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Abstract: We present the likelihood inferences on the lifetime performance index CL to evaluate
the performance of lifetimes of products following the skewed Exponentiated Frech’et distribu-
tion in many manufacturing industries. This research is related to the topic of skewed Probability
Distributions and Applications across Disciplines. Exponentiated Frech’et distribution is a general-
ization of some lifetime distributions. The maximum likelihood estimator for CL for lifetimes with
exponentiated Frech’et distribution is derived to develop a computational testing procedure so that
experimenters can implement it to test whether the lifetime performance reached the pre-assigned
level of significance with a given lower specification limit under progressive type I interval censoring.
At the end, two examples are provided to demonstrate the implementation on the algorithm for our
proposed computational testing procedure.

Keywords: progressive type I interval censoring; lifetime performance index; exponentiated Frech’et
distribution; maximum likelihood estimator; hypothesis testing procedure

1. Introduction

In this artificial intelligence era, the constantly changing of technology makes produc-
tion techniques become sophisticated and complicated. The longer lifetime of products
has an economic benefit related to an increase in the overall competitiveness of companies
via the increase of the value added to products (see Montalvo et al. [1]). There are many
process capability indices are developed (see Montgomery [2]) to control the quality of
products with unilateral specifications or bilateral specifications. The lifetime performance
index CL we used is an index with unilateral specification and the larger lifetime will
result in a larger index. In this research, we make use of this index to assess the lifetime
performance for products with exponentiated Frech’et distribution lifetime. For other
kinds of lifetime distributions, Tong et al. [3] proposed a testing algorithm for exponential
distribution lifetime based on a complete sample.

For some reasons including the limitation of time, shortage of material resources,
some restrictions on the cost or time, the experimenters will not be able to collect data of
lifetimes of all products completely and thus only the censored data is collected. There are
two types of censoring frequently considered by researchers. One is the type II censoring
which has fa ixed number of samples observed and the other is type I censoring which
terminates the experiment at fixed time T. In this research, we focus on the progressive type
I interval sampling since it has the advantage of the convenience of collecting data. There
are some notations for this type of censoring needed to be addressed as follows: Set up the
experimental time as T and the number of intervals as m. Therefore, the quality engineer
will collect the data of number of failure items (X1, . . . , Xm) at the time points (t1, . . . , tm),
where T = tm. At each time point, (R1, . . . , Rm) are removed sequentially with removing
rates of (p1, . . . , pm), where Ri~binomial(n−∑i

j=1 Xj−∑i−1
j=1 Rj, pi), 0 ≤ pi ≤ 1 and pm = 1.
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For this type of interval censoring, Utilize the maximum likelihood estimator (MLE) for
CL to propose a hypothesis testing procedure for various kinds of lifetime distributions
can be referred to Wu and Lin [4] for one-parameter exponential distribution; Wu and
Lin [5] for Weibull distribution; Wu and Lu [6] for Pareto products; Wu [7] for Chen lifetime
distribution; Wu et al. [8] for Burr XII distribution; Wu et al. [9] for Rayleigh distribution;
Wu and Hsieh [10] for Gompertz distribution. The Frech’et distribution is first introduced
in Frech’et [11] and it has good applications on flood flows. To generalize the Frech’et
distribution, Nadarajah and Kotz [12] proposed a new lifetime distribution called the
exponentiated Frech’et distribution (EF distribution) through exponentiation of Frech’et
distribution. It also has good application on lifetimes of products (see examples in Rao
et al. [13]). In this paper, we derived the maximum likelihood estimators of the index of
CL for lifetimes following EF distribution and utilized this estimator to construct a testing
procedure to reach a specified level of significance under a lower specification limit L.

The organization of the whole manuscript is summarized as follows: We introduced
the lifetime performance index for products following EF lifetimes and the monotonic
increasing relationship between this index and the conforming rate is further addressed
in Section 2. In Section 3.1, we derived the maximum likelihood estimator of this index
and its asymptotic distribution so that we can construct a hypothesis testing procedure
based on the asymptotic sampling distribution of this estimator. We plotted power curves
and constructed some tables to analyze the power performance of our proposed testing
procedure and the impacts of different setup are also analyzed. In order to guide users to
implement our proposed procedures, we give two practical examples to demonstrate the
steps to execute the proposed testing procedure and make a decision to see if the process
meets the pre-assigned lower specification limit in Section 3.2. In the end, we summarized
the findings and conclusions for this paper in the Conclusions.

2. The Monotonic Relationship between the Lifetime Performance Index and the
Conforming Rate

Let the random variable U represent the lifetime of the product following an EF
distribution. The probability density function (pdf) fU(u), cumulative distribution function
(cdf) FU(u) and hazard function hU(u) are defined in Equations (1)–(3):

fU(u) = θδu−δ−1e−u−δ
(

1− e− u−δ
)

θ−1
, u > 0, δ > 0, θ > 0, (1)

FU(u) = 1−
(

1− e− u−δ
)

θ
, u > 0, δ > 0, θ > 0. (2)

hU(u) =
fU(u)

1− FU(u)
= θδ u−δ−1e− u−δ

(
1− e− u−δ

)
−1

, u > 0, δ > 0, θ > 0. (3)

The pdf for δ = 1, 3, 5 under θ = 2 is displayed in Figure 1a and for θ = 2, 4, 6 under
δ = 1 is displayed in Figure 1b. It is shown that it’s a right-skewed distribution. The hazard
function for δ = 1, 3, 5 under θ = 2 is displayed in Figure 2a and for θ = 2, 4, 6 under δ = 1
is displayed in Figure 2b. It is shown that the hazard function has mono peak shape and
the hazard rate is an increasing function of parameter δ when θ is fixed and is also an
increasing function of parameter θ when δ is fixed.

Transform the lifetime U to the new lifetime variable Y through Y = − ln
(

1− e− U−δ
) .

Then, this new random variable Y has one-parameter exponential distribution and its pdf,
cdf and hazard function are given in Equations (4)–(6):

fY(y) = θe−θy, y > 0, θ > 0 (4)

FY(y) = 1− e−θy, y > 0, θ > 0 (5)

hY(y) =
fy(y)

1− Fy(y)
= θ (6)
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Figure 1. (a) pdf curve for δ = 1, 3, 5 under θ = 2; (b) pdf curve for θ = 2, 4, 6 under δ = 1.

Figure 2. (a) hazard function for δ = 1, 3, 5 under θ = 2; (b) hazard function for θ = 2, 4, 6 under δ = 1.

The parameter δ is assumed to be known and this value can be determined by the Gini
test with maximum p-value, where the Gini test (see Gill and Gastwirth [14]) is a scale-free
goodness of fit for exponential distribution. The steps to implement this test is depicted as

follows: At first, we set up the null hypothesis as H0 : Ui ∼ FU(u) = 1− (1− e−u−δ
)

θ
, u > 0,

δ > 0, θ > 0. Secondly, calculate the Gini test statistic Gn =

n−1
∑

i=1
i(n−i)(Y(i+1)−Y(i))

(n−1)
n
∑

i=1
(n−i+1)(Y(i)−Y(i−1))

, where

Y(i) = − ln(1− e− U−δ
(i) ) and U(1) < U(2) < . . . < U(n). For large sample, the asymmetric

distribution of Z =
√

12(n− 1)(Gn − 0.5) is a standard normal distribution. Then, we
calculate the observed value of Z as z. Hence, the p-value to test if the data is following
the EF distribution can be calculated as 2P(Z >|z|) . The p-value is a function of δ. The
value of δ is determined with the maximum p-value. The lifetime of products is a unilateral
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specification quality characteristic and the larger the lifetime would be more attractive to
picky consumers and to increase the sales in these competitive emerging markets. Let L be
the pre-assigned lower specification limit in the quality control and an item is considered to
be conformative if its lifetime exceeds this lower specification. Montgomery [2] proposed
the process capability index CL in Equation (7), where µ represents the mean of the process
and σ represents the standard deviation of the process.

CL =
µ− L

σ
(7)

This index is called the lifetime performance index this index and it is frequently used
to assess the performance of lifetime. Using the pdf defined in Equation (4), the mean
and standard deviation for the new lifetime variable Y can be found as µ = E(Y) = 1

θ

and σ =
√

Var(Y) = 1
θ . If LU is the given lower specification limit for lifetime variable U,

then L = − ln
(

1− e− LU
−δ
) is the new lower specification limit for new lifetime variable Y.

Replacing µ and σ by 1
θ in Equation (7), this index CL can be rewritten as

CL =
µ− L

σ
=

1
θ − L

1
θ

= 1− θL (8)

Observe that this index is a non-increasing function of scale parameter and so is the
hazard function. It means that the larger this index, the smaller the hazard rate.

The conforming rate is defined as the proportion of products with lifetime exceeding
the given lower specification limit and it is calculated in Equation (9):

Pr = P(U ≥ LU) = P(Y ≥ L) = exp(−θL) = exp(CL − 1),−∞ < CL < 1. (9)

It is observed that there is a monotonic increasing relationship between the conforming
rate Pr and the lifetime performance index CL. For example, if the experimenter hoped
Pr to be greater than 0.8187308, then CL must be greater than 0.80 to attain the desired
conforming rate.

3. Results
3.1. The Maximum Likelihood Estimator for the Lifetime Performance Index and the
Testing Procedure

Let X1, . . . , Xm be the progressive type I interval censored sample observed at time
points t1, . . . , tm under random progressive censoring scheme R1, . . . , Rm with removal
percentages p1, . . . , pm, where 0 ≤ pi ≤ 1 and pm = 1. The random variable Xi is the

number of failure items among n −
i−1
∑

i=1
Xi −

i−1
∑

i=1
Ri items on the life test in the ith time

interval [ti−1, ti]. The failure rate qi in the ith time interval is

qi =
FU(ti)− FU(ti−1)

1− FU(ti−1)
=

(
1− e− ti−1

−δ
)

θ
−
(

1− e− ti
−δ
)

θ

(
1− e− ti−1

−δ
)

θ
= 1−

(
1− e− ti

−δ

1− e− ti−1
−δ

)θ

.

The distribution of Xi is denoted as

Xi|Xi−1, . . . , X1, Ri−1, . . . , R1 ∼ Binomial

(
n−

i−1

∑
i=1

Xi −
i−1

∑
i=1

Ri, qi

)
, i = 1, . . . , m. (10)

The random variable Ri is the number of removing items at time point ti from the

remaining n−
i

∑
i=1

Xi −
i−1
∑

i=1
Ri items on the life test.
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The distribution of Ri is denoted as

Ri|Xi, . . . , X1, Ri−1, . . . , R1 ∼ Binomial

(
n−

i

∑
i=1

Xi −
i−1

∑
i=1

Ri, pi

)
, i = 1, . . . , m. (11)

From the distributions of X1, . . . , Xm and R1, . . . , Rm given in Equations (10) and (11),
we can obtain the likelihood function based on progressive type I interval censored sample
X1, . . . , Xm as

L(θ) ∝
m

∏
i=1

(FU(ti)− FU(ti−1))
Xi (1− FU(ti))

Ri

∝
m

∏
i=1

((
1− e− ti−1

−δ
)

θ
−
(

1− e− ti
−δ
)

θ
)Xi

((
1− e− ti

−δ
)

θ
)Ri

∝
m

∏
i=1

1−
(

1− e− ti
−δ

1− e− ti−1
−δ
)

θ
Xi((

1− e− ti−1
−δ
)

θ
)Xi
((

1− e− ti
−δ
)

θ
)Ri

(12)

We can obtain the log-likelihood function

ln L(θ) =
m

∑
i=1

Xi ln

1−
(

1− e− ti
−δ

1− e− ti−1
−δ
)

θ
− θ

m

∑
i=1

(
Ri ln

(
1− e− ti

−δ
) + Xi ln

(
1− e− ti−1

−δ
)
)

. (13)

Then, the log-likelihood equation can be obtained as

d
dθ ln L(θ) =

m
∑

i=1
Xi

(
ln
(

1−e− ti−1
−δ

)−ln
(

1−e− ti
−δ

)

) 1−
(

1−e− ti
−δ

1−e− ti−1
−δ )

θ


1−
(

1−e− ti
−δ

1−e− ti−1
−δ

)θ

−
m
∑

i=1

(
Ri ln

(
1− e− ti

−δ
) + Xi ln

(
1− e− ti−1

−δ
)
)
= 0

(14)

The solution of the above log-likelihood equation is the MLE of θ and is denoted by θ̂.
There is no close-form for this solution and it can only be solved numerically. From chapter
10 of Casella and Berger [15], the limiting distribution of MLE is a normal distribution with
mean of θ and variance of the reciprocal of the Fisher’s information I(λ), where

I(λ) = −E[
d2 ln L(θ)

dθ2 ].

From Equation (14), we can obtain

d2

dθ2 ln L(λ) = −
m

∑
i=1

Xi

((
ln
(

1− e− ti−1
−δ
)
− ln

(
1− e− ti

−δ
)))2

(
1−e− ti

−δ

1−e− ti−1
−δ

)θ

(
1−

(
1−e− ti

−δ

1−e− ti−1
−δ

)θ
)2 (15)

Refer to Equation (15) of Wu [7], we have

E(Xi) = EE(Xi|Xi−1, . . . , X1, Ri−1, . . . , R1 )

= nqi

i−1

∏
j=1

(
1− pj

)(
1− qj

)
,i = 1, . . . , m, (16)
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where

qi = 1−
(

1− e− ti
−δ

1− e− ti−1
−δ

)θ

,i = 1, . . . , m.

Using Equation (16), we can obtain the Fisher’s information number as

I(θ) = −E[ d2 ln L(θ)
dθ2 ]

= −
m
∑

i=1
nqi

((
ln
(

1−e− ti−1
−δ
)
−ln

(
1−e− ti

−δ
)))2

(
1−e− ti

−δ

1−e− ti−1
−δ

)θ

1−
(

1−e− ti
−δ

1−e− ti−1
−δ

)θ
2

i−1
∏
j=1

(
1− pj

)(
1− qj

) (17)

Then, the limiting distribution of the MLE of θ is determined as θ̂ → N(θ, I−1(θ)) .
By the property of the invariance of MLE, the MLE of CL can be obtained as

ĈL = 1− θ̂L (18)

with limiting distribution as

ĈL = 1− θ̂L d→
m→∞

N
(

CL, L2V(θ̂)
)

(19)

It’s always more convenient for experimenter to collect sample by considering equal
interval lengths t for all m intervals such that ti − ti−1 = t, i = 1, . . . , m. Therefore, we have
ti = it, i = 1, . . . , m. For this case, the log-likelihood equation in Equation (14) became

d
dθ ln L(θ) =

m
∑

i=1
Xi

(
ln
(

1−e− ((i−1)t)−δ
)−ln

(
1−e− (it)−δ

)
) (

1−
(

1−e− (it)−δ

1−e− ((i−1)t)−δ )
θ
)

1−
(

1−e− (it)−δ

1−e− ((i−1)t)−δ

)θ

−
m
∑

i=1

(
Ri ln

(
1− e−(it)

−δ
) + Xi ln

(
1− e− ((i−1)t)−δ

)
)
= 0

(20)

The information number became

I(θ)=
m

∑
i=1

nqi

(
ln
(

1− e− ((i−1)t)−δ
)− ln

(
1− e− (it)−δ

)
)2
(

1−e− (it)−δ

1−e− ((i−1)t)−δ )
θ

(
1−

(
1−e− (it)−δ

1−e− ((i−1)t)−δ )
θ
)2

i−1

∏
j=1

(
1− pj

)(
1− qj

)
(21)

Making use of the maximum likelihood estimator of CL as the testing statistic, a testing
procedure is developed as follows:

Let c0 be the desired level for a quality engineer so that the manufacturing process is
capable if the lifetime performance index CL exceeds c0. The null hypothesis and alternative
hypothesis are set up as follows:

H0 : CL ≤ c0 (the process is not capable) vs. Ha : CL > c0 (the process is capable). Let
C0

L be the critical value and C0
L is determined as follows:

supP
(

ĈL > C0
L|CL ≤ c0

)
= supP

(
1− θ̂L > C0

L

∣∣∣∣θ ≥ 1− c0

L

)
= supP

(
θ̂ <

1− C0
L

L

∣∣∣∣θ ≥ 1− c0

L

)

= supP

(
Z <

(
1− C0

L
L
− θ

)
/
√

w(θ)

∣∣∣∣θ ≥ 1− c0

L

)
= α,

where

w(θ) = V
(
θ̂
)
, Z =

θ̂ − θ√
w(θ)

d→
m→∞

N(0, 1).
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When θ = θ0 = 1−c0
L , the sup can be attained.

Therefore,

P

(
Z <

(
1− C0

L
L
− θ0

)
/
√

w(θ0)

∣∣∣∣θ0 =
1− c0

L

)
= α⇒

We yield the critical value as

C0
L = 1− L

(
θ0 + Zα

√
w(θ0)

)
, (22)

where Zα denotes the left-tailed αth percentile of a standard normal distribution.
Thus, the critical values can be determined as

C0
L = 1− L

(
θ0 + Zα

√
w(θ0)

)
, where θ0 =

1− c0

L
(23)

This manufacturing process is concluded to be capable if ĈL > C0
L.

The steps to implement the hypothesis are summarized as follows:
Step 1: Specify the level of significance α and the lower specification LU for lifetime U.

Thus we can obtain the lower specification L = − ln
(

1− e− LU
−δ
) for the new lifetime Y.

The progressive type I interval censored sample X1, . . . , Xm is collected at the pre-set times
t1, . . . , tm with censoring schemes of R1, . . . , Rm with removal probability p1, . . . , pm from
the EF distribution.

Step 2: For a given conforming rate Pr, one can determine the required level c0 = 1 + ln(Pr).
Then, the null and alternative hypothesis H0 : CL ≤ c0 and Ha : CL > c0 are determined.

Step 3: Find the maximum likelihood estimator of CL as ĈL = 1− θ̂L, where θ̂ is
the maximum likelihood estimator of θ by solving the log-likelihood equation defined in
Equation (14).

Step 4: Compute the critical value C0
L = 1− L

(
θ0 + Zα

√
w(θ0)

)
, where θ0 = 1−c0

L .

Step 5: If ĈL ∈
(
C0

L, ∞) , we can conclude that this manufacturing process is capable.
Otherwise, this process is not capable.

In order to conduct the power analysis, the power of the proposed procedure is needed
to be computed.

At the point of CL = c1 > c0 in alternative hypothesis, let δ = c1 − c0 be the deviation
of true parameter c1 from the desired target c0. The power h(δ) is

h(δ) = P
(

ĈL > C0
L|c1 = 1− θ1L

)
= P

(
1− θ̂L > 1− L

(
θ0 + Zα

√
w(θ0)

)∣∣∣∣θ1 =
1− c1

L

)
= P

(
θ̂ < θ0 + Zα

√
w(θ0)

∣∣∣∣θ1 =
1− c1

L

)

= P

 θ̂ − θ1√
w(θ1)

<

(
θ0 + Zα

√
w(θ0)− θ1

)
√

w(θ1)

∣∣∣∣∣∣θ1 =
1− c1

L


= Φ

(
δ/L + Zα

√
w(θ0)√

w(θ1)

)
(24)

where Φ(·) is the cdf for Z and Z~N(0,1), θ0 = 1−c0
L and θ1 = 1−c1

L . Apparently, the power
is an increasing function of δ.

Given the lower specification limit LU = 0.06306, then the lower specification limit for
new lifetime variable Y is L = 0.05. Let the total experimental time be T = 0.5. Suppose
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the quality engineer wants the conforming rate Pr to be greater than 0.8187308, then the
target level c0 = 0.8, i.e., the null hypothesis is set up to be H0 : CL ≤ 0.8. Testing this
hypothesis, the power h(δ) in Equation (24) are computed and listed in Tables 1 and A1 and
Table A2 in Appendix A at α = 0.01, 0.05, 0.1 respectively for δ =0(0.025)0.125, m = 3(1)6,
n = 60(20)100 and p = 0, 0.05, 0.075. For some typical cases, the power curves are obtained
in Figures 3–6.

Table 1. The power h(δ) at α = 0.01.

δ

m n p 0.000 0.025 0.050 0.075 0.100 0.125

3 60 0.000 0.0100 0.0344 0.1114 0.3130 0.6696 0.9540

0.050 0.0100 0.0333 0.1054 0.2939 0.6382 0.9403

0.075 0.0100 0.0328 0.1025 0.2845 0.6223 0.9324

80 0.000 0.0100 0.0436 0.1643 0.4672 0.8540 0.9952

0.050 0.0100 0.0421 0.1552 0.4418 0.8301 0.9927

0.075 0.0100 0.0414 0.1508 0.4293 0.8174 0.9910

100 0.000 0.0100 0.0534 0.2225 0.6082 0.9447 0.9996

0.050 0.0100 0.0514 0.2101 0.5802 0.9311 0.9994

0.075 0.0100 0.0504 0.2041 0.5662 0.9234 0.9991

4 60 0.000 0.0100 0.0386 0.1365 0.3933 0.7839 0.9868

0.050 0.0100 0.0369 0.1263 0.3621 0.7443 0.9787

0.075 0.0100 0.0360 0.1215 0.3471 0.7238 0.9733

80 0.000 0.0100 0.0497 0.2027 0.5689 0.9282 0.9994

0.050 0.0100 0.0473 0.1873 0.5309 0.9054 0.9986

0.075 0.0100 0.0461 0.1801 0.5122 0.8924 0.9980

100 0.000 0.0100 0.0616 0.2746 0.7140 0.9803 1.0000

0.050 0.0100 0.0582 0.2541 0.6761 0.9707 0.9999

0.075 0.0100 0.0567 0.2443 0.6569 0.9647 0.9999

5 60 0.000 0.0100 0.0418 0.1562 0.4539 0.8502 0.9956

0.050 0.0100 0.0394 0.1418 0.4114 0.8071 0.9908

0.075 0.0100 0.0383 0.1352 0.3913 0.7839 0.9873

80 0.000 0.0100 0.0544 0.2329 0.6396 0.9609 0.9999

0.050 0.0100 0.0509 0.2112 0.5914 0.9409 0.9996

0.075 0.0100 0.0493 0.2012 0.5676 0.9288 0.9994

100 0.000 0.0100 0.0678 0.3149 0.7806 0.9918 1.0000

0.050 0.0100 0.0632 0.2863 0.7363 0.9852 1.0000

0.075 0.0100 0.0611 0.2730 0.7134 0.9807 1.0000

From Table 1, Table A1, Table A2 and Figures 3–6, we found that the power h(δ)
is an increasing function of δ for any combinations of n, m, p and α. That is if the true
index c1 is further deviated from the target level c0, we obtained the higher test power as
expected; The power h(δ) is an increasing function of n for fixed m, p and α as expected;
Not surprisingly, the power h(δ) is an increasing function of m for fixed n, p and α; The
power h(δ) is an increasing function of α for any combinations of n, m and p as expected;
The power h(δ) is a decreasing function of p for fixed n, m and α as expected.
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Figure 3. Power function for the test at α = 0.05 under m = 3 and p = 0.05.

Figure 4. Power function for the test at α = 0.05 under n = 60 and p = 0.05.
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Figure 5. Power function for the test under n = 60, m = 3 and p = 0.05.

Figure 6. Power function for the test at α = 0.05 under n = 60 and m = 3.

The simulated type I error under δ = 0.000 and the simulated test power under
δ = 0.025, 0.050, 0.100 for the case of α = 0.01, 0.05, p = 0.05 and n = 10, 20, 40, 60, 80, 100,
200, 500 using 100,000 repetitions by Monte-Carlo method are listed in Table 2. Referring
to α = 0.05 and smaller sample sizes n = 10, 20, 40, the simulated type I error are 0.01448,
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0.02244, 0.02930. They are not equal to the nominal type I error α = 0.05 and all of them are
much smaller than the nominal one. For larger sample sizes n = 60, 80, 100, 200, 500, the
simulated type I error are 0.03189, 0.03411, 0.03565, 0.03987, 0.04267. They are also not equal
to the nominal type I error and smaller than the nominal one. However, the simulated type
I error for larger sample sizes are closer to the nominal one. Apparently, the simulated
type I errors are approaching to the nominal one when the sample size is increasing and no
one can really reach the nominal type I error. Under δ = 0.100, the simulated test power
for sample sizes n = 10, 20, 40, 60, 80, 100, 200, 500 are 0.28509, 0.61186, 0.91324, 0.98347,
0.99741, 0.99955, 1.00000, 1.00000. As you can see, the simulated test power is increasing
when the sample size is increasing and they are reaching one for sample size being at least
60. To sum up, we will suggest users to consider sample size n ≥ 60 to get type I error
closer to the nominal one and to yield much higher test power.

Table 2. The simulated type I error and test power.

δ

α = 0.01

m p n 0.000 0.025 0.050 0.100

5 0.05 10 0.00016 0.00064 0.00205 0.02280

20 0.00094 0.00407 0.01661 0.19383

40 0.00202 0.01503 0.07845 0.65924

60 0.00340 0.02959 0.16399 0.89157

80 0.00352 0.04384 0.25984 0.97334

100 0.00416 0.06086 0.36242 0.99392

200 0.00571 0.15585 0.74854 1.00000

500 0.00667 0.47964 0.99508 1.00000

α = 0.05

m p n 0.000 0.025 0.050 0.100

5 0.05 10 0.01448 0.03333 0.07094 0.28509

20 0.02244 0.06323 0.16004 0.61186

40 0.02930 0.11266 0.32399 0.91324

60 0.03189 0.15746 0.46820 0.98347

80 0.03411 0.20030 0.58476 0.99741

100 0.03565 0.23446 0.68200 0.99955

200 0.03987 0.41045 0.92596 1.00000

500 0.04267 0.75502 0.99968 1.00000

3.2. Example

In order to guide users to fulfill our proposed hypothesis testing procedure to practical
problems, one numerical example given below is taken into account.

We consider the data of relief times (in hours) for 50 arthritic patients in Wingo [16].
The parameter δ in [1,3] is determined by the Gini test with the maximum p-value in
Figure 7. It shows that the optimal value of δ is identified as δ = 1.755 with the maximum
p-value of 0.992592 and it indicates this data fits EF distribution the most at δ = 1.755.
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Figure 7. The p-values versus the parameter δ.

In this example, we consider the setup of m = 5, t = 0.2 (h) and (p1, p2, p3, p4, p5) =
(0.15, 0.15, 0.15, 0.15, 1). Now the steps to do the proposed testing procedure about CL are
enumerated as follows:

Step 1: Specify the level of significance α as 0.05 and the lower specification LU = 0.3611833
for lifetime U. Thus we can obtain the lower specification L = − ln

(
1− e− 0.3611833−1.755

) = 0.00255
for the new lifetime Y. The progressive type I interval censored sample are created as

(X1, X2, X3, X4, X5, X6) = (19,3,2,0,0,1) at the time points of (t1, t2, t3, t4, t5, t6, t7, t8)=
(5,10,15,20,25,30) with progressive censoring schemes of (R1, R2, R3, R4, R5, R6) =(2,0,1,0,1,1).

Step 2: If the user wishes the conforming rate to be greater than Pr = 0.860708, then the
corresponding lifetime performance index target value should be c0 = 1 + ln(Pr) = 0.85. Then,
the null and alternative hypothesis H0 : CL ≤ 0.85 and Ha : CL > 0.85 are determined.

Step 3: Solving Equation (14) numerically to find the MLE of θ as θ̂ = 9.252991. Then,
the maximum likelihood estimator of CL can be found as ĈL = 1− θ̂L = 1 – 9.252991
(0.00255) = 0.9764049.

Step 4: The critical value can be computed as C0
L = 1− L

(
θ0 + Z1−α

√
w(θ0)

)
= 0.9039645.

Step 5: Since ĈL= 0.9764049∈
(
C0

L, ∞) , we concluded that there is enough evidence
to support Ha : CL > 0.85 so that this manufacturing process is capable.

4. Conclusions

It’s very crucial to upgrade the quality of products in the competitive emerging
markets and the lifetime performance index is an effective measurement on the quality of
products in terms of lifetime. The attractive property of progressive type I interval censoring
is the convenient collection of data for a quality engineer. We presented an algorithm for
users to fulfill the testing procedure about the lifetime performance index for EF distribution
based on the asymptotic distribution of the maximum likelihood estimator under this
censoring. Since we use normal approximation to the MLE distribution to develop the
testing procedure and compute the test power, this approximation would be good if we
have a large enough sample size. The power analysis shows that the proposed procedure
reached the pre-assigned level of significance. The impact of the different setup of values of
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n, m, p and α on the test power is also analyzed and concluded. For the guideline of users,
we give two numerical examples to demonstrate the enumerated algorithm to conduct
the testing procedure. In the future, we can investigate the inferences on the lifetime
performance index for other lifetime distribution like exponentiated Weibull distribution.
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Appendix A

Table A1. The power h(δ) at α = 0.05.

δ

m n p 0.000 0.025 0.050 0.075 0.100 0.125

3 60 0.000 0.0500 0.1404 0.3432 0.6636 0.9298 0.9982

0.050 0.0500 0.1372 0.3312 0.6429 0.9174 0.9972

0.075 0.0500 0.1356 0.3253 0.6325 0.9106 0.9966

80 0.000 0.0500 0.1664 0.4358 0.7960 0.9817 0.9999

0.050 0.0500 0.1622 0.4208 0.7770 0.9766 0.9999

0.075 0.0500 0.1601 0.4134 0.7673 0.9737 0.9998

100 0.000 0.0500 0.1918 0.5206 0.8818 0.9957 1.0000

0.050 0.0500 0.1866 0.5035 0.8667 0.9941 1.0000

0.075 0.0500 0.1840 0.4950 0.8587 0.9931 1.0000

4 60 0.000 0.0500 0.1532 0.3919 0.7422 0.9670 0.9997

0.050 0.0500 0.1482 0.3732 0.7142 0.9561 0.9995

0.075 0.0500 0.1457 0.3642 0.7001 0.9497 0.9992

80 0.000 0.0500 0.1833 0.4960 0.8631 0.9941 1.0000

0.050 0.0500 0.1767 0.4733 0.8404 0.9909 1.0000

0.075 0.0500 0.1735 0.4622 0.8285 0.9889 1.0000

100 0.000 0.0500 0.2126 0.5882 0.9313 0.9991 1.0000

0.050 0.0500 0.2045 0.5632 0.9155 0.9984 1.0000

0.075 0.0500 0.2006 0.5508 0.9069 0.9979 1.0000
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Table A1. Cont.

5 60 0.000 0.0500 0.1626 0.4275 0.7922 0.9823 0.9999

0.050 0.0500 0.1558 0.4026 0.7590 0.9732 0.9999

0.075 0.0500 0.1526 0.3907 0.7421 0.9676 0.9998

80 0.000 0.0500 0.1957 0.5390 0.9010 0.9977 1.0000

0.050 0.0500 0.1868 0.5093 0.8766 0.9957 1.0000

0.075 0.0500 0.1826 0.4950 0.8634 0.9943 1.0000

100 0.000 0.0500 0.2280 0.6350 0.9558 0.9997 1.0000

0.050 0.0500 0.2170 0.6031 0.9405 0.9994 1.0000

0.075 0.0500 0.2118 0.5874 0.9317 0.9991 1.0000

Table A2. The power h(δ) at α = 0.1.

δ

m n p 0.000 0.025 0.050 0.075 0.100 0.125

3 60 0.000 0.1000 0.2473 0.5124 0.8179 0.9786 0.9998

0.050 0.1000 0.2426 0.4991 0.8025 0.9737 0.9997

0.075 0.1000 0.2403 0.4926 0.7946 0.9710 0.9996

80 0.000 0.1000 0.2833 0.6076 0.9053 0.9959 1.0000

0.050 0.1000 0.2775 0.5927 0.8937 0.9945 1.0000

0.075 0.1000 0.2746 0.5853 0.8876 0.9936 1.0000

100 0.000 0.1000 0.3170 0.6866 0.9524 0.9993 1.0000

0.050 0.1000 0.3102 0.6712 0.9447 0.9989 1.0000

0.075 0.1000 0.3068 0.6633 0.9405 0.9987 1.0000

4 60 0.000 0.1000 0.2657 0.5650 0.8730 0.9918 1.0000

0.050 0.1000 0.2586 0.5454 0.8544 0.9883 1.0000

0.075 0.1000 0.2551 0.5358 0.8447 0.9861 0.9999

80 0.000 0.1000 0.3064 0.6658 0.9435 0.9990 1.0000

0.050 0.1000 0.2975 0.6445 0.9314 0.9983 1.0000

0.075 0.1000 0.2932 0.6340 0.9247 0.9978 1.0000

100 0.000 0.1000 0.3444 0.7458 0.9760 0.9999 1.0000

0.050 0.1000 0.3339 0.7246 0.9689 0.9998 1.0000

0.075 0.1000 0.3288 0.7139 0.9649 0.9997 1.0000

5 60 0.000 0.1000 0.2791 0.6019 0.9049 0.9963 1.0000

0.050 0.1000 0.2696 0.5767 0.8844 0.9937 1.0000

0.075 0.1000 0.2651 0.5644 0.8735 0.9921 1.0000

80 0.000 0.1000 0.3231 0.7051 0.9627 0.9997 1.0000

0.050 0.1000 0.3113 0.6785 0.9508 0.9993 1.0000

0.075 0.1000 0.3057 0.6654 0.9440 0.9990 1.0000

100 0.000 0.1000 0.3642 0.7841 0.9861 1.0000 1.0000

0.050 0.1000 0.3503 0.7585 0.9800 0.9999 1.0000

0.075 0.1000 0.3437 0.7456 0.9763 0.9999 1.0000
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