Skewness-Based Projection Pursuit as an Eigenvector Problem in Scale Mixtures of Skew-Normal Distributions
Abstract
:1. Introduction
2. Background
2.1. The Skew Normal and the Scale Mixtures of Skew Normal Distributions
2.2. Examples of SMSN Distributions
2.2.1. The Multivariate SN Distribution
2.2.2. The Multivariate Skew-t Distribution
2.2.3. The Multivariate Skew-Slash Distribution
3. Skewness Projection Pursuit
- 1.
- .
- 2.
- .
- 3.
- 1.
- .
- 2.
- .
- 3.
- .
3.1. Projection Pursuit from the Third Cumulant Matrix
3.2. Projection Pursuit from Scatter Matrices
3.3. Estimation and Computational Issues
4. Simulation Experiment
4.1. Simulation Study for Bidimensional SMSN Distributions
4.2. Simulation Study for SMSN Distributions when
5. Summary and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kruskal, J.B. Toward a practical method which helps uncover the structure of a set of multivariate observations by finding the linear transformation which optimizes a new “index of condensation”. In Statistical Computation; Elsevier: Amsterdam, The Netherlands, 1969; pp. 427–440. [Google Scholar]
- Friedman, J.H.; Tukey, J.W. A Projection Pursuit Algorithm for Exploratory Data Analysis. IEEE Trans. Comput. 1974, 23, 881–890. [Google Scholar] [CrossRef]
- Huber, P.J. Projection Pursuit. Ann. Stat. 1985, 13, 435–475. [Google Scholar] [CrossRef]
- Jones, M.C.; Sibson, R. What is Projection Pursuit? J. R. Stat. Society. Ser. A 1987, 150, 1–37. [Google Scholar] [CrossRef]
- Friedman, J.H. Exploratory Projection Pursuit. J. Am. Stat. Assoc. 1987, 82, 249–266. [Google Scholar] [CrossRef]
- Hall, P. On Polynomial-Based Projection Indices for Exploratory Projection Pursuit. Ann. Stat. 1989, 17, 589–605. [Google Scholar] [CrossRef]
- Cook, D.; Buja, A.; Cabrera, J. Projection Pursuit Indexes Based on Orthonormal Function Expansions. J. Comput. Graph. Stat. 1993, 2, 225–250. [Google Scholar] [CrossRef]
- Peña, D.; Prieto, F.J. Cluster Identification Using Projections. J. Am. Stat. Assoc. 2001, 96, 1433–1445. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez Martinez, E.; Goulermas, J.; Mu, T.; Ralph, J. Automatic Induction of Projection Pursuit Indices. Neural Netw. IEEE Trans. 2010, 21, 1281–1295. [Google Scholar] [CrossRef]
- Hou, S.; Wentzell, P. Re-centered kurtosis as a projection pursuit index for multivariate data analysis. J. Chemom. 2014, 28, 370–384. [Google Scholar] [CrossRef]
- Loperfido, N. Skewness-Based Projection Pursuit: A Computational Approach. Comput. Stat. Data Anal. 2018, 120, 42–57. [Google Scholar] [CrossRef]
- Loperfido, N. Kurtosis-based projection pursuit for outlier detection in financial time series. Eur. J. Financ. 2020, 26, 142–164. [Google Scholar] [CrossRef]
- Posse, C. Projection pursuit exploratory data analysis. Comput. Stat. Data Anal. 1995, 20, 669–687. [Google Scholar] [CrossRef]
- De Lathauwer, L.; De Moor, B.; Vandewalle, J. On the best rank-1 and rank-(R1, R2, …, RN) approximation of higher-order tensor. SIAM J. Matrix Anal. Appl. 2000, 21, 1324–1342. [Google Scholar] [CrossRef]
- Kofidis, E.; Regalia, P.A. On the Best Rank-1 Approximation of Higher-Order Supersymmetric Tensors. SIAM J. Matrix Anal. Appl. 2002, 23, 863–884. [Google Scholar] [CrossRef] [Green Version]
- Loperfido, N. A new kurtosis matrix, with statistical applications. Linear Algebra Its Appl. 2017, 512, 1–17. [Google Scholar] [CrossRef]
- Franceschini, C.; Loperfido, N. An Algorithm for Finding Projections with Extreme Kurtosis. In Studies in Theoretical and Applied Statistics; Perna, C., Pratesi, M., Ruiz-Gazen, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 61–70. [Google Scholar]
- Loperfido, N. Canonical transformations of skew-normal variates. TEST 2010, 19, 146–165. [Google Scholar] [CrossRef]
- Arevalillo, J.M.; Navarro, H. A note on the direction maximizing skewness in multivariate skew-t vectors. Stat. Probab. Lett. 2015, 96, 328–332. [Google Scholar] [CrossRef]
- Arevalillo, J.M.; Navarro, H. Skewness-Kurtosis Model-Based Projection Pursuit with Application to Summarizing Gene Expression Data. Mathematics 2021, 9, 954. [Google Scholar] [CrossRef]
- Kim, H.M.; Kim, C. Moments of scale mixtures of skew-normal distributions and their quadratic forms. Commun. Stat. Theory Methods 2017, 46, 1117–1126. [Google Scholar] [CrossRef]
- Arevalillo, J.M.; Navarro, H. Data projections by skewness maximization under scale mixtures of skew-normal vectors. Adv. Data Anal. Classif. 2020, 14, 435–461. [Google Scholar] [CrossRef]
- Capitanio, A. On the canonical form of scale mixtures of skew-normal distributions. Statistica 2020, 80, 145–160. [Google Scholar]
- Malkovich, J.F.; Afifi, A.A. On Tests for Multivariate Normality. J. Am. Stat. Assoc. 1973, 68, 176–179. [Google Scholar] [CrossRef]
- Azzalini, A.; Capitanio, A. Statistical applications of the multivariate skew normal distribution. J. R. Stat. Soc. Ser. B 1999, 61, 579–602. [Google Scholar] [CrossRef]
- Azzalini, A. The Skew-normal Distribution and Related Multivariate Families. Scand. J. Stat. 2005, 32, 159–188. [Google Scholar] [CrossRef]
- Contreras-Reyes, J.E.; Arellano-Valle, R.B. Kullback–Leibler Divergence Measure for Multivariate Skew-Normal Distributions. Entropy 2012, 14, 1606–1626. [Google Scholar] [CrossRef] [Green Version]
- Balakrishnan, N.; Scarpa, B. Multivariate measures of skewness for the skew-normal distribution. J. Multivar. Anal. 2012, 104, 73–87. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Capitanio, A.; Scarpa, B. A test for multivariate skew-normality based on its canonical form. J. Multivar. Anal. 2014, 128, 19–32. [Google Scholar] [CrossRef]
- Azzalini, A.; Capitanio, A. The Skew-Normal and Related Families; IMS Monographs; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- González-Farías, G.; Domínguez-Molina, A.; Gupta, A.K. Additive properties of skew normal random vectors. J. Stat. Plan. Inference 2004, 126, 521–534. [Google Scholar] [CrossRef]
- González-Farías, G.; Domínguez-Molina, A.; Gupta, A.K. The closed skew-normal distribution. In Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality; Genton, M.G., Ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004; Chapter 2; pp. 25–42. [Google Scholar]
- Loperfido, N. Generalized skew-normal distributions. In Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality; Genton, M.G., Ed.; Chapman & Hall/CRC: Boca Raton, FL, USA, 2004; Chapter 4; pp. 65–80. [Google Scholar]
- Lachos, V.H.; Labra, F.V.; Bolfarine, H.; Ghosh, P. Multivariate measurement error models based on scale mixtures of the skew–normal distribution. Statistics 2010, 44, 541–556. [Google Scholar] [CrossRef]
- Vilca, F.; Balakrishnan, N.; Zeller, C.B. Multivariate Skew-Normal Generalized Hyperbolic distribution and its properties. J. Multivar. Anal. 2014, 128, 73–85. [Google Scholar] [CrossRef]
- Kahrari, F.; Rezaei, M.; Yousefzadeh, F.; Arellano-Valle, R. On the multivariate skew-normal-Cauchy distribution. Stat. Probab. Lett. 2016, 117, 80–88. [Google Scholar] [CrossRef]
- Kahrari, F.; Arellano-Valle, R.; Rezaei, M.; Yousefzadeh, F. Scale mixtures of skew-normal-Cauchy distributions. Stat. Probab. Lett. 2017, 126, 1–6. [Google Scholar] [CrossRef]
- Arellano-Valle, R.B.; Ferreira, C.S.; Genton, M.G. Scale and shape mixtures of multivariate skew-normal distributions. J. Multivar. Anal. 2018, 166, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Ogasawara, H. A non-recursive formula for various moments of the multivariate normal distribution with sectional truncation. J. Multivar. Anal. 2021, 183, 104729. [Google Scholar] [CrossRef]
- Azzalini, A.; Dalla Valle, A. The multivariate skew-normal distribution. Biometrika 1996, 83, 715–726. [Google Scholar] [CrossRef]
- Branco, M.D.; Dey, D.K. A General Class of Multivariate Skew-Elliptical Distributions. J. Multivar. Anal. 2001, 79, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.M. A note on scale mixtures of skew normal distribution. Stat. Probab. Lett. 2008, 78, 1694–1701. [Google Scholar] [CrossRef]
- Basso, R.M.; Lachos, V.H.; Cabral, C.R.B.; Ghosh, P. Robust mixture modeling based on scale mixtures of skew-normal distributions. Comput. Stat. Data Anal. 2010, 54, 2926–2941. [Google Scholar] [CrossRef]
- Zeller, C.B.; Cabral, C.R.B.; Lachos, V.H. Robust mixture regression modeling based on scale mixtures of skew-normal distributions. TEST 2016, 25, 375–396. [Google Scholar] [CrossRef]
- Lachos, V.H.; Garay, A.M.; Cabral, C.R.B. Moments of truncated scale mixtures of skew-normal distributions. Braz. J. Probab. Stat. 2020, 34, 478–494. [Google Scholar] [CrossRef]
- Azzalini, A.; Capitanio, A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. J. R. Stat. Soc. Ser. B 2003, 65, 367–389. [Google Scholar] [CrossRef]
- Wang, J.; Genton, M.G. The multivariate skew-slash distribution. J. Stat. Plan. Inference 2006, 136, 209–220. [Google Scholar] [CrossRef]
- Loperfido, N. Skewness and the linear discriminant function. Stat. Probab. Lett. 2013, 83, 93–99. [Google Scholar] [CrossRef]
- Kollo, T.; von Rosen, D. Advanced Multivariate Statistics with Matrices; Mathematics and Its Applications; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Christiansen, M.C.; Loperfido, N. Improved Approximation of the Sum of Random Vectors by the Skew Normal Distribution. J. Appl. Probab. 2014, 51, 466–482. [Google Scholar] [CrossRef]
- Qi, L. Rank and eigenvalues of a supersymmetric tensor, the multivariate homogeneous polynomial and the algebraic hypersurface it defines. J. Symb. Comput. 2006, 41, 1309–1327. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, J.F. Source separation using higher order moments. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Glasgow, UK, 23–26 May 1989; pp. 2109–2112. [Google Scholar]
- Tyler, D.E.; Critchley, F.; Dümbgen, L.; Oja, H. Invariant co-ordinate selection. J. R. Stat. Soc. Ser. B 2009, 71, 549–592. [Google Scholar] [CrossRef]
- Kent, J.T. Discussion on the paper by Tyler, Critchley, Dumbgen & Oja: Invariant co-ordinate selection. J. R. Stat. Soc. Ser. B 2009, 71, 575–576. [Google Scholar]
- Peña, D.; Prieto, F.J.; Viladomat, J. Eigenvectors of a kurtosis matrix as interesting directions to reveal cluster structure. J. Multivar. Anal. 2010, 101, 1995–2007. [Google Scholar] [CrossRef] [Green Version]
- Alashwali, F.; Kent, J.T. The use of a common location measure in the invariant coordinate selection and projection pursuit. J. Multivar. Anal. 2016, 152, 145–161. [Google Scholar] [CrossRef] [Green Version]
- Nordhausen, K.; Oja, H.; Tyler, D.E. Tools for Exploring Multivariate Data: The Package ICS. J. Stat. Softw. 2008, 28, 1–31. [Google Scholar] [CrossRef]
- Wang, J. A family of kurtosis orderings for multivariate distributions. J. Multivar. Anal. 2009, 100, 509–517. [Google Scholar] [CrossRef] [Green Version]
- Arevalillo, J.M.; Navarro, H. A study of the effect of kurtosis on discriminant analysis under elliptical populations. J. Multivar. Anal. 2012, 107, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Arevalillo, J.M.; Navarro, H. A stochastic ordering based on the canonical transformation of skew-normal vectors. TEST 2019, 28, 475–498. [Google Scholar] [CrossRef]
0.646 | 0.916 | 0.500 | 0.584 | 1.306 | 1.090 | 1.284 | 1.472 | |
0.772 | 0.975 | 0.677 | 0.675 | 1.383 | 1.155 | 1.521 | 1.632 | |
0.654 | 0.875 | 0.435 | 0.528 | 1.090 | 0.931 | 0.826 | 0.903 | |
0.610 | 0.932 | 0.518 | 0.553 | 0.873 | 1.182 | 1.195 | 1.280 | |
0.760 | 1.075 | 0.865 | 0.665 | 1.029 | 1.260 | 1.525 | 1.580 | |
0.668 | 0.831 | 0.542 | 0.579 | 0.938 | 1.097 | 0.888 | 0.838 | |
0.258 | 0.581 | 0.402 | 0.403 | 0.757 | 1.303 | 0.634 | 0.768 | |
0.443 | 0.801 | 0.794 | 0.629 | 0.956 | 1.413 | 0.971 | 1.048 | |
0.338 | 0.355 | 0.167 | 0.105 | 0.640 | 0.526 | 0.244 | 0.187 | |
0.362 | 0.738 | 0.299 | 0.477 | 0.536 | 0.918 | 0.369 | 0.550 | |
0.622 | 1.048 | 0.769 | 0.953 | 0.733 | 1.157 | 0.854 | 1.107 | |
0.469 | 0.428 | 0.198 | 0.195 | 0.557 | 0.785 | 0.227 | 0.254 | |
0.382 | 0.496 | 0.456 | 0.573 | 0.696 | 0.749 | 0.632 | 0.944 | |
0.618 | 0.725 | 0.894 | 0.977 | 0.938 | 0.899 | 0.987 | 1.263 | |
0.305 | 0.333 | 0.128 | 0.067 | 0.550 | 0.315 | 0.101 | 0.107 | |
0.495 | 0.549 | 0.167 | 0.644 | 0.657 | 0.731 | 0.265 | 0.460 | |
0.776 | 0.888 | 0.620 | 1.165 | 1.006 | 0.950 | 0.837 | 0.966 | |
0.426 | 0.319 | 0.118 | 0.179 | 0.656 | 0.453 | 0.145 | 0.106 |
0.817 | 0.854 | 0.963 | 1.104 | 1.406 | 1.553 | 0.893 | 1.528 | |
0.929 | 0.900 | 1.209 | 1.332 | 1.491 | 1.632 | 1.020 | 1.652 | |
0.732 | 0.796 | 0.735 | 0.748 | 1.144 | 1.039 | 0.741 | 0.933 | |
0.739 | 0.776 | 0.678 | 0.843 | 1.306 | 1.410 | 1.039 | 1.249 | |
0.851 | 0.844 | 1.026 | 1.279 | 1.458 | 1.595 | 1.423 | 1.625 | |
0.852 | 0.803 | 0.698 | 0.604 | 1.273 | 1.246 | 0.956 | 0.988 | |
0.347 | 0.667 | 0.225 | 0.567 | 1.243 | 1.510 | 1.078 | 1.356 | |
0.516 | 0.841 | 0.462 | 0.763 | 1.402 | 1.634 | 1.351 | 1.582 | |
0.455 | 0.439 | 0.232 | 0.254 | 0.767 | 0.676 | 0.347 | 0.328 | |
0.413 | 0.650 | 0.125 | 0.289 | 1.057 | 1.284 | 0.598 | 0.738 | |
0.784 | 1.005 | 0.439 | 0.813 | 1.455 | 1.579 | 1.379 | 1.516 | |
0.655 | 0.648 | 0.162 | 0.200 | 0.804 | 0.889 | 0.392 | 0.293 | |
0.383 | 0.720 | 0.392 | 0.463 | 1.209 | 1.439 | 1.104 | 1.275 | |
0.574 | 0.941 | 0.735 | 0.830 | 1.396 | 1.564 | 1.420 | 1.572 | |
0.401 | 0.332 | 0.162 | 0.103 | 0.565 | 0.574 | 0.260 | 0.160 | |
0.222 | 0.588 | 0.163 | 0.207 | 0.905 | 1.202 | 0.550 | 0.902 | |
0.524 | 1.004 | 0.657 | 0.826 | 1.379 | 1.598 | 1.391 | 1.500 | |
0.430 | 0.452 | 0.318 | 0.131 | 0.537 | 0.775 | 0.224 | 0.280 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arevalillo, J.M.; Navarro, H. Skewness-Based Projection Pursuit as an Eigenvector Problem in Scale Mixtures of Skew-Normal Distributions. Symmetry 2021, 13, 1056. https://doi.org/10.3390/sym13061056
Arevalillo JM, Navarro H. Skewness-Based Projection Pursuit as an Eigenvector Problem in Scale Mixtures of Skew-Normal Distributions. Symmetry. 2021; 13(6):1056. https://doi.org/10.3390/sym13061056
Chicago/Turabian StyleArevalillo, Jorge M., and Hilario Navarro. 2021. "Skewness-Based Projection Pursuit as an Eigenvector Problem in Scale Mixtures of Skew-Normal Distributions" Symmetry 13, no. 6: 1056. https://doi.org/10.3390/sym13061056
APA StyleArevalillo, J. M., & Navarro, H. (2021). Skewness-Based Projection Pursuit as an Eigenvector Problem in Scale Mixtures of Skew-Normal Distributions. Symmetry, 13(6), 1056. https://doi.org/10.3390/sym13061056