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Abstract: This paper studies the uniqueness of the solutions of several of Abel’s integral equations of
the second kind with variable coefficients as well as an in-symmetry system in Banach spaces L(2)
and L(Q)) x L(Q)), respectively. The results derived are new and original, and can be applied to solve
the generalized Abel’s integral equations and obtain convergent series as solutions. We also provide
a few examples to demonstrate the use of our main theorems based on convolutions, the gamma
function and the Mittag—Leffler function.

Keywords: partial Riemann-Liouville fractional integral; Babenko’s approach; Banach fixed point
theorem; Mittag-Leffler function; gamma function

1. Introduction
Let0 < O); < cofori=1,2,---,n,and QO = [0,(] x [0, ] x - -+ x [0,Q,] C R". Define:

L(O) = {u | uis Lebesgue integrable on Q) and ||u|| = / lu(x)|dx < oo}.
Ja

Furthermore, the product space L(Q)) x L(Q) is given by
L(Q)) x L(Q) = { (4,v) | u, vare Lebesgue integrable on Q) and ||(u,v)| < co},

where:

I(u,0)]| = /Q ()| + /Q lo(x) |dx.

Clearly, both L(Q)) and L(Q) x L(Q) are Banach spaces.
Let I be the partial Riemann-Liouville fractional integral of order a € R* with
respect to x; € [0, (), with initial point zero [1]:

(Iu) (x) = r(l

Xk
xp— )Y Yu(xy, o, Xp_1,8, Xpat, -+, Xn)ds
o o) e x s 3 )
fork=1,2,--- ,n.
In particular:
(IPu) (x) = u(x).

Assume that /\l-]- (x) is the Lebesgue integrable and bounded on Q foralli = 1,2,--- ,n €
Nandj=1,2,---,m € N. In this paper, we begin to construct a unique solution in the
space L(Q)) using Babenko’s method and properties of the gamma function for the follow-
ing generalized Abel’s integral equation of the second kind with variable coefficients for
f e L(Q):

m

u(x) + Y {5 Hay (057} -

j=1

{ AL fu(x) = f(x), M
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where each fractional integral IZ Y carries its own weight function Aj(x), and all a;; > 0
satisfy a certain condition. Then, we further study the uniqueness of solutions in L(Q}) for:

+2{AU WAL} AR bu(x) = gxux), @

where g(x,y) is a mapping from Q) x R to R. Finally, the sufficient conditions are given for
the uniqueness of solutions in L(Q) x L(Q) to the symmetric system:

u(x) + Z%{Alj() 057 () B fulx) = g1(x,u(x),0(x)),
m ®)

o)+ L {1 Ha 02} -+ {017 o) = galo (), 000),
=

where both ¢1(x,y1,y2) and g2(x,y1,y2) are mappings from Q) x R x R to R, and all
coefficient functions yi]-(x) are Lebesgue integrable and bounded on (). Equations (1)—(3)
are new in the present studies, and have never been investigated before.

Clearly, Equation (1) turns out to be:

u(x) —cl*Mu(x) = f(x), a;1 >0 4)

ifn =m = 1and A1(x) = —c (constant). Equation (4) is obviously the classical Abel’s
integral equation of the second kind. In 1930, Hille and Tamarkin [2] derived its solution as

"X

u(x) = () + [ (6= 1) By lx = 1)) f (),

J0

where: ,
(o)
a,B>0
];) I'(aj+ ,B
is the Mittag-Leffler function.

There have been many analytic and numerical studies on Abel’s integral equation of
the second kind, including its variants and generalizations in distribution [3-11]. Cameron
and McKee [12] investigated the following Abel’s integral equation of the second kind,
numerically based on the construction and convergence analysis of the high-order prod-
uct integral:

x) + /Ox(x — )" *k(x,s,u(s))ds = f(x),

where u(x) is the unknown function defined on the interval 0 < x < T < oo and the
kernel k(x, s, u(s)) is Lipschitz continuous in its third variable. Pskhu [13] constructed an
explicit solution for the generalized Abel’s integral equation with constant coefficients cj
fork=1,2,---,n

- Zn: clfu(x) = f(x), >0, x€Q, (5)
k=1

using the Wright function:

e}

7
VOB = Ly T
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and convolution. Evidently, Equation (5) is a special case of our Equation (1) for particular
values of m, Aj;(x) and a;j. In 2019, Li and Plowman [14] derived a convergent solution for
the following Abel’s integral equation:

u(x) = (a1 () ") -+ (an () [ )u(x) = f(x), x€Q, 6)

based on Babenko's approach in the space L(Q2). Obviously, Equation (6) is also a particular
case of Equation (1) with m = 1, A1(x) = —a1(x), Ay (x) = ax(x), -+, Ay (x) = an(x),
and a¢jy = wa; fori=1,2,--- ,n.

In a wide range of scientific and engineering problems, the existence of a solution to
an integral equation is equivalent to the existence of a fixed point for a suitable and well-
defined mapping on spaces under consideration. Fixed points are therefore essential tools
in studying integral equations or systems arising from the real world. Banach’s contractive
principle provides a general condition ensuring that, if it is satisfied, the iteration of the
mapping produces a fixed point [15].

Babenko’s approach [16] is a very useful method in solving differential and integral
equations, which treat differential or integral operators like variables. The method itself
is similar to the Laplace transform when dealing with differential or integral equations
with constant coefficients, but it also works for certain equations with distributions, such
as xjrl'S and 6(0-5) (x), whose Laplace transforms do not exist in the classical sense [6,8]. As
an example, we are going to solve Equation (4) using this technique. Clearly:

u(x) —cI*nu(x) = (1 — cI"Mu(x) = f(x).

Informally:
u(x) = (1—c)f(x) =Y (cI*n) chzank
k=0
_ f(x) + Z Ck+11a11k+a11f(x)

k=0

X
— _ )arkta—1
)+c 2 M]kﬂn) | =1 flr)dr

(x — )%k

f(x)+c/0 x—r”‘lllz “11k+“11)f(r)dr

X

= ) +e [ (x =) By (c(x = 1)) ()T,

0

which coincides with Hille and Tamarkin’s result provided above.

2. The Main Results

In this section, we are going to present our main outcomes with several examples for
the illustration of the key theorems.

Theorem 1. Assume that f € L(Q), a;; > 0, and A;j(x) is Lebesgue integrable and bounded on
Qforalli=1,2,--- ,nand j =1,2,--- ,m. In addition, there exists 1 < i < n such that:

o =min{a;, -, a1 > 1

Then, Equation (1) has a unique solution in the space L(Q):

A ()L - Ay (I - (A (I - A () £ (). (7)
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Proof. Equation (1) turns out to be:

<1 + i{Alj(X)Iflj}{Azj(X)Igzj} e {/\nj(x)lznf}>u(x) = f(x).
i=

Thus, by Babenko’s approach:

m -1
u(x) <1+;{mxﬂi‘”}{A2j<x>1§2f}~~~{Anj<x>12"f}> f()

]

- 2(—1)"(2{A1,-<x>ri‘“}{Azj-(xﬂ?} - {wxﬂ;‘”}) f(x)
k=0 j=1

o k

e, )
k=0 ky+-+km=k kl/ o /km
k knl

(A () - A () I™) ™+ (A () T+ -+ Ay () Iy )™ f ().

Obviously, there exists M > 0 such that:

sup [Ajj(x)| <M
xeQ)

foralli=1,2,--- ,nandj=1,2,---m.

Let:
w =max{, Dy, -+, O},
and: 1
()3
D, ==
i) = "(ay)

Then, it follows from reference [17] that:

oji Nji
L7 = sup HIZ. ng = sup HCIDi,m.]. *gH < sup HCDi,,x’.j gl < HCDZ',%.
lgl<1 lgll<1 lgll<1
aji—1
(x)
dxq---dx
/O Tlay) !
W
Q.’] wﬂcl‘]‘
= OO O <t
1 i 1r(‘xij+1) i+1 n > F(“ij+1)
Therefore:

111%11k1+“'+0‘1mkm

o0 nk k
u(x) < k;)w) k X (kl,___,km)
= 1+ +km=k

Iﬂénlk1+~~~+txnmkm Hf”
n .
Clearly:
aqrky 4k
prnkut ek || o on—1 i L
_— 7
1 F(acllkl +-+ ﬂélmkm + 1)
T
kit &k
I“n1k1+"'+“nnlkm < wﬂ*l wanl ! o Em
n = .
r(lxnlk] + tee + “nmkm + 1)
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Since there exists 1 < i < n such that:

o =min{a;, -, &t > 1,

which infers that:
F(Déilkl + -+ Wik + 1) > r(l’ék + 1)

forallk =0,1,--- by noting that I'(x + 1) is an increasing function if x > 1. Furthermore:

4
l"(Dcslkl + ot wgmky + 1) > g

fors=1,2,---,i—1,i+1,--- ,nand k=0,1,---,since['(x + 1) > 4/5 forall x > 0. Let:

W= max {w"i}.
1<i<n, 1<j<m

Applying the identity:

k ) .

3 -

k1+k2+”'+km:k <k1,k2, . ’km
we derive that:
5\"~ M”mW
< nw—n (2
1

- (Z> [ FI By (M"mW") < oo. ®)

We still need to show that Equation (7) is a solution of Equation (1). Indeed:

0 m k
L(- "(2{% PH AR} A >1“"f}> f(x)

j=1

o m k
= f@) + Y (-Df (2{Alj<x>fi‘”}{Az](x)l;fzf} - {An](x)lfi"f‘}) f(x),

and:

o k
(- ( (ML H{ A0 }---{Anj<x>15"f}) )
+) Oo (i Agj(x {Azj(x)lﬁ‘z"}--{M;(Mi‘”’}) :

k
(;{/\1]() g1 }~~~{An,-<x>12‘"f}> f(x) =0,
=

by noting that all of the above series are uniformly and absolutely convergent in the space

L(Q)) due to inequality (8).
Evidently, the uniqueness immediately follows from the fact that the homogeneous

integral equation:
)+ z{m] P57} { AR Fux) = 0

only has solution zero by Babenko’s method. This completes the proof of Theorem 2. [
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Remark 1. Note that T'(x + 1) is not a monotone increasing function on [0,1] since T'(1) =1,

[(15) = V7/2and T(2) =
Example 1. Abel’s integral equation:

u(xy,x2) + x 1923 u(xy, x) + x93 D2u(xy, xp) = 1
has the following convergent solution in L(Q)):

0 k k
u(x) =14+ Y (-1)*Y <]> BjAx—j®1,1435/P2 14+ (k—j)16/
k=1 j=0
where the coefficients B; and Ay_; are given below.

Proof. Clearly:
a = min{ay, an} = min{1,15} =1,

and functions x7, x and xJ"! are Lebesgue integrable and bounded on Q. By Theorem 1:

© k
u(x) 1+Z(—1)k<x111 12+x01115) 1

1+ i(—l)kf (k) (x1 1952 1V (K91 133)k11.
k=1 j=o \J

Obviously:
(%1 =1,
(L)1 = (' L°)@y1 = 23N (o155 Do) = x5 Poas = rx(zz)g
T
- 0 P 1,
(U1 = (4T FE T e = BT s

’ i reer42)---r(1+k—-j1e
(3157 = r(g.s))r(il))- . -1"((().9++<(k —];)1.6)) Pott-je
i i reer42)---r1+k—-jte
B0 B) 1= r(g.s))r(ij))- - -r(é.9++((k —];)1.2) Pottj+k-j)16

= Ap—j P14 j4(k—j)160

fork—j=1,2,---,and:

{ T(2.6)T(42)---T(1+ (k—j)16) >
Apj= =

109+ (k—j)1.6)
1 ifk—j=0.
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On the other hand:

(x1105 2)0 — 1,

X1 [°x] = 21 @105 ¥ [(3) Py 3 = 1"(31)(13“_(54)5)%45,
(v 7°x})? = 1%%5)( 1027 @y 45 = W‘DL&
(x1105 2)3 _ I'(3)I(6.5)r(10)r(11.5) .
[(3.5)F(7)T(10.5) AL5/
(1 105:2)] — 1“(3)1‘(6.5)1;(.3-.15“)(1?:(_;)3..?9'1{3‘15)]‘))1‘(1 +3.5) S

= Bi®1,1435),
forj=1,2,---,and:

{ [(3)I(6.5) --T(3+35(j—1))I(1+35)) > 1

B»:

] T(35)I(7)---T(35])

1 if j = 0.

Therefore:

u(x) = 2 1)k 2 ( >B Ap—jP1,1435/ P21 4+ (k—j) L6

This completes the proof of Example 1. O

Using Banach'’s fixed point theorem, we are now ready to show the uniqueness of
solutions in L(Q}) for Equation (2).

Theorem 2.  Suppose that a;; > 0, and A;;(x) is Lebesgue integrable and bounded on Q) for
i=12,---,nandj=1,2,--- ,m, and there exists 1 < i < n such that:

o =min{a;, -, a1 > 1.
Let g(x,y) be defined on Q) x R satisfying:

Ig(x,y1) — (%, y2)| < Cly1 — v,

and g(x,0) € L(Q). Furthermore, assume that:
) 5 n—1
g = Cw™ " (4> Eu1(M'mW™") < 1,

where w, M, W are given in Theorem 1 as

w=max{Q, N, -+ ,Q}, sup|Aj(x)| <M,
xeQ)

W= max {w"}.
1<i<n, 1<j<m
Then, Equation (2) has a unique solution in L(CY).
Proof. Letu € L(Q)). We first show that ¢(x, u(x)) € L(Q)). Indeed:

gxu(x)| = [g(x,u) =g(x,0) +g(x,0)] < [g(x,u) — g(x,0) + [g(x,0)]
< Clul+[g(x,0),
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which implies that:

/Q g (x, u(x))ldx < C/Q |u|c7lx—0—/Q lg(x,0)]dx < oo.

Define a nonlinear mapping T on L(Q)) by

B o0 o k

0

ki

k
(A () Ay (x)I,’i”l)k1 o (A () I Ay () Iy )™ g (2, 1).

Clearly:

n—1
Tl <0 () Ena(mw) [ gt u(o)ldx <o

Thus, T is a mapping from L(Q) to L(€)). We now need to show that T is a contractive
mapping. In fact:

n—1
1760 =T@ < @ (3) EaahmW) [ 1505, - g, 0)lds

- 5 n—1
< o (3) EaaM W) ol = glu o],

which claims that T is contractive since g4 < 1. This completes the proof of Theorem 2. [
Example 2. Let Q = [0,1] x [0,1] x [0,1]. Then, the generalized Abel’s integral equation:

u(x1,x2,x3) + X1 I?'5 sin(xlxz)lg'7 cos(x% + 1)Ig'zu(x1, X2,X3)

1
— X355 Lu(xy, %0, x3) = 7 arctan(x? + x3) cos(u(xy, x2,x3) + 1) )

has a unique solution in L(Q)).

Proof. Clearly,m =2, w = max{1,1,1} =1, W = max {w"} =1,and:

1<i<n, 1<j<m
« =min{1.7,1} = 1.
Furthermore:

lx1] <1, |sin(xx)| <1, |cos(x?+1)] <1,
w1 1971,

on (). Therefore, M = 1. Obviously:

1
g(xq1,x0,x3,y) = — arctan(x? + x3) cos(y + 1),

g(x1,x2,x3,0) € L(Q), and:

1

1
1g(x1, %2, x3,y1) — &(x1, X2, x3,2)| < 777 ly1 —v2| = ﬁlm — 2l
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It remains to compute the value of g:
1 /5\%! _ 2B 21
25

= <1+2+

22+2 -2
224 1-2 1-2-3

< (( 2()) ()ﬁ(;)}...)gg;d

By Theorem 2, Equation (9) has a unique solution in L((). This completes the proof
of Example 2. O

Finally, we study the uniqueness of solutions of in-symmetry system (3) in the product
space L(Q)) x L(Q)).

Theorem 3.  Suppose that a;; > 0, B;; > 0, and Ajj(x), p;j(x) are Lebesgue integrable and
boundedon Q fori=1,2,--- ,nand j =1,2,--- ,m, and there exists 1 < i1,iy < n such that:

&= min{“i]l/ T /D‘ilm} Z 1/
p=min{Bi1, -, Biym} > 1.
Let g1(x,y1,y2) and g2(x,y1,y2) be defined on Q) x R x R satisfying:

191(x, y1,y2) — 81(x,21,22)| < Cilyr — 21| + Caly2 — 22,
|92(x,51,52) — 2(x, 11, 2)| < Czlsy — t1]| + Culsp — 2],

and g1(x,0,0), g2(x,0,0) € L(Q)). Furthermore, assume that:
) 5 n—1
g = max{C,C}w" " <4) Ey1(MimWT)

n—1
+ max{Cs, C4}w"2_” (Z) Eg1(MymWy) <1

where My, Wy and My, W, are given as

Ai(0)| < M;, Wy = Wi
ilelg| Z]( )| S My, 1 1§i§r£%)§j§m{ },
su <M;, W= max wPily,
xe(P) |Vl] | 2 2 1<i<n, 1§j§m{ }

Then, the in-symmetry system (3) has a unique solution in L(Q)) x L(Q).
Proof. Let u, vs. € L(Q}). We first show that g1 (x, u(x),v(x)) € L(Q). Indeed:

81 (x, u(x),v(x))| = [g1(x,u,0) — g1(x,0,0) + g1(x,0,0)|
< |g1(x,u,v) — g1(x,0,0)| + |g1(x,0,0)|
< Crlul + Colo| + |g1(%,0,0)],

which implies that:
/ 121 (x, u( ))|dx<C1/ |u|dx+C2/ |v\dx+/ 121(x,0,0)|dx < co.

Similarly, g2 (x, u(x),v(x)) € L(Q).
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Define a mapping T on L(Q) x L(Q) as

T(u,v) = (T1(u,v), To(u,v)),
where:

1T (w,0)| = [ Ta(u,0)[| + | T2(u,0)],
and:

& k
Ty(wo) = Y (-1)F ¥ (k ek >
k=0 kit Thy=k \K1 77 K

k km
(A () I A () L™ )™ -+ (A () I - -+ Ay () I ) ™ g1 (x, 10, 0),

and symmetrically:

— k
L(wo) = Y} (-1" )} (k k)
k=0 k= N1 Ko

k Kim
(Vll(x)lfn aa an(x)lgnl) o (ﬂlm(x)lfl'" x -Hnm(x)15"m> g2(x,1,0).
By inequality (8):

—n 5 o n n
I < ™" () Ean (M} [ g1 o) )l < e,

n-—n 5 ot n n
T2l < " (3) Epa(MgmWg) [ [ga(n, (), o)) ldx < o

Hence, T is a mapping from L(Q) x L(Q) to L(Q)) x L(Q)). It remains to show that T
is contractive. In fact:

| T(u1,v1) — T(uz,v2)|| = (| Ta(u1,v1) — T (1, 02) || + | Ta(u1,01) — T(uz,02)|-

Clearly:

| T1(u1,01) — T1 (12, 02)||

IN

n—1
max{Cl, Cz}wn27n (Z) Ea,l(M;lmW{Z) :

[ (u1,01) — (u2,02)|],

and:
2 5 n—1
||T2(u1,01) — Tz(uz, ’()2)” < max{Cg,C4}w" n (4> E/S,l (M’mef) .
[ (11, 01) = (uz,02) |-
Thus:
(1T (u1,01) — T(uz,v2) || < gl (u1,01) — (uz,02) |,
where:
2 5\" !
g = max{Cy,C}w" _”<4) Eq1(MimWY)

n—1
+ max{Cs, C4}w"2_" (Z) Eg1(MymWy) < 1.

This completes the proof of Theorem 3. O
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3. Conclusions

We studied the uniqueness of the solutions of the nonlinear Abel’s integral equations
of the second kind with variable coefficients and the in-symmetry system based on Banach'’s
fixed point theorem and Babenko’s approach. The results are new in the current works of
integral equations, which are not feasible by any integral transforms. We also presented
several examples to demonstrate the use of our main theorems via some special functions
and convolutions.
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