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Abstract: An absolute value function was introduced for chaos construction, where hyperchaotic
oscillation was found with amplitude rescaling. The nonlinear absolute term brings the convenience
for amplitude control. Two regimes of amplitude control including total and partial amplitude
control are discussed, where the attractor can be rescaled separately by two independent coefficients.
Symmetrical pairs of coexisting attractors are captured by corresponding initial conditions. Circuit
implementation by the platform STM32 is consistent with the numerical exploration and the theoreti-
cal observation. This finding is helpful for promoting discrete map application, where amplitude
control is realized in an easy way and coexisting symmetrical sequences with opposite polarity
are obtained.

Keywords: amplitude control; coexisting symmetric attractors; hyperchaotic map

1. Introduction

Chaos has been widely used in image encryption [1–6] and secure communication [7–9].
Adjusting the amplitude of chaos without damaging its engineering application is an
important issue because of the butterfly effect. However, there is still much work to
do for the rescaling of broadband chaotic sequences. Difficulty modulation with broad-
band chaotic signal, amplitude [10–13], symmetry [14–17], and multistability [18–21] have
been extensively studied in a nonlinear field. In practical engineering applications, lin-
ear transformations are usually necessary but sometimes are unpermitted to obtain the
required geometric scale in designed hardware. The difficulty hidden in circuit design and
debugging increases the value of amplitude control in chaos.

The non-bifurcation parameter is usually applied in the dynamical system to rescale
the signal amplitude without changing the Lyapunov exponents, which is significant for
the application of chaos. Appropriate signal control can save the modulator in chaos-based
applications, including amplitude control [22–24] and offset control [25–28]. In continuous
systems, amplitude control with independent control knobs and coexisting symmetric
attractors have been widely studied, but in discrete mapping the amplitude control with
a single parameter has not received enough attention. For example [29–32], the multi-
stable phenomenon of the map has been discussed in detail, and the position of the phase
trajectory through the multistability to achieve the purpose of amplitude control was given,
but this ignored a method of directly adjusting the signal amplitude with a single knob.
Besides, in many discrete maps like [33], although there are abundant attractor coexistence
phenomena, there are no symmetrical coexisting attractors.

In this paper, a two-dimensional hyperchaotic map was given with two independent
amplitude knobs, and the map also had a pair of symmetrical coexisting attractors in some

Symmetry 2021, 13, 1047. https://doi.org/10.3390/sym13061047 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-9932-0914
https://orcid.org/0000-0001-5243-1046
https://doi.org/10.3390/sym13061047
https://doi.org/10.3390/sym13061047
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13061047
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13061047?type=check_update&version=1


Symmetry 2021, 13, 1047 2 of 11

cases. The amplitude control characteristics of the map and the symmetry of the coexisting
attractors are analyzed. In Section 2, the hyperchaotic mapping model is constructed and
the basic chaotic dynamics behavior is analyzed. In Section 3, the realization method of
amplitude control is discussed. The symmetry of the coexisting attractors is discussed in
Section 4. In Section 5, the map is implemented through a digital platform. Finally, we give
the conclusions and discussion.

2. A New 2D Hyperchaotic Map and Its Dynamic Analysis
2.1. Model and Its Fixed Points Analysis

Absolute value function is often applied to realize chaos in continuous systems [34,35],
and here adding absolute value function into discrete mapping as follows{

xn+1 = axn + bxn|yn|
yn+1 = cxn − 1.25yn

(1)

where xn, yn (n = 1, 2, 3, . . . ) are system state variables; a, b, c, are system parameters, and
none of them is zero.

The stability of the above discrete mapping (1) can be analyzed by means of fixed
points. The fixed points of discrete mapping are the elements that map to itself in its
domain. The fixed points S* = (x*, y*) of the two-dimensional mapping (1) can be solved by
the following Equation (2) {

x∗ = ax∗ + bx∗|y∗|
y∗ = cx∗ − 1.25y∗

(2)

By solving Equation (2), we can get |y∗| = 1−a
b → b(1− a) > 0 .

The Jacobian matrix of map (1) is

J =
[

1 bx∗sgn(y∗)
c −1.25

]
(3)

Substitute the fixed points S* = (x*, y*) = (2.25y*/c, y*) into Equation (3)

J∗ =

[
1 2.25by∗sgn(y∗)

c
c −1.25

]
(4)

The map characteristic equation corresponds to the matrix J written as follows

P(λ) = (λ + 1.25)(λ− 1)− 2.25(1− a) (5)

λ1,2 are the two eigenvalues of Equation (5). When P(λ) = 0, we can get ∆ = 14.0625 − 9a.

Then λ1,2 = −0.25±
√

∆
2 . When−1 < λ1,2 = −0.25±

√
∆

2 < 1, we can get 1< a < 11/9. Therefore,
if a < 1, b > 0 or a > 11/9, b < 0 the map has unstable fixed points, and if 1 < a < 11/9, b < 0,
the map has stable fixed points.

When a = 2.35, b = −1, c = −1, IC = (0.1, 0.1) in map (1), the time series of variables x, y
are shown in Figure 1a,b and the phase trajectory is shown in Figure 1c.
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2.234), both exponents are negative, the map is in a periodic state, and its typical coexisting 
phase trajectories are shown in Figure 3b; when a є (2.247, 2.255), (2.257, 2.32), (2.3256, 
2.3259), LE1 > 0, LE2 < 0, the map is chaotic, and its typical coexisting phase trajectories 
are shown in Figure 3c–e; when a є (2.283, 2.4), both Lyapunov exponents are greater than 
zero, therefore the map is hyperchaotic, and its typical coexisting phase trajectories are 
shown in Figure 3f. The corresponding Lyapunov exponents under different parameters 
are shown in Table 1. 

  

Figure 1. The sequence and phase trajectory of map (1) with a = 2.35, b = −1, c = −1, IC = (0.1, 0.1): (a) x(n) sequence,
(b) y(n) sequence, and (c) the phase trajectory.

2.2. Bifurcation Analysis

To analyze the nonlinear characteristics of map (1), we set b = −1 and c = −1 and let
initial condition IC = (0.1, 0.1), the Lyapunov exponent spectra and bifurcation diagram for
the region of a in (−2, 2.4) are shown in Figure 2. When the parameter a varies in ([2, 2.4), it
can be seen that when a є(2, 2.15), LE1 = 0, LE2 < 0, the map is in a quasi-periodical state,
and its typical coexisting phase trajectories are shown in Figure 3a. When a є(2.2, 2.234),
both exponents are negative, the map is in a periodic state, and its typical coexisting phase
trajectories are shown in Figure 3b; when a є(2.247, 2.255), (2.257, 2.32), (2.3256, 2.3259),
LE1 > 0, LE2 < 0, the map is chaotic, and its typical coexisting phase trajectories are shown in
Figure 3c–e; when a є(2.283, 2.4), both Lyapunov exponents are greater than zero, therefore
the map is hyperchaotic, and its typical coexisting phase trajectories are shown in Figure 3f.
The corresponding Lyapunov exponents under different parameters are shown in Table 1.

Symmetry 2021, 13, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 2. Dynamical behavior of map (1) with b = −1, c = −1 and initial conditions IC = (0.1, 0.1): (a) Lyapunov exponents, 
(b) bifurcation diagram. 

  

Figure 2. Dynamical behavior of map (1) with b = −1, c = −1 and initial conditions IC = (0.1, 0.1): (a) Lyapunov exponents,
(b) bifurcation diagram.



Symmetry 2021, 13, 1047 4 of 11Symmetry 2021, 13, x FOR PEER REVIEW 5 of 17 
 

 

 
Figure 3. Symmetrical coexisting attractors of map (1) with b = −1, c = −1 when (a) a = 2.15, (b) a = 
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Table 1. Phase trajectory types and Lyapunov exponents of map (1) when b = −1, c = −1, IC = (−0.1, 
−0.1). 

a Phase Trajectory Type LEs 
a = 2.15 quasi-period (0, −0.1914) 
a = 2.23 period (−0.002709, −0.1558) 
a = 2.25 chaos (0.05989, −0.1648) 
a = 2.28 chaos (0.1041, −0.01998) 
a = 2.3 hyperchaos (0.1403, 0.07291) 

a = 2.3259 chaos (0.04464, −0.02) 

3. Amplitude Control 
3.1. Total Amplitude Control 

The parameter b in the map (1) is a single non-bifurcation knob used for total ampli-
tude control [21]. Let un+1 = xn+1/b, vn+1 = yn+1/b, map (1) is changed as follows 

Figure 3. Symmetrical coexisting attractors of map (1) with b = −1, c = −1 when (a) a = 2.15, (b) a = 2.23, (c) a = 2.25,
(d) a = 2.28, (e) a = 2.3, (f) a = 2.3259.

Table 1. Phase trajectory types and Lyapunov exponents of map (1) when b = −1, c = −1, IC = (−0.1,
−0.1).

a Phase Trajectory Type LEs

a = 2.15 quasi-period (0, −0.1914)
a = 2.23 period (−0.002709, −0.1558)
a = 2.25 chaos (0.05989, −0.1648)
a = 2.28 chaos (0.1041, −0.01998)
a = 2.3 hyperchaos (0.1403, 0.07291)

a = 2.3259 chaos (0.04464, −0.02)
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3. Amplitude Control
3.1. Total Amplitude Control

The parameter b in the map (1) is a single non-bifurcation knob used for total amplitude
control [21]. Let un+1 = xn+1/b, vn+1 = yn+1/b, map (1) is changed as follows{

un+1 = aun + b2un|vn|
vn+1 = cun − 1.25vn

(6)

When b = 1, Equation (6) is equivalent to Equation (1), which indicates that the
parameter b of Equation (1) rescales the amplitude of x and y according to 1/b; that is, b is
the total amplitude parameter.

Therefore, the output sequences are controlled by the non-bifurcation parameter b.
As shown in Figure 4, the amplitude of x, y are rescaled by the non-bifurcation parameter
b. When b = −1, the amplitudes of x and y are very large; and with the change of b, it
decreases inversely proportional to the absolute value of b. Figure 4c shows the phase
trajectory when the control parameter b changes.
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It can be seen from Figure 5 that when the parameter b changes in the range of
(−10, 0), the average value of the absolute values of x, y decreases accordingly in inverse
proportion to the absolute value of b. The Lyapunov exponents spectrum corresponding to
the parameter b in (−10, 0) remain constant as shown in Figure 5a. It further proves that b
of map (1) only rescales the amplitude of x without changing the frequency.
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3.2. Partial Amplitude Control

In map (1), the parameter c is a single parameter used for partial amplitude control [15].
Here, let un+1 = xn+1/c, vn+1 = yn+1{

un+1 = aun + bun|vn|
vn+1 = c2un − 1.25vn

(7)

When c =1, Equation (7) is equivalent to Equation (1), which shows that the parameter
c rescales the amplitude of x according to 1/c, that is, c is the partial amplitude parameter.

Therefore, the amplitude of output signal x is controlled by the parameter c of map
(1). As shown in Figure 6, the amplitude of the signal x is rescaled by c. When c = −1, the
amplitude of the x signal is very large, and as c changes, it decreases in inverse proportion to
the absolute value of c. Figure 6b shows the phase trajectories when the control parameter
c changes.
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It can also be seen from Figure 7b that when the parameter c changes within the
range of (−15, 0), the average value of the absolute value of the state variables x decreases
accordingly in inverse proportion to the absolute value of c. The Lyapunov exponents
spectrum corresponding to parameter c is shown in Figure 7a, showing that the parameter
c of map (1) only rescales the amplitude of the state variable x without adjusting the
frequency of it.
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4. Bistability with Coexisting Symmetrical Attractors

In the following section, we focus on the multistability of the map. Typically, for the
special structure of symmetrical maps, there are coexisting attractors in their basins of
attraction in the phase space. Map (1) is a symmetric map, which can be proved by the
invariance under the transforming x→ −x, y→ −y. At this time, the polarities on both
sides of the map equation remain balanced.

Figure 8 shows the basin of attraction of map (1) with a = 2.35, b = −1, c = −1, which
proves its bistability. Here we use the same color to mark the basin of attraction. There are
two areas in different colors in the picture, clearly showing the two types of attractors.
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Figure 8. Symmetric basins of attraction for map (1) with a = 2.35, b = −1, c = 1, Dark turquoise for
IC = (0.1, 0.1), and Light cyan is for IC = (−0.1, −0.1).

The bifurcation of parameter b for the state variable y under different initial values is
shown in Figure 9, and Figure 10 shows typical phase trajectories of coexisting symmetric
attractors. It can also be seen that the parameter b can modify the symmetric modes of the
coexisting attractors under a set of fixed initial conditions. From Figure 10a,b, we can see
the parameter b can freely control the polarity of the sequence of y.
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To verify the bistability of map (1), we analyze it in terms of the signal waveforms.
Figure 11 shows the signal waveforms of the state variables x, y. The symmetric attractors
are controlled under various parameter b and c as shown in Figure 12.
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5. Circuit Implementation

In this work, the digital technique is used to demonstrate the dynamic characteristics
of map (1). The experimental device mainly includes STM32F103 and 12-bit digital-to-
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analog conversion module TLV5618. Two signals of the map (1) are output through
two 12-bit digital-to-analog converter (DAC) modules. The experimental circuit platform
is shown in Figure 13. Given the corresponding parameter values and initial conditions,
the typical phase diagram of the chaotic map can be observed in the oscilloscope, as shown
in Figure 14.
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Figure 14. Two modes of the symmetric coexisting attractors in map (1) from the oscilloscope with
a = 2.35, c = −1, (a) b = −1, (b) b = 1.

6. Discussion and Conclusions

In this paper, the dynamical properties of a two-dimensional hyperchaotic map with
absolute value function are discussed, and the stability of its fixed points are analyzed in de-
tail. The map can not only realize the global amplitude control by a single controller but can
also realize the partial amplitude control by a single knob. These dynamic characteristics
are proved by the platform based on STM32F103 chip and the digital-to-analog converter,
where the experimental results are in good agreement with the simulation analysis. The
special symmetry mode is a new passage for providing coexisting oscillation with inverse
polarity of the chaotic signal, which shows great potential in chaos application and deserve
further exploration. In future, the simple hyperchaotic map could be applied to the design
of random number generators for chaos-based engineering.
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