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Abstract: In this article, we present a solution to the approximation problem of the volume obtained
by the integration of a bivariate function on any finite interval [a, b] × [c, d], as well as on any
symmetrical finite interval [−a, a]× [−a, a] when a double integral cannot be computed exactly. The
approximation of various double integrals is done by cubature formulas. We propose a cubature
formula constructed on the base of the classical bivariate Bernstein operator. As a valuable tool to
approximate any volume resulted by integration of a bivariate function, we use the classical Bernstein
cubature formula. Numerical examples are given to increase the validity of the theoretical aspects.
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1. Introduction

Let N be the set of positive integers and N0 = N∪ {0}. Recent studies concerning the
classical Bernstein operators associated with any real-valued function F : [a, b]→ R, where
a, b are two real and finite numbers, such that a < b can be found in a series of research
papers, see [1–12], which shows that there is sustained interest in the study of the classical
linear positive operators. These operators are given by

Bn(F; x) =
1

(b− a)n

n

∑
k=0

(
n
k

)
(x− a)k(b− x)n−kF

(
a +

k(b− a)
n

)
(1)

for any x ∈ [a, b] and any n ∈ N. If a := 0 and b := 1 in (1), then

Bn( f ; x) =
n

∑
k=0

pn,k(x) f
(

k
n

)
=

n

∑
k=0

(n
k)xk(1− x)n−k f

(
k
n

)
, (2)

which are the well-known Bernstein operators [13] associated with any real-valued function
f : [0, 1]→ R, any x ∈ [0, 1], and any n ∈ N. The Bernstein polynomials (2) opened a new
era in the approximation theory beginning with Sergei Natanovich Bernstein’s famous
proof of the Weierstrass approximation theorem in 1912, and continuing until today with
thousands of interesting papers. Some generalizations (approximation of integrable func-
tions, approximation of measurable functions, Bernstein polynomials on an unbounded
interval, degenerate Bernstein polynomials), as well as many other applications of the Bern-
stein polynomials, can be consulted in the excellent book [14]. An exceptional historical
perspective is provided in [6] on the introduction and evolution of the Bernstein polynomi-
als. Constructed as an important tool in approximation of functions by polynomials, they
became in time more useful in exploiting computers to interactively design polynomial
functions. In this context, the Bernstein polynomial basis provides valuable insight into its
behavior over a certain finite interval, yielding many useful properties and elegant algo-
rithms that are now being increasingly adopted in other application domains. In the real

Symmetry 2021, 13, 1068. https://doi.org/10.3390/sym13061068 https://www.mdpi.com/journal/symmetry

https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-0199-3254
https://doi.org/10.3390/sym13061068
https://doi.org/10.3390/sym13061068
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym13061068
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym13061068?type=check_update&version=3


Symmetry 2021, 13, 1068 2 of 16

daily applications, different situations arise where it is necessary to solve certain definite
integrals, much more complicated than those presented in the courses of mathematical
analysis. In order to solve such integrals in an efficient way, numerous numerical methods
called quadrature formulas have been developed. The most known method of numerical
integration is obtained by integrating the Lagrange interpolation formula resulting in the
class of Newton–Cotés quadrature formulas. Engineers and researchers use numerical
integration as a primary tool to get approximate values for definite integrals that cannot
be solved analytically. The quadrature formulas based on the linear positive Bernstein
type operators represented a theme of intensive study for the distinguished mathematician
Dimitrie D. Stancu. His contributions in this area were collected in the second volume
of the monograph “Numerical Analysis and Approximation Theory ” [15]. Looking deep at
this problem of numerical integration based on the Bernstein polynomial, we remarked
that it is not fully researched. In [10], we managed to assign a place on the map of the
closed Newton–Cotés quadrature formulas to a new approximation formula based on the
classical Bernstein polynomials. In order to increase the validity of the theoretical aspects,
we tested a series of numerical examples. By approximation of definite integrals on some
intervals [a, b], we observed that the resulting error is proportional with the interval length.
Therefore, if the interval [a, b] is large, then it is advisable to divide [a, b] into smaller inter-
vals and use the classical Bernstein quadrature formula on each subinterval. By adding
the results, we get the approximation of the definite integral on the whole interval [a, b].
Such a scheme is called the classical composite Bernstein quadrature formula, and it can be
found in [11]. Although effective in most situations, there are instances when the composite
quadrature formulas cannot be applied, as they use equally-spaced nodes. To avoid this
fact, we constructed an adaptive method in [10]. All the mentioned results were established
in the univariate case. In natural logic, we can continue our study in the bivariate case. Our
aim is to compute the definite integral (on any finite bivariate interval [a, b]× [c, d] as well
as on any symmetrical finite bivariate interval [−a, a]× [−a, a]) of a function depending on
two variables. For instance, let us consider the following two functions:

F1 : [−5, 5]× [−5, 5]→ R, F1(x, y) = x2 + y2 + cos x + sin y,

F2 : [−10, 10]× [−10, 10]→ R, F2(x, y) = e−(x2+y2),

having the graphs (see Figure 1 for F1 and Figure 2 for F2) given below.

Figure 1. The graph of F1.



Symmetry 2021, 13, 1068 3 of 16

Figure 2. The graph of F2.

In general, the graph of a bivariate function F is a surface having the equation z =
F(x, y) as we can see in Figure 3. Therefore, the definite integral of a positive function with
two variables is a double integral, which represents the volume of the solid between the
surface of the function and the plane that contains its domain (see Figure 3).

Figure 3. The graph of a bidimensional function F.

In this article, we present a solution to the approximation problem of the volume ob-
tained by the integration of a bivariate function when a double integral cannot be computed
exactly. The approximation of various double integrals can be done by a few cubature
formulas (for instance, the Newton–Cotés cubature formulas) according to the specialty
literature. Constructed by means of the bivariate Lagrange polynomial, trapezoidal and
Simpson cubature formulas use a fixed number of nodes, resulting in a single possible
approximation for a double integral. In order to be more flexible with this fact, we bring
to light a cubature formula constructed on the base of the classical bivariate Bernstein
operator. As a valuable tool to approximate any volume resulting by integration of a
bivariate function, we use the classical Bernstein cubature formula. If the bivariate interval
[a, b]× [c, d] (the bivariate symmetrical interval [−a, a]× [−a, a]) is large, then the classical
composite Bernstein cubature formula is suitable for the approximation of a double integral.
Numerical examples are given to increase the validity of the theoretical aspects.
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2. Auxiliary Results

For any n ∈ N, let a ≤ x0 < x1 < · · · < xn ≤ b be some distinct nodes, and let
F : [a, b] → R be a real-valued function. In many books on numerical analysis, divided
differences are defined recursively

[x0; F] = F(x0), . . . , [x0, x1, · · · , xn; F] =
1

xn − x0

(
[x1, · · · , xn; F]− [x0, · · · , xn−1; F]

)
.

If I, J are certain real intervals, F : I× J → R is a real-valued function and (x0, y0), (x1, y1) ∈
I × J (x0 6= x1, y0 6= y1), then the bivariate divided differences of F with respect to the
nodes (x0, y0), (x1, y1) are defined in [16], using the method of parametric extensions by[

x0, x1
y0, y1

; F
]
=

F(x1, y1)− F(x0, y1)− F(x1, y0) + F(x0, y0)

(x1 − x0)(y1 − y0)
.

Other equivalent definitions for univariate and bivariate divided differences can be found
in the excellent monograph [17]. In the definition of the divided differences, the number
of abscissas in general is not equal to the number of ordinates. If x0, x1, . . . , xp ∈ I and
y0, y1, . . . , yq ∈ J are distinct nodes, then the following recurrence formula[

x0, x1, . . . , xp
y0, y1, . . . , yq

; F
]
=

1
(xp − x0)(yq − y0)

([
x1, . . . , xp
y1, . . . , yq

; F
]
−
[

x0, . . . , xp−1
y1, . . . , yq

; F
]

−
[

x1, . . . , xp
y0, . . . , yq−1

; F
]
+

[
x0, . . . , xp−1
y0, . . . , yq−1

; F
])

holds (see [16]), for p, q ∈ N, p, q ≥ 2 and[
x0, x1, . . . , xp
y0, y1, . . . , yq

; F
]
=

[
xi0 , xi1 , . . . , xip

yj0 , yj1 , . . . , yjq
; F

]
, (3)

where (i0, i1, . . . , ip), (j0, j1, . . . , jq) are permutations of (0, 1, . . . , p) and (0, 1, . . . , q), respec-
tively. The extension of the divided differences in two dimensions that are used in this
paper is a particular case of both T. Popoviciu’s definitions [18] and Popoviciu’s particular
case [18] on networks of an M.A. Màrchàud type is defined in [19]. In [20], W.J. Gordon
introduced the basic notions of the algebraic theory of multivariate functions approxima-
tion, a theory that was studied and further developed by F.J. Delvos and W. Schempp [21].
The method of parametric extension is a procedure for constructing linear operators on the
spaces of multivariate functions starting from the linear operators defined on the spaces
of univariate functions. Let S = [a, b]× [c, d] be a rectangular domain and suppose that
F : S→ R is given. The parametric extensions of the classical Bernstein operators (1) to the
space C(S) are defined for x, y ∈ S and n1, n2 ∈ N by

xBn1(F; x, y) =
n1

∑
k1=0

(
n1

k1

)
(x− a)k1(b− x)n1−k1

(b− a)n1
F
(

a +
k1(b− a)

n1
, y
)

(4)

and

yBn2(F; x, y) =
n2

∑
k2=0

(
n2

k2

)
(y− c)k2(d− y)n2−k2

(d− c)n2
F
(

x, c +
k2(d− c)

n2

)
. (5)

For brevity, we can use the following two notations:

xBn1(F; x, y) =
n1

∑
k1=0

pn1,k1(x)F
(
t1(k1), y

)
, yBn2(F; x, y) =

n2

∑
k2=0

pn2,k2(y)F
(
x, t2(k2)

)
.
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The tensor product of the parametric extensions (4) and (5) is the classical bivariate Bern-
stein operators(

xBn1 ⊗ yBn2

)
(F; x, y) = Bn1,n2(F; x, y) =

n1

∑
k1=0

n2

∑
k2=0

pn1,k1(x) · pn2,k2(y)F
(
t1(k1), t2(k2)

)
. (6)

The equality
F(x, y) = Bn1,n2(F; x, y) + Rn1,n2(F; x, y) (7)

is called the classical bivariate Bernstein approximation formula, and Rn1,n2 are the bivariate
remainder operators associated with the classical bivariate Bernstein operators (6).

3. The Classical Bernstein Cubature Formula

We firstly establish some new results concerning the remainder term of the classical
bivariate Bernstein approximation formula (7). The following two results play an important
role in building a valuable approximation formula for certain double integrals.

Theorem 1. The representation of the remainder term associated with the classical bivariate
Bernstein operators (6) is given by

Rn1,n2(F; x, y) = − (x− a)(b− x)
n1

n1−1

∑
k1=0

n2

∑
k2=0

pn1−1,k1(x)pn2,k2(y)
[

x, t1(k1), t1(k1 + 1)
t2(k2)

; F
]

− (y− c)(d− y)
n2

n1

∑
k1=0

n2−1

∑
k2=0

pn1,k1(x)pn2−1,k2(y)
[

t1(k1)

y, t2(k2), t2(k2 + 1)
; F
]

+
(x− a)(b− x)(y− c)(d− y)

n1 · n2

n1−1

∑
k1=0

n2−1

∑
k2=0

pn1−1,k1(x)pn2−1,k2(y)
[

x, t1(k1), t1(k1 + 1)
y, t2(k2), t2(k2 + 1)

; F
]

.

Proof. Starting with the classical bivariate Bernstein approximation formula (7) and based
on the fact that bivariate operators (6) preserve constants, we may write

Rn1,n2(F; x, y) = F(x, y)− Bn1,n2(F; x, y)

=
n1

∑
k1=0

n2

∑
k2=0

pn1,k1(x) · pn2,k2(y) ·
(

F(x, y)− F
(
t1(k1), t2(k2)

))
.

Putting an emphasis on the following equality

F(x, y)− F
(
t1(k1), t2(k2)

)
= F

(
x, t2(k2)

)
− F

(
t1(k1), t2(k2)

)
+ F

(
t1(k1), y

)
−F
(
t1(k1), t2(k2)

)
+ F(x, y)− F

(
x, t2(k2)

)
−F
(
t1(k1), y

)
+ F

(
t1(k1), t2(k2)

)
,

we get
Rn1,n2(F; x, y) = S1 + S2 + S3,

with

S1 =
n1

∑
k1=0

n2

∑
k2=0

pn1,k1(x) · pn2,k2(y) ·
(

F
(
x, t2(k2)

)
− F

(
t1(k1), t2(k2)

))
=

n1

∑
k1=0

n2

∑
k2=0

pn1,k1(x) · pn2,k2(y) ·
(
x− t1(k1)

)[ x, t1(k1)
t2(k2)

; F
]
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=
n1

∑
k1=0

n2

∑
k2=0

pn1,k1(x) · pn2,k2(y)
(n1 − k1)(x− a)− k1(b− x)

n1

[
x, t1(k1)

t2(k2)
; F
]

=
n1−1

∑
k1=0

n2

∑
k2=0

(
n1 − 1

k1

)
(x− a)k1+1(b− x)n1−k1

(b− a)n1
· pn2,k2(y)

[
x, t1(k1)

t2(k2)
; F
]

−
n1

∑
k1=1

n2

∑
k2=0

(
n1 − 1
k1 − 1

)
(x− a)k1(b− x)n1+1−k1

(b− a)n1
· pn2,k2(y)

[
x, t1(k1)

t2(k2)
; F
]

=
(x− a)(b− x)

b− a

n1−1

∑
k1=0

n2

∑
k2=0

pn1−1,k1(x) · pn2,k2(y)
([

x, t1(k1)
t2(k2)

; F
]
−
[

x, t1(k1 + 1)
t2(k2)

; F
])

= − (x− a)(b− x)
b− a

n1−1

∑
k1=0

n2

∑
k2=0

pn1−1,k1(x) · pn2,k2(y)
(
t1(k1 + 1)− t1(k1)

)[ x, t1(k1), t1(k1 + 1)
t2(k2)

; F
]

= − (x− a)(b− x)
n1

n1−1

∑
k1=0

n2

∑
k2=0

pn1−1,k1(x)pn2,k2(y)
[

x, t1(k1), t1(k1 + 1)
t2(k2)

; F
]

.

In a similar way, one obtains

S2 = − (y− c)(d− y)
n2

n1

∑
k1=0

n2−1

∑
k2=0

pn1,k1(x)pn2−1,k2(y)
[

t1(k1)
y, t2(k2), t2(k2 + 1)

; F
]

and

S3 =
(x− a)(b− x)(y− c)(d− y)

n1 · n2

n1−1

∑
k1=0

n2−1

∑
k2=0

pn1−1,k1(x)pn2−1,k2(y)
[

x, t1(k1), t1(k1 + 1)
y, t2(k2), t2(k2 + 1)

; F
]

.

As a direct consequence of the above theorem, we get the simplified form of the
remainder term in the approximation formula (7), as well as an upper bound estimation.
In the following lines, F(o,p) are the partial derivatives of order (o, p).

Corollary 1. If F ∈ C2,2(S), then

Rn1,n2(F; x, y) =− (x− a)(b− x)
2n1

F(2,0)(ξ, y)− (y− c)(d− y)
2n2

F(0,2)(x, η)

+
(x− a)(b− x)(y− c)(d− y)

4n1n2
F(2,2)(ξ, η),

for ξ, η ∈ (a, b)× (c, d) and

∣∣Rn1,n2(F; x, y)
∣∣ ≤ (x− a)(b− x)

2n1

∥∥∥F(2,0)
∥∥∥

∞
+

(y− c)(d− y)
2n2

∥∥∥F(0,2)
∥∥∥

∞

+
(x− a)(b− x)(y− c)(d− y)

4n1n2

∥∥∥F(2,2)
∥∥∥

∞

≤ (b− a)2

8n1

∥∥∥F(2,0)
∥∥∥

∞
+

(d− c)2

8n2

∥∥∥F(0,2)
∥∥∥

∞
+

(b− a)2(d− c)2

64n1n2

∥∥∥F(2,2)
∥∥∥

∞
.

Proof. The form of the remainder obtained in the above theorem is being processed.
Applying the mean value theorem on the bivariate divided differences leads us to the
equality. Furthermore, by using modulus and the fact that partial derivatives of the function
F are bounded on S, we get the inequalities.
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Based on the results proved above, we can integrate the classical bivariate Bernstein
approximation formula (7) on S = [a, b]× [c, d], such that

b∫
a

d∫
c

F(x, y)dxdy =

b∫
a

d∫
c

Bn1,n2(F; x, y)dxdy +

b∫
a

d∫
c

Rn1,n2(F; x, y)dxdy. (8)

Theorem 2. The approximation of the volume obtained by integration of any real-valued function
F : S→ R can be done with the classical Bernstein cubature formula

b∫
a

d∫
c

F(x, y)dxdy ≈ (b− a)(d− c)
(n1 + 1)(n2 + 1)

n1

∑
k1=0

n2

∑
k2=0

F
(

a +
k1(b− a)

n1
, c +

k2(d− c)
n2

)
. (9)

Proof. Using the definition of the classical bivariate Bernstein operators (6), we get

b∫
a

d∫
c

Bn1,n2(F; x, y)dxdy =

b∫
a

d∫
c

n1

∑
k1=0

n2

∑
k2=0

pn1,k1(x) · pn2,k2(y)F
(
t1(k1), t2(k2)

)
dxdy

=
n1

∑
k1=0

n2

∑
k2=0

F
(

a +
k1(b− a)

n1
, c +

k2(d− c)
n2

)
·
∫ b

a
pn1,k1(x)dx ·

∫ d

c
pn2,k2(y)dy.

Taking into account the definition and the properties of the Euler’s integral of first kind
β(u, v) =

∫ 1
0 tu−1(1− t)v−1dt, it can be shown that

∫ b

a
pn1,k1(x)dx =

1
(b− a)n1

(
n1

k1

) ∫ b

a
(x− a)k1(b− x)n1−k1 dx

=
1

(b− a)n1

(
n1

k1

) ∫ 1

0
tk1(1− t)n1−k1(b− a)n1+1dt

=

(
n1

k1

)
(b− a) · β(k1 + 1, n1 + 1− k1) =

b− a
n1 + 1

(
n1

k1

)(
n1

k1

)−1
=

b− a
n1 + 1

and∫ d

c
pn2,k2(y)dy =

1
(d− c)n2

(
n2

k2

) ∫ d

c
(y− c)k2(d− y)n2−k2 dy

=
1

(d− c)n2

(
n2

k2

) ∫ 1

0
tk2(1− t)n2−k2(d− c)n2+1dt

=

(
n2

k2

)
(d− c) · β(k2 + 1, n2 + 1− k2) =

d− c
n2 + 1

(
n2

k2

)(
n2

k2

)−1
=

d− c
n2 + 1

.

Collecting the results demonstrated above and eliminating the remainder term in the
relation (8), we get the classical Bernstein cubature formula

b∫
a

d∫
c

F(x, y)dxdy ≈
b∫

a

d∫
c

Bn1,n2(F; x, y)dxdy

=
(b− a)(d− c)

(n1 + 1)(n2 + 1)

n1

∑
k1=0

n2

∑
k2=0

F
(

a +
k1(b− a)

n1
, c +

k2(d− c)
n2

)
.



Symmetry 2021, 13, 1068 8 of 16

Theorem 3. Assuming that F ∈ C2,2(S) and ξ, η ∈ (a, b)× (c, d), then

Rn1,n2 [F] =
b∫

a

d∫
c

Rn1,n2(F; x, y)dxdy

= − (b−a)3(d−c)
12n1

F(2,0)(ξ, η)− (b−a)(d−c)3

12n2
F(0,2)(x, η) + (b−a)3(d−c)3

144n1n2
F(2,2)(ξ, η)

and

∣∣Rn1,n2 [F]
∣∣ =

∣∣∣∣∣∣
b∫

a

d∫
c

Rn1,n2(F; x, y)dxdy

∣∣∣∣∣∣
≤ (b−a)3(d−c)

12n1

∥∥∥F(2,0)
∥∥∥

∞
+ (b−a)(d−c)3

12n2

∥∥∥F(0,2)
∥∥∥

∞
+ (b−a)3(d−c)3

144n1n2

∥∥∥F(2,2)
∥∥∥

∞
.

Proof. Both forms of the remainder term presented in Corollary 1 get integrated on S.

Summarizing the above results, we get the classical bivariate Bernstein formula

b∫
a

d∫
c

F(x, y)dxdy =
(b− a)(d− c)

(n1 + 1)(n2 + 1)

n1

∑
k1=0

n2

∑
k2=0

F
(

a +
k1(b− a)

n1
, c +

k2(d− c)
n2

)
+ Rn1,n2 [F], (10)

with the remainder term (assuming that F ∈ C2,2(S) and ξ, η ∈ (a, b)× (c, d))

Rn1,n2 [F] = −
(b− a)3(d− c)

12n1
F(2,0)(ξ, y)− (b− a)(d− c)3

12n2
F(0,2)(x, η) +

(b− a)3(d− c)3

144n1n2
F(2,2)(ξ, η).

Remark 1. Due to the form of the remainder term, the classical bivariate Bernstein formula (10)
has the degree of exactness (1, 1). The statement could be checked in a series of examples.

Example 1. Let us consider the following double integral∫ 3

−1

∫ 4

2
(7x + 5y)dxdy.

Applying the classical bivariate Bernstein formula (10) with n1 = n2 = 1 (the simplest case), we
get

∫ 3

−1

∫ 4

2
(7x + 5y)dxdy =

(3 + 1) · (4− 2)
2 · 2

1

∑
k1=0

1

∑
k2=0

F(−1 + 4k1, 2 + 2k2) = 176,

which is the exact value of the given integral.

Below, we present some particular cases of the classical bivariate Bernstein formula.

Case 1. If S = [0, 1]× [0, 1], we get the bivariate Bernstein formula [22]

∫ 1

0

∫ 1

0
F(x, y)dxdy =

1
(n1 + 1)(n2 + 1)

n1

∑
k1=0

n2

∑
k2=0

F
(

k1

n1
,

k2

n2

)
+ Rn1,n2 [F],

with
Rn1,n2 [F] = −

1
12n1

F(2,0)(ξ, y)− 1
12n2

F(0,2)(x, η) +
1

144n1n2
F(2,2)(ξ, η),

for ξ, η ∈ (0, 1)× (0, 1). The upper bound estimation is
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∣∣Rn1,n2 [F]
∣∣ ≤ 1

12n1

∥∥∥F(2,0)
∥∥∥

∞
+

1
12n2

∥∥∥F(0,2)
∥∥∥

∞
+

1
144n1n2

∥∥∥F(2,2)
∥∥∥

∞
.

Case 2. If we consider n1 = n2 = 1 in relation (10), then we get the bivariate trapezoidal formula

∫ b

a

∫ d

c
F(x, y)dxdy =

(b− a)(d− c)
4

(
F(a, c) + F(a, d) + F(b, c) + F(b, d)

)
+ R1,1[F],

with

R1,1[F] = −
(b− a)3(d− c)

12
F(2,0)(ξ, y)− (b− a)(d− c)3

12
F(0,2)(x, η) +

(b− a)3(d− c)3

144
F(2,2)(ξ, η).

Remark 2. The veracity of the above statement (Case 2) is based on the fact that the classical
bivariate Bernstein polynomial of the first degree is equal to the bivariate Lagrange polynomial of
the first degree

B1,1(F; x, y) =
1

∑
k1=0

1

∑
k2=0

p1,k1(x)p1,k2(y) · F
(
a + k1(b− a), c + k2(d− c)

)
=

(b− x)(d− y)
(b− a)(d− c)

F(a, c) +
(b− x)(y− c)
(b− a)(d− c)

F(a, d) +
(x− a)(d− y)
(b− a)(d− c)

F(b, c)

+
(x− a)(y− c)
(b− a)(d− c)

F(b, d) = L1,1(F; x, y).

To demonstrate the approximation accuracy of the classical Bernstein cubature formula

b∫
a

d∫
c

F(x, y)dxdy ≈ (b− a)(d− c)
(n1 + 1)(n2 + 1)

n1

∑
k1=0

n2

∑
k2=0

F
(

a +
k1(b− a)

n1
, c +

k2(d− c)
n2

)
=: In1,n2(F), (11)

we test it with the Maple mathematical software. For our study, we consider five test
functions as follows:

F1 : [0, 0.75]× [0, 0.75]→ R, F1(x, y) = e2y−x;

F2 : [1, 2]× [1, 2]→ R, F2(x, y) = 5x2 + 3xy2 + 7y;

F3 : [1.4, 2]× [1, 1.5]→ R, F3(x, y) = ln(x + 2y);

F4 : [−1, 1]× [−1, 1]→ R, F4(x, y) = e−(x2+y2);

F5 : [0, 4]× [0, 3]→ R, F5(x, y) = e−(x+y) · sin(2x + 2y).

Let us denote the approximative values of the integrals with ten exact decimals by

IF1 =

0.75∫
0

0.75∫
0

F1(x, y)dxdy, IF2 =

2∫
1

2∫
1

F2(x, y)dxdy, IF3 =

2∫
1.4

1.5∫
1

F3(x, y)dxdy,

IF4 =

1∫
−1

1∫
−1

F4(x, y)dxdy, IF5 =

4∫
0

3∫
0

F5(x, y)dxdy,

and the appropriate absolute errors

eIn1,n2(F) =
∣∣IF − In1,n2(F)

∣∣.
We approximate the double integrals and record in Table 1 the absolute errors obtained by
applying the classical Bernstein cubature formula (11). In Table 1, e− p means 10−p.
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Table 1. The approximation of the given double integrals.

IF eI1,1(F) eI10,10(F) eI50,50(F) eI500,500(F)

IF1 2.164× 10−1 2.101× 10−2 4.180× 10−3 4.175× 10−4

IF2 1.583 1.583× 10−1 3.166× 10−2 3.166× 10−3

IF3 1.971× 10−3 1.958× 10−4 3.913× 10−5 3.911× 10−6

IF4 1.689 2.137× 10−1 4.474× 10−2 4.522× 10−3

IF5 1.378× 10−1 8.252× 10−2 2.076× 10−2 2.162× 10−3

Analyzing the results recorded in Table 1, we remark how unconstrained the classical
Bernstein cubature formula (11) is. This is given by the possibility to approximate the
double definite integrals using a certain number of nodes. In the second column of Table 1,
we used the simplest form of the classical Bernstein cubature formula (n1 = n2 = 1), which
is in fact the trapezoidal cubature formula, see Case 2. In the next columns, we obtained
better approximations of the double integrals due to the freedom to increase the number
of nodes. Based on the results presented above, we are able to put an emphasis on some
advantages of the use of the classical bivariate Bernstein formula (10):

• The freedom to increase the number of nodes (in particular, a number of nodes greater
than 22);

• In evaluation of the remainder, we request a single condition for the integrated
bivariate function, namely to belong to the space C2,2(S);

• A double integral could be approximated with a desired precision ε, where ε > 0 is a
real number.

Remark 3. The above advantages are nonexistent for the well-known Newton–Cotés bivariate
formulas, as any of them has a fixed number of nodes, also resulting in a single possible approximation
for a double integral.

Remark 4. In particular, a special attention goes to the results shown in Table 1, the last column.
Although a large number of nodes were used, one remarks a slow approximation of the integrals
(exception IF3 ) due to:

• The classical bivariate Bernstein polynomials that interpolate the functions only at the end
points of intervals.

• The convex and concave shape of surfaces with large functional variation.

In order to avoid the disadvantages pointed out in Remark 4 and to reduce the number
of nodes necessary for computing an approximation of a given double integral, we present
the next section.

4. The Classical Composite Bernstein Cubature Formula

As we already said, our scope is to reduce the number of nodes necessary for comput-
ing an approximation of a given double integral. With this aim, it is advisable to divide
[a, b] × [c, d] into smaller bivariate intervals and to use the classical Bernstein cubature
formula on each bivariate subinterval. By adding the results, we get the approximation
of the double integral on the whole interval [a, b] × [c, d]. Such a scheme is called the
classical composite Bernstein cubature formula. Now, let us consider the bivariate interval
[a, b]× [c, d] divided in m1 ·m2 equally spaced subintervals, such that, for i = 1, m1 and
j = 1, m2, we get[

a +
(i− 1)(b− a)

m1
, a +

i(b− a)
m1

]
×
[

c +
(j− 1)(d− c)

m2
, c +

j(d− c)
m2

]
=: Ii × Ij.

In the following lines, the symbols n1, n2 will refer to the polynomial degree, while the
numbers m1, m2 will be related to the grid (interval discretization). For n1, n2, m1, m2 ∈ N,
we consider the parametric extensions
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xBn1,m1(F; x, y) =
mn1

1
(b− a)n1

n1

∑
k1=0

(
n1

k1

)(
x− a− (i−1)(b−a)

m1

)k1
(

a + i(b−a)
m1
− x
)n1−k1

F
(

a + (n1i−n1+k1)(b−a)
m1·n1

, y
)

and

yBn2,m2(F; x, y) =
mn2

2
(d− c)n2

n2

∑
k2=0

(
n2

k2

)(
y− c− (j−1)(d−c)

m2

)k2
(

c + j(d−c)
m2
− y
)n2−k2

F
(

x, c + (n2 j−n2+k2)(d−c)
m2·n2

)
.

The tensor product of the parametric extensions defined above is
(

xBn1,m1 ⊗ yBn2,m2

)
(F; x, y) =: B(F; x, y), having the following expression:

B(F; x, y) = m
n1
1 ·m

n2
2

(b−a)n1 ·(d−c)n2

n1

∑
k1=0

n2

∑
k2=0

(
n1

k1

)(
n2

k2

)(
x− a− (i−1)(b−a)

m1

)k1
(

a + i(b−a)
m1
− x
)n1−k1

·
(

y− c− (j−1)(d−c)
m2

)k2
(

c + j(d−c)
m2
− y
)n2−k2

F
(

a + (n1i−n1+k1)(b−a)
m1·n1

, c + (n2 j−n2+k2)(d−c)
m2·n2

)
.

The classical bivariate Bernstein approximation formula on the interval Ii × Ij, i = 1, m1

and j = 1, m2 becomes
F(x, y) = B(F; x, y) +R(F; x, y), (12)

with R(F) the bivariate remainder operators associated with the tensor product B(F).
Taking Corollary 1 into account and supposing that F ∈ C2,2(Ii × Ij

)
, i = 1, m1, j = 1, m2,

we can present an upper bound estimation of the remainder term given by

∣∣R(F; x, y)
∣∣ ≤

(
x−a− (i−1)(b−a)

m1

)(
a+

i(b−a)
m1

−x
)

2n1

∥∥∥F(2,0)
∥∥∥

∞
+

(
y−c− (j−1)(d−c)

m2

)(
c+

j(d−c)
m2

−y
)

2n2

∥∥∥F(0,2)
∥∥∥

∞
(13)

+

(
x−a− (i−1)(b−a)

m1

)(
a+

i(b−a)
m1

−x
)(

y−c− (j−1)(d−c)
m2

)(
c+

j(d−c)
m2

−y
)

4n1n2

∥∥∥F(2,2)
∥∥∥

∞
.

Integrating the classical bivariate Bernstein approximation formula (12) on Ii × Ij, i = 1, m1,
and j = 1, m2, we get∫∫

Ii×Ij

F(x, y)dxdy =
∫∫

Ii×Ij

B(F; x, y)dxdy +
∫∫

Ii×Ij

R(F; x, y)dxdy. (14)

Summing the relations (14) for i = 1, m1 and j = 1, m2, one obtains

b∫
a

d∫
c

F(x, y)dxdy =
m1

∑
i=1

m2

∑
j=1

∫∫
Ii×Ij

B(F; x, y)dxdy +
m1

∑
i=1

m2

∑
j=1

∫∫
Ii×Ij

R(F; x, y)dxdy. (15)

Theorem 4. The definite double integral of any real-valued function F : [a, b]× [c, d]→ R could
be approximated with the formula

b∫
a

d∫
c

F(x, y)dxdy ≈ (b−a)(d−c)
m1·m2(n1+1)(n2+1)

m1

∑
i=1

m2

∑
j=1

n1

∑
k1=0

n2

∑
k2=0

F
(

a + (n1i−n1+k1)(b−a)
m1·n1

, c + (n2 j−n2+k2)(d−c)
m2·n2

)
. (16)

Proof. Let i = 1, m1 and j = 1, m2 be fixed. Using the definition of the tensor product B(F),
we have
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∫∫
Ii×Ij

B(F; x, y)dxdy =
m

n1
1 ·m

n2
2

(b−a)n1 ·(d−c)n2

n1

∑
k1=0

n2

∑
k2=0

(n1
k1
)(n2

k2
) · F(?, ◦)

·
∫∫

Ii×Ij

(
x− a− (i−1)(b−a)

m1

)k1
(

a + i(b−a)
m1
− x
)n1−k1 ·

(
y− c− (j−1)(d−c)

m2

)k2
(

c + j(d−c)
m2
− y
)n2−k2

dxdy

=
m

n1
1 ·m

n2
2

(b−a)n1 ·(d−c)n2

n1

∑
k1=0

n2

∑
k2=0

(n1
k1
)(n2

k2
) · F(?, ◦) ·

∫ 1

0

tk1 (1−t)n1−k1 (b−a)n1+1

m
n1+1
1

dt ·
∫ 1

0

rk2 (1−r)n2−k2 (d−c)n2+1

mn2+1
2

dr

= (b−a)(d−c)
m1·m2

n1

∑
k1=0

n2

∑
k2=0

(n1
k1
)(n2

k2
) · F(?, ◦) · β(k1 + 1, n1 + 1− k1) · β(k2 + 1, n2 + 1− k2)

= (b−a)(d−c)
m1·m2(n1+1)(n2+1)

n1

∑
k1=0

n2

∑
k2=0

(n1
k1
)(n1

k1
)
−1

(n2
k2
)(n2

k2
)
−1 · F(?, ◦) = (b−a)(d−c)

m1·m2(n1+1)(n2+1)

n1

∑
k1=0

n2

∑
k2=0

F(?, ◦).

Summing after all values of i = 1, m1 and j = 1, m2, we get

b∫
a

d∫
c

F(x, y)dxdy ≈ (b−a)(d−c)
m1m2(n1+1)(n2+1)

m1

∑
i=1

m2

∑
j=1

n1

∑
k1=0

n2

∑
k2=0

F
(

a + (n1i−n1+k1)(b−a)
m1·n1

, c + (n2 j−n2+k2)(d−c)
m2·n2

)
.

For brevity, we designate

R[F] :=
m1

∑
i=1

m2

∑
j=1

∫∫
Ii×Ij

R(F; x, y)dxdy =
∫ b

a

∫ d

c
R(F; x, y)dxdy.

Theorem 5. If F ∈ C2,2(S), then

∣∣R[F]∣∣ ≤ (b− a)3(d− c)
12m2

1n1

∥∥∥F(2,0)
∥∥∥

∞
+

(b− a)(d− c)3

12m2
2n2

∥∥∥F(0,2)
∥∥∥

∞
+

(b− a)3(d− c)3

144m2
1m2

2n1n2

∥∥∥F(2,2)
∥∥∥

∞
. (17)

Proof. Starting with the relation (15), we have

∣∣R[F]∣∣ = ∣∣∣∣∫ b

a

∫ d

c
F(x, y)dxdy−

∫ b

a

∫ d

c
B(F; x, y)dxdy

∣∣∣∣
=

∣∣∣∣∣∣∣
m1

∑
i=1

m2

∑
j=1

∫∫
Ii×Ij

F(x, y)dxdy−
m1

∑
i=1

m2

∑
j=1

∫∫
Ii×Ij

B(F; x, y)dxdy

∣∣∣∣∣∣∣
≤

m1

∑
i=1

m2

∑
j=1

∫∫
Ii×Ij

∣∣R(F; x, y)
∣∣dxdy.

Using the relation (13), it follows that

∣∣R[F]∣∣ ≤ m1

∑
i=1

m2

∑
j=1

∫∫
Ii×Ij

(
x−a− (i−1)(b−a)

m1

)(
a+ i(b−a)

m1
−x
)

2n1

∥∥∥F(2,0)
∥∥∥

∞
dxdy
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+
m1

∑
i=1

m2

∑
j=1

∫∫
Ii×Ij

(
y−c− (j−1)(d−c)

m2

)(
c+ j(d−c)

m2
−y
)

2n2

∥∥∥F(0,2)
∥∥∥

∞
dxdy

+
m1

∑
i=1

m2

∑
j=1

∫∫
Ii×Ij

(
x−a− (i−1)(b−a)

m1

)(
a+

i(b−a)
m1

−x
)(

y−c− (j−1)(d−c)
m2

)(
c+

j(d−c)
m2

−y
)

4n1n2

∥∥∥F(2,2)
∥∥∥

∞
dxdy

=
m1

∑
i=1

m2

∑
j=1

1
2n1

∥∥∥F(2,0)
∥∥∥

∞

∫ 1

0
t(1− t) (b−a)3

m3
1

dt

c+ j(d−c)
m2∫

c+ (j−1)(d−c)
m2

dy +
m1

∑
i=1

m2

∑
j=1

1
2n2

∥∥∥F(0,2)
∥∥∥

∞

a+ i(b−a)
m1∫

a+ (i−1)(b−a)
m1

dx
∫ 1

0
r(1− r) (d−c)3

m3
2

dr

+
m1

∑
i=1

m2

∑
j=1

1
4n1n2

∥∥∥F(2,2)
∥∥∥

∞

∫ 1

0
t(1− t) (b−a)3

m3
1

dt
∫ 1

0
r(1− r) (d−c)3

m3
2

dr

=
(b− a)3(d− c)

12m2
1n1

∥∥∥F(2,0)
∥∥∥

∞
+

(b− a)(d− c)3

12m2
2n2

∥∥∥F(0,2)
∥∥∥

∞
+

(b− a)3(d− c)3

144m2
1m2

2n1n2

∥∥∥F(2,2)
∥∥∥

∞
.

Summarizing the above results, we get the classical bivariate Bernstein composite
formula

b∫
a

d∫
c

F(x, y)dxdy = (b−a)(d−c)
m1·m2(n1+1)(n2+1)

m1

∑
i=1

m2

∑
j=1

n1

∑
k1=0

n2

∑
k2=0

F(?, ◦) +R[F], (18)

with an upper bound estimation of the remainder term (assuming F ∈ C2,2(S))

∣∣R[F]∣∣ ≤ (b− a)3(d− c)
12m2

1n1

∥∥∥F(2,0)
∥∥∥

∞
+

(b− a)(d− c)3

12m2
2n2

∥∥∥F(0,2)
∥∥∥

∞
+

(b− a)3(d− c)3

144m2
1m2

2n1n2

∥∥∥F(2,2)
∥∥∥

∞
.

Below, we present some particular cases of the classical bivariate Bernstein composite
formula.

Case 3. If S = [0, 1]× [0, 1], then we get the bivariate Bernstein composite formula [2]

∫ 1

0

∫ 1

0
F(x, y)dxdy = 1

m1·m2(n1+1)(n2+1)

m1

∑
i=1

m2

∑
j=1

n1

∑
k1=0

n2

∑
k2=0

F
(

n1i−n1+k1
m1·n1

, n2 j−n2+k2
m2·n2

)
+R[F],

with ∣∣R[F]∣∣ ≤ 1
12m2

1n1

∥∥∥F(2,0)
∥∥∥

∞
+

1
12m2

2n2

∥∥∥F(0,2)
∥∥∥

∞
+

1
144m2

1m2
2n1n2

∥∥∥F(2,2)
∥∥∥

∞
. (19)

Remark 5. The corrected upper bound estimation (19) of the remainder term in the bivariate
Bernstein composite formula was established in [1].

Case 4. If we consider n1 = n2 = 1 in the relation (18), then we get the bivariate trapezoidal
composite formula

∫ b

a

∫ d

c
F(x, y)dxdy = (b−a)(d−c)

4m1·m2

m1

∑
i=1

m2

∑
j=1

(
F
(

a + (i−1)(b−a)
m1

, c + (j−1)(d−c)
m2

)
+ F

(
a + (i−1)(b−a)

m1
, c + j(d−c)

m2

)
+F
(

a + i(b−a)
m1

, c + (j−1)(d−c)
m2

)
+ F

(
a + i(b−a)

m1
, c + j(d−c)

m2

))
+R[F],

with
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∣∣R[F]∣∣ ≤ (b− a)3(d− c)
12m2

1

∥∥∥F(2,0)
∥∥∥

∞
+

(b− a)(d− c)3

12m2
2

∥∥∥F(0,2)
∥∥∥

∞
+

(b− a)3(d− c)3

144m2
1m2

2

∥∥∥F(2,2)
∥∥∥

∞
.

5. Numerical Examples

In order to validate the approximation accuracy of the classical composite Bernstein
cubature formula

b∫
a

d∫
c

F(x, y)dxdy ≈ (b−a)(d−c)
m1m2(n1+1)(n2+1)

m1

∑
i=1

m2

∑
j=1

n1

∑
k1=0

n2

∑
k2=0

F(?, ◦) =: Im1,m2,n1,n2(F), (20)

we test it with the Maple mathematical software. For our study, we reconsider the five test
functions presented in the third section. We approximate the double integrals, and, in the
next tables, we record the absolute errors

eIm1,m2,n1,n2(F) =
∣∣IF − Im1,m2,n1,n2(F)

∣∣,
obtained by applying the classical composite Bernstein cubature formula (20). In the
following tables, e− p means 10−p.
Analyzing carrefully the results recorded in the above five tables (Tables 2–6), we can
remark the following aspects:

1. In the third column of each table, we applied the simplest form of the classical
composite Bernstein cubature formula (n1 = n2 = 1), which is in fact the composite
trapezoidal cubature formula, see Case 4.

2. Once the number of nodes increased, in the next columns of each table, we obtained
better approximation than the previous one.

It is clear that the classical bivariate Bernstein composite formula (18) enjoys some privilegies:

• The freedom to increase the number of nodes on all bivariate subintervals;
• A single condition is required in the evaluation of the remainder;
• A double integral could be approximated with a desired precision by taking a certain

number of bivariate subintervals into account as well as a certain number of nodes on
all subintervals.

Table 2. The approximation of the double integral
∫ 0.75

0

∫ 0.75
0 e2y−xdxdy.

m1 m2 eIm1,m2,1,1(F) eIm1,m2,5,10(F) eIm1,m2,10,5(F) eIm1,m2,50,50(F)

2 2 5.389× 10−2 6.427× 10−3 9.628× 10−3 1.068× 10−3

5 10 3.446× 10−3 5.165× 10−4 5.165× 10−4 6.886× 10−5

10 5 7.312× 10−3 7.741× 10−4 1.419× 10−3 1.461× 10−4

25 25 3.444× 10−4 4.133× 10−5 6.199× 10−5 6.884× 10−6

50 50 8.611× 10−5 1.033× 10−5 1.550× 10−5 1.718× 10−6

Table 3. The approximation of the double integral
∫ 2

1

∫ 2
1
(
5x2 + 3xy2 + 7y

)
dxdy.

m1 m2 eIm1,m2,1,1(F) eIm1,m2,5,10(F) eIm1,m2,10,5(F) eIm1,m2,50,50(F)

2 2 3.958× 10−1 6.041× 10−2 5.833× 10−2 7.916× 10−3

5 10 4.083× 10−2 7.416× 10−3 4.833× 10−3 8.166× 10−4

10 5 3.833× 10−2 4.666× 10−3 6.833× 10−3 7.666× 10−4

25 25 2.533× 10−3 3.866× 10−4 3.733× 10−4 5.066× 10−5

50 50 6.333× 10−4 9.666× 10−5 9.333× 10−5 1.266× 10−5
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Table 4. The approximation of the double integral
∫ 2

1.4

∫ 1.5
1 ln(x + 2y)dxdy.

m1 m2 eIm1,m2,1,1(F) eIm1,m2,5,10(F) eIm1,m2,10,5(F) eIm1,m2,50,50(F)

2 2 4.917× 10−4 6.210× 10−5 8.519× 10−5 9.817× 10−6

5 10 3.526× 10−5 5.608× 10−6 4.972× 10−6 7.054× 10−7

10 5 6.300× 10−5 6.820× 10−6 1.208× 10−5 1.258× 10−6

25 25 3.145× 10−6 3.975× 10−7 5.457× 10−7 5.820× 10−8

50 50 7.872× 10−7 9.950× 10−8 1.371× 10−7 1.870× 10−8

Table 5. The approximation of the double integral
∫ 1
−1

∫ 1
−1 e−(x2+y2)dxdy.

m1 m2 eIm1,m2,1,1(F) eIm1,m2,5,10(F) eIm1,m2,10,5(F) eIm1,m2,50,50(F)

2 2 3.598× 10−1 5.585× 10−2 5.585× 10−2 7.504× 10−3

5 10 3.669× 10−2 6.618× 10−3 4.409× 10−3 7.358× 10−4

10 5 3.669× 10−2 4.409× 10−3 6.618× 10−3 7.358× 10−4

25 25 2.344× 10−3 3.517× 10−4 3.517× 10−4 4.676× 10−5

50 50 5.861× 10−4 8.790× 10−5 8.790× 10−5 1.186× 10−5

Table 6. The approximation of the double integral
∫ 4

0

∫ 3
0 e−(x+y) · sin(2x + 2y)dxdy.

m1 m2 eIm1,m2,1,1(F) eIm1,m2,5,10(F) eIm1,m2,10,5(F) eIm1,m2,50,50(F)

2 2 2.078× 10−1 1.736× 10−2 1.029× 10−2 3.031× 10−3

5 10 5.753× 10−4 3.319× 10−4 1.679× 10−4 4.267× 10−5

10 5 8.876× 10−4 3.830× 10−5 7.770× 10−5 1.336× 10−5

25 25 1.623× 10−5 1.317× 10−6 1.192× 10−6 1.344× 10−7

50 50 3.079× 10−6 4.204× 10−7 3.534× 10−7 4.990× 10−8

6. Conclusions

Concerning the classical bivariate Bernstein formula, we may conclude the following:

• It is a valuable tool to approximate any volume resulted by the integration of a given
function on the interval [a, b]× [c, d] (on the symmetrical interval [−a, a]× [−a, a])
and which cannot be solved analytically;

• The simplest form (by taking only the minimum number of nodes) is the bivariate
trapezoidal formula;

• Its use has certain advantages in comparison with the well-known Newton–Cotés
cubature formulas;

• The implementation on the computer can be done using a simple procedure;
• The computational cost is limited to summing the values of functions;
• A single condition for the integrated function is requested in the evaluation of

the remainder;
• A composite cubature formula can be used if the approximation is not good enough.

In this research, we were successful in assigning the classical Bernstein cubature formula
a right place on the map of cubature formulas. Unconstrained and more flexible than
the Newton–Cotés cubature formulas, the classical Bernstein cubature formula can be
used in almost all real daily applications offering accurate solutions. Although effective in
most situations, there will be instances when the implementation of the classical Bernstein
cubature formula would be inappropriate, as a small step size is used uniformly across
the entire interval of integration to ensure the overall accuracy. Such an approach does
not take into account that some regions of the surface have large functional variations that
require more attention than other regions of the surface. Under those circumstances and as
a new direction of research, it would be useful to introduce a method that adjusts the step
size to be smaller over regions of the surfaces where a larger functional variation occurs.
An efficient problem solving technique for these types of issues should predict the amount
of functional variation and adapt the step size as necessary.
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