field X.
Furthermore, the vector field X is called Lie point symmetry for the function F(x, y).

Since, the one parameter point transformations form a group, then the infinitesimal genera-
tors {X1, X2, . . . , XN} which are symmetry vectors for function F(x, y) form a Lie algebra.

Until this point we have discussed the Lie point symmetries for functions. In the fol-
lowing, we focus with the application of point transformations on differential equations
and on geometric objects in Riemannian manifolds.

3. Geometric Objects and Collineations

Let Ω be a geometric object of class r on the Cp manifold M, with r ≤ p . Then Ω
is well defined on a every point P, that is Ωa = Ωa(x, y). Additionally, under a coordi-
nate transformation (x, y) = Ji(x, y) the new components Ωa′ of the object in the new
coordinates {x′y′} are represented as well determined functions of class r′ = p − r of
the old components Ωa in the old coordinates {x, y}, of the functions Ji and of their s-th
derivatives (1 ≤ s ≤ p), that is, the new components Ωi′ of the object can be represented
by equations of the form Ωa′ = Φa

(
Ωk, x, y, x′, y′

)
, where functions Φa have the group
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properties. The transformation law, i.e. functions Φa characterize the geometric object.
In the following we are interesting on differential geometric objects in which

Φa
(

Ω, xk, xk′
)
= Ja

b
(
x, y, x′, y′

)
Ωb + C

(
x, y, x′, y′

)
. (7)

and on the special case with C
(

xk, xk′
)

, where Ωa are known as tensors and Ja
b (x, y, x′, y′)

is the Jacobian tensor.
Consider now the infinitesimal transformation (4) with generator the vector field X.

Then, under the map Φ the geometric object differs as

LXΩ = lim
ε→0

1
ε
[Φ(Ω)−Ω]. (8)

Operator LXΩ is the Lie derivative with respect to the vector field X on the geometric
object Ω. In terms of coordinates the definition of Lie derivative depends on the transfor-
mation law Φa.

Indeed, for a function F(x, y), the Lie derivative is defined as LX F = X(F). Further-
more, for tensor field T of rank (r, s) is defined as follows [56]

LXTi1...ir
ji ...js

= XkTi1...ir
ji ...js,k

− Tm...ir
ji ...js

Xi1
,m − Ti1m...ir

ji ...js
Xi2

m + ...

... + Ti1...ir
m...js Xm

,j1 + Ti1...ir
jim...js Xm

j2 + . . . . (9)

where the Einstein summation convention is considered.
On the other hand, the connection coefficients have different transformation law

from tensor fields, that means that the Lie derivative is defined different. Specifically,
the definition of LXΓi

jk is

LXΓi
jk = Xi

,jk + Γi
jk,rXr − Xi

,rΓr
jk + Xs

,jΓ
i
sk + Xs

,kΓi
js. (10)

When we have a symmetric connection Γi
jk = Γi

kj,the latter expression can be written
in the equivalent form

LXΓi
jk = Xi

;jk − Ri
jklξ

l , (11)

in which Ri
jkl is the curvature tensor and the semicolon “;” means covariant derivative.

Previously, the invariant functions under point transformations were defined. In the folloi-
wng lines, we can easily extend the same definition in the case of geometric objects. Therefore,
it will be said that a geometric object Ω is invariant under the action of the one parameter point
transformation (2) , Φ : Ω→ Ω′, if and only if Ω′(x′, y′) = Ω(x, y). The later conditions are
expressed in terms of the infinitesimal transformation (4) as LξΩ = 0.

However, in terms of geometric objects the concept of symmetry has been generalized,
such that a geometric Ω object under the action of a point transformation to differs by a ten-
sor Ψ, that is, the generalized conditions LXΩ = Ψ. While Ω can be any geometric object
with arbitrary transformation law, the Lie derivative LXΩ has the same transformation law
with a tensor which means that Ψ is always a tensor field. Vector fields X which satisfy such
relations are called geometric collineations. In the case of Riemannian manifolds, the most
common collineations are these of the metric tensor and of the connection coefficients.

3.1. Collineations of the Metric Tensor

Assume a Riemannian space Vn of dimension n, dim Vn = 0, with metric tensor
gij and connection coefficient Γi

jk. Then a vector field X is characterized as a Conformal
Killing vector (CKV) for the Riemannian space if

LX gij = 2ψgij , ψ =
1
n

Xk
;k. (12)
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CKVs have the property to keep invariant the angle between two directions at a point,
under the action of the point transformations. The CKVs of a given metric tensor gij form
a Lie algebra known as conformal algebra for the space Vn. There are some important
properties for the conformal algebra. For instance, conformal related metrics, i.e., ḡij, gij
with ḡij = Ngij admit the same conformal algebra, while the maximum dimension of
the admitted conformal algebra can be 1

2 (n + 1)(n + 2). In that case the space with line
element gij is characterized as conformally flat and there exists a coordinate system where
it can be written as gij = Nηij, where ηij notes the metric tensor for the flat space.

In the special case where function ψ is constant, that is, ψ,i = 0, the CKV is reduced to
the Homothetic Killing vector (HKV). A Riemannian space can admits at maximum one proper
HKV. Finally, when ψ = 0, the vector field X is called a Killing vector field or isometry.

Isometries are the most important symmetries in geometries because they keep invariant
the distances and the angles in a Riemannian space. The most important isometries are
the translations and the rotations of Euclidean space. Because of these symmetries the geometric
objects do not change when they rotate or change location in the physical space.

The KVs form a Lie algebra known as Killing algebra of maximum dimension 1
2 n(n + 1).

In the later case, the space gij is maximally symmetric and it is that of the flat space or
of the n-dimensional sphere or of the n-dimensional hyperbolic plane. If the maximally
symmetric space admits a (proper) HKV then it is a flat space. Maximally symmetric spaces
are conformally flat which means that they admit the maximum conformal Lie algebra of
dimension 1

2 (n + 1)(n + 2).

3.2. Collineations of the Connection

Let us assume the Levi–Civita connection Γi
jk, then by definition, the Lie derivative

with respect to the field X is written as

LXΓi
jk = gir

[
(LX grk);j +

(
LX grj

)
;k −

(
LX gjk

)
;r

]
. (13)

Hence, if X is a CKV from (13) it follows

LXΓi
jk = 2gir[ψ;j + ψ;k − ψ;r

]
. (14)

Therefore, if X is a HKV or a KV, it follows LXΓi
jk = 0, which means that the Levi–

Civita connection remain invariant under the action of Killing symmetry and of Homothetic
symmetry. However, that is not true for a proper Conformal symmetry. The collineations
of the connection can be defined independently from the collineations of the metric tensor.

Consider now the general connection Γi
jk, then the vector field X is an Affine collineation

(AC) if
Lξ Γi

jk = 0, (15)

This family of point transformations caries geodesic trajectories into geodesic trajecto-
ries while preserve the affine parameter of the geodesic equations. ACs form the so-called
Affine Lie algebra and in the case of the Levi–Civita connection the Affine Lie algebra has
the subalgebras the Homothetic algebra and the Killing algebra. The maximum dimension
of the Affine algebra is n(n + 1) which is that of the flat space.

Another family of collineations for the connection of special interest are the Projective
collineations (PC). Projective transformations transform the system of geodesics (auto
parallel curves) of Vn into the same system but they do not preserve the affine parameter.
A vector field X is called a PC if there exists an one-form ωi where

Lξ Γi
jk = ωjδ

i
k + ωkδi

j. (16)
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However, in the case of Riemannian manifolds the one-form ωi is always closed, i.e.,
ωi = φ,i which means that the later symmetry condition is equivalent to

Lξ Γi
jk = φ,jδ

i
k + φ,kδi

j. (17)

Function φ is called the projective function. When φ vanishes the PC reduces to that
of AC while when φ;ij = 0 the PC is characterized as special. The maximum dimension of
the projective algebra is n(n + 2), and it is that of the maximal symmetric spaces [57].

As far as the existence of a special PC is concerned, there are some important results
in the literature which are necessary for our study [57]. Indeed, if the Riemannian space
admits a p ≤ n dimensional Lie algebra of special PCs then also admits p gradient KVs
and a gradient HV and if p = n the space is flat, the reverse also holds true. Furthermore, a
maximally symmetric space which admits a proper AC or a special PC is a flat space.

There is a zoology of definitions for collineations in Riemannian spaces, we refer
the reader in the interesting diagram in [58].

At this point it is important to mention that with the term gradient collineation we refer
to a collineation vector field X, which can be written as a closed one-form. Moreover, with
the term proper collineation we refer to a collineation with a specific property. For instance
as a proper AC we refer to an AC which is not a KV or a HKV, while with the term proper
PC we refer to a collineation which is a PC and not a AC or HKV or KV.

4. Symmetries of Ordinary Differential Equations

Below the application of point symmetries on differential equations is presented.
We give the definition of a Lie point symmetry for differential equations and we show how
the Lie invariants are applied to simplify a given differential equation.

A differential equation H = 0 is a function defined in the jet space BM =
{

x, y, ẏ, ÿ . . . , y(n)
}

,
where we have assumed x to be the independent variable and y = y(x) to be the dependent

variable and ẏ = dy
dx , ÿ = d2y

dx2 , . . . , y(n) = d(n)y
dxn . Therefore function H is defined as

H = H
(

x, y, ẏ, ÿ . . . , y(n)
)

.
Consider now the infinitesimal transformation in the basic manifold

{x̄, ȳ} → {x + εξ(x, y), y + εη(x, y)}, where in the jet space BM the point transformation is
prolonged as

x̄ = x + εξ(x, y)
ȳ = x + εη(x, y)

ȳ(1) = y(1) + εη[1]

. . .

ȳ(n) = y(n) + εη[n]

with generator vector

X[n] = ξ∂x + η∂η + η[1]∂ẏ + . . . + η[n]∂y(n) . (18)

Functions η[n] are known as the prolongation/extensions functions and they are defined as

η[1] = η̇ − y(1) ξ̇, (19)

η[2] = η̇[1] − ÿξ̇, (20)

...

η[n] =
dηn−1

dx
− y(n)

dξ

dx
=

dn

dxn

(
η − y(1)ξ

)
+ y(n+1)ξ. (21)
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Therefore, the differential equation H
(

x, y, ẏ, ÿ..., y(n)
)
= 0 is invariant under the ac-

tion of an parameter point transformation if the following condition is true

X[n]
(

H
(

x, y, ẏ, ÿ..., y(n)
))

= 0, (22)

or equivalently

X[n]
(

H
(

x, y, ẏ, ÿ..., y(n)
))

= λ
(

H
(

x, y, ẏ, ÿ..., y(n)
))

, with H = 0. (23)

Hence, when the symmetry condition (22) is true, the infinitesimal generator X will
be called Lie point symmetry for the differential equation. The basic application of the Lie
point symmetries are summarized in the application of the similarity transformations
which are used to reduce the order on differential equations or the number of dependent
variables for partial differential equations.

There are different ways to apply the Lie point symmetries for the reduction of a given
differential equation. However, the different approaches are equivalent. The most common
methods are the derivation of canonical transformations, and the derivation of the Lie invariants.

Let X = ξ(x, y)∂x + η(x, y)∂y be a Lie point symmetry for the differential equation

H
(

x, y, ẏ, ÿ..., y(n)
)
≡ y(n) −ω

(
x, y, ẏ, ..., y(n−1)

)
= 0. Then under the change of variables

{x, y} → {r, s} such that
Xr = 0 , Xs = 1 (24)

the symmetry vector reads X = ∂s, while the differential equation as

dns
dr2 = ω̄

(
r, s,

ds
dr

, ...,
dn−1s
drn−1

)
. (25)

By definition it follows ∂
∂s ω̄

(
r, s, ds

dr , ..., dn−1s
drn−1

)
= 0, therefore by define the new variable

S = ds
dr , we are able to reduce the order of the differential equation and rewrite it as

dn−1S
drn−1 = ω̄

(
r, S,

dS
dr

, . . . ,
dn−2S

dr

)
. (26)

The second approach that we discuss for the application of the Lie point symmetries
for the reduction of a differential equation is based on the derivation of the differential
invariant functions which follows from the Lagrange system

dx
ξ

=
dy
η

=
dẏ
η[1]

= . . . =
dy(n)

η[n]
. (27)

The system (27) provides us with characteristic functions

W [0](x, y), W [1](x, y, ẏ), W [n]
(

x, y, ẏ, ÿ, . . . , y(n)
)

where W [n] is the nth order invariant of the Lie symmetry vector. By considering as
u = W [0] to be the new independent variable and v = W [1] the new dependent variable
then the differential equation H

(
x, y, ẏ, ÿ . . . , y(n)

)
≡ y(n) −ω

(
x, y, ẏ, . . . , y(n−1)

)
= 0 can

be written in the equivalent form
Let u = W [0] , v = W [1], where W [0], W [1] are the zero and the first order invariants of

a Lie symmetry repetitively. From zero-order and first-order invariants u, v, the higher-
order differential invariants

dv
du

, . . . ,
dn−1v
dun−1 , (28)

can be defined.
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The differential invariants are functions of the derivatives y(n). Hence, the given
differential given H

(
x, y, ẏ, ÿ . . . , y(n)

)
= 0, may be written in terms of the differential

invariants (28), i.e.,
dn−1v
dun−1 = Ω

(
u, v,

dv
du

, ...
dn−1v
dun−1

)
, (29)

where dv
du =

∂v
∂x +

∂v
∂y ẏ+...+ ∂v

∂ẏ ÿ
∂v
∂x +

∂v
∂y ẏ

.

There are alternative methods and approaches to apply Lie symmetries. A quite
intriguing application of Lie symmetries is to produce integrals or Lagrangian functions
for a system of ODEs by the method of Jacobi’s last multiplier, see for instance [59], while
there are very interesting approaches for the construction of conservation laws by using
the Lie point symmetries [60,61].

The most famous approach for the derivation of conservation laws from the point
symmetries for systems with an Action principle is described by Noether’s theorems.
Noether’s theorem for second-order differential equations H(x, y, ẏ, ÿ) = 0 is presented.

Let function L = L(x, y, ẏ) be the Lagrangian for the differential equation H(x, y, ẏ, ÿ) = 0,
that is, EL(L) = H(x, y, ẏ, ÿ), where EL is the Euler–Lagrange vector. Therefore, if the fol-
lowing condition is true

X[1]L + L
dξ

dx
=

d f
dx

(30)

where f is a function, then the variation of the Action integral is invariant. The later
it means that X is a Lie point symmetry for the differential equation H(x, y, ẏ, ÿ) = 0,
while X is called a Noether symmetry for the Lagrangian function L(x, y, ẏ).

Moreover, from Noether’s second theorem it follows that for every Noether symme-
tries X the following function is a conservation laws for the differential equation

Φ(x, y, ẏ) = ξ(x, y)
(

ẏ
∂L
∂ẏ
− L

)
− η(x, y)

∂L
∂y

+ f , (31)

that is, dΦ
dx = 0.

Noether symmetries for a given dynamical system form a Lie algebra known as
Noether algebra. The Noether algebra is a subalgebra of the admitted Lie algebra for
the dynamical system.

5. Symmetries of Geodesic Equations

We continue our analysis by studying the Lie point symmetries for the geodesic equa-
tions. In particular, we review previous results which connect the Lie point symmetries of
geodesic trajectories with the collineations of the background space. Because the following
applications are of special interests in physics t is assumed to be the independent variable
and xi = xi(t) to be the dependent variables.

Let as assume the Cp manifold of dimension n with the connection Γi
jk. Thus, in a local

coordinate system the autoparallels are defined as

ẍi + Γi
jk ẋj ẋk + φ(t)ẋi = 0 (32)

where t is a parameter along the paths, and a dot means derivative with respect to s. When
φ(t) vanishes, the autoparallels are affine parametrized and t is the affine parameter.

Without loss of generality a new variable dt = f (t)dt can always be defined such that
Equation (32) to be written as

d2xi

dS2 + Γi
jk

dxj

dS
dxk

dS
+

(
dS
dt

)−2((d2S
dt2

)
+ φ(S)

(
dS
ds

))
dxi

dS
= 0 (33)
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or
d2xi

dS2 + Γi
jk

dxj

dS
dxk

dS
= 0 (34)

where we have set d f (t)
dt + φ(t) f (t) = 0. Therefore in the following it is assumed φ(t) = 0.

Consider the infinitesimal transformation

t̄ = s + εξ
(

s, xk
)

, x̄i = xi + εηi
(

t, xk
)

(35)

with generator X = ξ
(

t, xk
)

∂t + ηi
(

t, xk
)

∂i.
The autoparallels (32) are invariant under the transformation (35) iff the following

conditions holds
X[2]

(
ẍi + Γi

jk ẋj ẋk
)
= 0 (36)

by replacing X[2] from its definition and consider the coefficients of polynomial of the deriva-
tives of xi to be equal with zero follows the following system

ηi
,tt = 0 (37)

ξ,ttδ
i
j − 2

[
ηi

,tj + ηk
,tΓ

i
(kj)

]
= 0 (38)

LΓi
(jk) = ξΓi

(kj),t + 2ξ,t(jδ
i
k) (39)

ξ(,j|kδi
d) = 0 . (40)

We proceed with the solution of the symmetry conditions (37)–(40). In addition we con-
sider that the connection coefficients they do not depend on the indepedent parameter t.

From Equations (37) and (40) we derive ηi(t, xk) = Ai(xk)t + Bi(xk) and ξ(t, x) =
CJ(t)SJ(xk) + D(t). Functions Ai(xk) , Bi(xk) , CJ(t) , D(t) are arbitrary functions which
will be constraint by the symmetry conditions (38), (39) while SJ(xk) is the generating
function for a gradient KV, i.e., SJ(x)|(i,j) = 0. Index J run on the number of independent
gradient KVs.

Furthermore, by replacing in (38) it follows

2A(xk)i
;j =

[
CJ(t),tt SJ(xk) + D(t),tt

]
δi

j, (41)

that is;

D(t) =
1
2

Mt2 + Kt + L , (42)

CJ(t) =
1
2

GJt2 + EJt + FJ ,

in which M , K , L , GJ , EJ , FJ are constants.

In addition, for the function Ai(xk), from (41) we derive A(xk)i;j =
1
2

(
GJSJ(xk) + M

)
gij,

where gij is the background metric tensor. Consequently, Ai
(

xk
)

is an element of the con-
formal algebra for the metric tensor gij. However, antisymmetric part vanishes, i.e.,

A
(

xk
)
[i;j]

= 0, which means that Ai
(

xk
)

is a gradient CKV with conformal factor

ψ = 1
2 (GJSJ(x) + M).
Finally, from the symmetry condition (39) we end with the following system

LAΓi
jk = 2GJSJ(x),(jδ

i
k), (43)

LBΓi
jk = 2EJSJ(x),(jδ

i
k), (44)
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that is, the vector fields Ai(xk), Bi(xk) are special PCs with projective functions GJSJ(x)

and EJSJ(x) respectively. However, because Ai
(

xk
)

is also an element of the conformal

group for the underlying metric, it follows that Ai
(

xk
)

is a gradient KV or a gradient HV.
We conclude that the Lie point symmetries for the geodesic equations, or for the

autoparallels, are constructed by the elements of the special projective algebra of the back-
ground space as described by the following theorem

Theorem 1. The generic Lie point symmetry vector X = ξ(t, xk)∂t + ηi(t, xk)∂i for the geodesic
equations

ẍi + Γi
jk

(
xk
)

ẋj ẋk = 0 (45)

in a Riemannian background space with metric tensor gij

(
xk
)

, where Γi
jk

(
xk
)

is the Levi–Civita
connection, is generated by the elements of the special projective algebra for the Riemannian manifold.

When the background space admits gradient KVs SJ
(

xk
)

, functions ξ(t, xk), ηi(t, xk) are
given by the formula

ξ(t, xk) =
1
2

(
GJSJ

(
xk
)
+ M

)
t2 +

[
EJSJ

(
xk
)
+ K

]
t + FJSJ

(
xk
)
+ L,

ηi(t, xk) = Ai(xk)t + Bi(xk) + Di(xk) (46)

where GJ , M, b, K, FJ and L are constants and the index J runs along the number of gradient KVs,

Ai(x) is a gradient HV with conformal factor ψ = 1
2

(
GJSJ

(
xk
)
+ M

)
, Di(x) is a non-gradient

KV of the metric and Bi(x) is either a special projective collineation with projection function
EJSJ(x) or an AC and EJ = 0.

When the background space does not admit gradient KVs, functions ξ(t, xk), ηi(t, xk) are
given by the formula

ξ(t, xk) =
1
2

Mt2 + Kt + L (47)

ηi(t, xk) = Ai(xk)t + Bi(xk) + Di(xk), (48)

where Ai(x) is a gradient HV with conformal factor ψ = 1
2 M, Di(x) is a non-gradient KV of

the metric and Bi(x) is an AC.
Furthermore, when the metric tensor does not admit gradient KV and gradient HKV, functions

ξ(t, xk), ηi(t, xk) are given by the formula

ξ(t) = Kt + L (49)

ηi(xk) = Bi(xk) + Di(xk). (50)

Finally, if the background vector field admits a zero-dimensional special projective algebra
the generic Lie point symmetry is X = (Kt + L)∂t.

We proceed our discussion with the investigation of the Noether symmetries for
the geodesic equations. Because Noether symmetries form a subalgebra of the Lie symme-
tries, Noether vector fields are constructed by the elements of the special projective algebra
for the background space.

Consider the geodesic Lagrangian function

L
(

xk, ẋk
)
=

1
2

gij

(
xk
)

ẋi ẋj . (51)
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Then, from the Noether symmetry condition (30) for the infinitesimal generator
X = ξ

(
t, xk

)
∂t + ηi

(
t, xk

)
∂i , we end with the following system of partial differential equations

ξ,k = 0 (52)

Lη gij = 2
(

1
2

ξ,t

)
gij (53)

η,i
,tgij = f,i (54)

f,t = 0 (55)

From (55) it follows ξ
(

t, xk
)
= ξ(t), while condition (54) gives ηi(t, x) = f,i

(
t, xk

)
t +

Ki(xj). Additionally, equation (53) provides that ξ,t = 2ψ, where ψ = const. while ηi
(

t, xk
)

is HKV for the background space. By following the same steps with as in the case of Lie
point symmetries, for the Noether point symmetries for the geodesic Lagrangian our results
are summarized in the following theorem

Theorem 2. The Noether Symmetries of the geodesic Lagrangian (51) are generated by the KVs
and the HKV of the metric gij as follows:

X =
(

C3ψt2 + 2C2ψt + C1

)
∂t+

+
[
CJSJ,i + CIKV Ii + CI JtSJ,i + C2Hi + C3t(GHV)i

]
∂i

(56)

with corresponding gauge function

f (xk) = C1 + C2 + CI + CJ +
[
CI JSJ

]
+ C3[GHV], (57)

where SJ,i are the CJ gradient KVs, KV Ii are the CI non-gradient KVs, Hi is a HKV not necessarily
gradient [GHV] and is the gradient HKV (if it exists) of the metric gij.

Finally, from Noether’s second theorem and Theorem 2 for the conservation laws of
the geodesic equations it follows the theorem.

Theorem 3. The generic form of the Noetherian conservation law for the geodesic Lagrangian (51) is

φ =
1
2

[
C3ψt2 + 2C2ψt + C1

]
gij ẋi ẋj

+
[
CJSJ,i + CIKV Ii + CI JtSJ,i + C2Hi(xr) + C3t(GHV),i

]
gij ẋj

+ C1 + C2 + CI + CJ +
[
CI JSJ

]
+ C3[GHV].

(58)

The individual conservation laws linear in the momentum are

CI 6= 0 : φCI = KV I
i ẋi − 1 , (59)

CJ 6= 0 : gijSJ,i ẋj − 1 , (60)

CI J 6= 0 : tgijSJ,i ẋj − SJ , (61)
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while the quadratic in the momentum conservation laws are

C1 6= 0 : φC1 =
1
2

gij ẋi ẋj + 1, (62)

C2 6= 0 : φC2 = tψgij ẋi ẋj − gijHi ẋj + 1 , (63)

C3 6= 0 : φC3 =
1
2

t2ψgij ẋi ẋj − t(GHV),i ẋi + [GHV]. (64)

From Theorems 1 and 2 it is clear that one is able to compute the Lie symmetries
and the Noether symmetries of the geodesic equations in Riemannian manifolds by derive
the collineation vectors and avoid the cumbersome formulation of the Lie symmetry
method. However, the inverse procedure is true. In the following, we focus on the inverse
approach in order to construct projective algebra of decomposable spacetimes by the Lie
point symmetries of the nondecomposable part of the space.

6. Projective Collineations of Decomposable Spacetimes

The symmetry condition (39) can be written in the equivalent form

LηΓi
(jk) + LξΓi

(jk) = 2Φ(,jδ
i
k) (65)

in which Φ = ξ,t. Furthermore, if we sum the symmetry conditions (37)–(40) we end with
the equation

LXΓA
BC = 2Φ(,AδB

C). (66)

where ΓA
BC is the Levi–Civita connection for the decomposable Riemannian manifold

ds2 = εdt2 + gij

(
xk
)

dxidxj, (67)

with nonzero components ΓA
BC = Γi

jk in which A, B are the indices in the 1 + n spaces
and i, j the indices in the n-space. Thus, the following theorem for the collineations of
decomposable spaces follows.

Theorem 4. The Lie point symmetries for the geodesic equations of the n-dimensional Riemannian
space gij

(
xk
)

form the projective algebra for the (n + 1)-decomposable Riemannian space (67)
and vice versa.

From Theorem 4 and the function forms of the Lie point symmetries as they are given
in Theorem 1 we end with the following corollarytheorem.

Theorem 5. For the elements of the special projective algebra of the decomposable space (67)
we have the following observations:

(A) The (n + 1)-dimensional decomposable space admits a proper PC, then the field is a special
projective collineation.

(B) The (n + 1)-dimensional decomposable space admits a HKV if and only if the n-space admits a HKV.
(C) The (n + 1)-dimensional decomposable space admits a proper PC if and only if the n-space

admits a gradient HKV.
(D) There exists a rotation among the axes t and xi if and only if there exists a gradient KV

on the direction of xi.
(E) The (n + 1)-dimensional decomposable space admits a projective algebra Gn+1 of minimum

dimension 2. When dim Gn+1 = 2, then n-dimensional space does not admit any special PC.

Some of the above results have been proved before in the literature by using tools
of differential geometry. However, in our approach we applied tools from the theory of
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symmetries of differential equations. We demonstrate the application of Theorem 4 with
some examples.

Consider the space of constant curvature

dτ2 =
1(

1 + 1
4 Kxixi

)2

(
dx2 + dy2 + dz2

)
(68)

with K 6= 0. The space admits a six elements on the special projective algebra consisted by
the (nongradient) Killing symmetries rµν, Iµ [50]. The Lie point symmetries for the geodesic
equations of the space are the vector fields

rµν, Iµ , ∂τ , τ∂τ

Consequently, for the (3 + 1)-dimensional decomposable space

ds2 = −εdτ2 +
1(

1 + 1
4 Kxixi

)2

(
dx2 + dy2 + dz2

)
(69)

it follows that the vector fields rµν, Iµ are KVs, ∂τ is a gradient KV, while τ∂τ is an AC.
For a second application, let us assume the four-dimensional Gödel spacetime in Carte-

sian coordinates
dτ2 = −dt2 − 2eaxdtdy + dx2 − 1

2
e2axdy2 + dz2. (70)

The geodesic equations are

t′′ + 2at′x′ + aeaxx′y′ = 0, (71)

x′′ + aeaxt′y′ +
1
2

ae2axy′2 = 0, (72)

y′′ − 2ae−axt′x′ = 0, (73)

z′′ = 0. (74)

The Gödel metric admits the following elements for the special projective algebra

Y1 = ∂z , Y3 = ∂x − ay∂y , Y4 = ∂t , Y5 = ∂y , Y6 = z∂z (75)

Y2 =

(
−2

a
e−ax

)
∂t + y∂x +

(
2e−2ar − a2y2

2a

)
∂y (76)

where Y1 is a gradient KV (S1 = z), Y2−5 are non gradient KVs and Y6 is a proper AC.
Consequently, the Lie point symmetries are derived to be

X1 = ∂τ , X2 = τ∂τ , X3 = z∂τ , X4 = Y4 (77)

X5 = Y2 , X6 = Y3 , X7 = Y5 (78)

X8 = Y1 , X9 = τY1 , X10 = Y6 (79)

Thus, for the five-dimensional line element

dτ2 = εdτ2 − dt2 − 2eaxdtdy + dx2 − 1
2

e2axdy2 + dz2 (80)

vector field X1 is a gradient KV, X2, X3 and X9 are proper ACs, X4−10 have the same
properties as that for the four-dimensional manifold. We observe that the field X3 − εX9 is
a rotation on the directions τ − z, which is a Killing symmetry for the five-dimensional space.
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As a final example consider the three-dimensional line element

dx2
(3) = −dt2 + (at + b)2

(
dy2 + dz2

)
. (81)

which admits the three nongradient KVs

K1 = ∂y , K2 = ∂z , K3 = z∂y − y∂z. (82)

and the gradient HKV

Hi =

(
t +

b
a

)
∂t , ψ = 1. (83)

Thus, the Lie point symmetries for the geodesic equations for the space are the vector fields

∂x, x∂x , K1, K2, K3 , Hi , x2∂x + xHi. (84)

Hence, for the four-dimensional space

ds2 = −dt2 + dx2 + (at + b)2
(

dy2 + dz2
)

(85)

it follows that K1, K2, K3are nongradient KVs, ∂x is a gradient KV, x∂x + H,i is the gradient HKV;
x∂x, Hi are ACs. Finally, x2∂x + xHi is a proper special PC for the decomposable spacetime.

7. Conclusions

The theory of symmetries for differential equations is important for the study of the in-
tegrability properties and the determination of conservation laws. The latter can be used to
understand the trajectories of geometrical objects such as the orbits of astrophysical objects
[62,63]. Furthermore, the procedure for the derivation of the Lie symmetries is straight-
forward, but is usually a high dimension system and symbolic computation software is
usually applied [64]. In this study, we reviewed previous published results for the geo-
metric description and construction of the Lie point symmetries. This approach connects
the two different studies between the geometric properties of Riemannian manifolds and
of the symmetries for differential equations. We show that important results of differential
geometry can be derived easily by using the Lie symmetry analysis.

In this spirit, we focused on the geometric interpretation of the Lie point symmetries
for the geodesic equations. We proved that the Lie point symmetries are the elements of
the projective algebra for an extended decomposable space, while the projective algebra
is directed related with the special projective algebra of the nondecomposable space.
The existence criteria for the nature of specific geometric collineations, such as the rotations,
the proper ACs or the proper special PC discussed in details.

This study contributes to the subject for the geometrization of the symmetries of
differential equations. Such a geometric approach has also been applied in the case of
partial differential equations where different relations between the Lie point symmetries
and the collineations of the background space were found [65–67]. This geometric approach
can be seen as a connection bridge between the differential geometry and the theories of
differential equations and applied mathematics. In this study, we show an alternative way
for the study of existence theorems; in the future, we plan to investigate further applications
for this geometric point of view.
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