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Abstract

:

Identification of promoter sequences in the eukaryotic genome, by computer methods, is an important task of bioinformatics. However, this problem has not been solved since the best algorithms have a false positive probability of 10−3–10−4 per nucleotide. As a result of full genome analysis, there may be more false positives than annotated gene promoters. The probability of a false positive should be reduced to 10−6–10−8 to reduce the number of false positives and increase the reliability of the prediction. The method for multi alignment of the promoter sequences was developed. Then, mathematical methods were developed for calculation of the statistically important classes of the promoter sequences. Five promoter classes, from the rice genome, were created. We developed promoter classes to search for potential promoter sequences in the rice genome with a false positive number less than 10−8 per nucleotide. Five classes of promoter sequences contain 1740, 222, 199, 167 and 130 promoters, respectively. A total of 145,277 potential promoter sequences (PPSs) were identified. Of these, 18,563 are promoters of known genes, 87,233 PPSs intersect with transposable elements, and 37,390 PPSs were found in previously unannotated sequences. The number of false positives for a randomly mixed rice genome is less than 10−8 per nucleotide. The method developed for detecting PPSs was compared with some previously used approaches. The developed mathematical method can be used to search for genes, transposable elements, and transcript start sites in eukaryotic genomes.
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1. Introduction


The promoter sequences, in both prokaryotes and eukaryotes, are located up to the point of transcription initiation [1]. The site on the DNA from which the first RNA nucleotide is transcribed is called the +1 site. The so-called core promoter, with a length of 60–120 bases, stands out, and RNA polymerase binds to this DNA region [2,3]. A longer stretch of 600 bases from −499–+100 includes the core promoter, as well as the binding sites of various transcription factors [4]. “Further, we will focus only on eukaryotic promoter sequences. The promoter includes some motifs, which are short conservative sequences. The so-called TATA sequence is known, which occupies positions from −31–−26 nucleotides [5]. Additionally, the B recognition element is known, which is between −37 and 32 nucleotides in the promoter sequence. Short sequences have been found that provide binding of various protein factors to the promoter sequence [6]. Many of these sequences fall on the promoter region from +1–+40. The promoter sequence is not symmetrical” [7], thereby making the DNA polymerase begin transcription in the right direction.



Promoter sequences are very different from each other [8,9,10]. This is as a result of the need to control the transcription of various genes. When transcription is initiated, the transcription initiation complex is assembled [11]. The complex includes RNA polymerase, a promoter sequence, and “dozens of other transcription factors. The set of these factors can vary from one gene to another, which in turn leads to a strong variety of promoter sequences. Today, hundreds of thousands of promoter sequences from various eukaryotic genomes are known” [7]. Databases have been created for promoter sequences [4]. In this work, 4220 promoters from the rice genome were used, after obtaining them from the site http://linux1.softberry.com/data/plantprom/Links/PLPR_predicted_OS.seq (accessed on 19 May 2021). We chose the rice genome for study, as it is well annotated [12] and the agricultural value of rice is very high. However, despite such a large number of promoter sequences, it has not been possible to find a statistically significant multiple alignment between them [13]. This resulted in the difficulty associated with identifying (annotating) promoters using a nucleotide sequence. A typical scheme for annotating different nucleotide or amino acid sequences is to construct a statistically significant multiple alignment for sequences that perform the same genetic functions. “Then this alignment is used for profile analysis or for constructing a hidden Markov model. Such a scheme leads to a low number of false positives when annotating genomes. However, algorithms for predicting promoter sequences currently use other mathematical methods due to the lack of statistically significant multiple alignment” [7]. These algorithms include TSSW [9], PePPER [14], G4PromFinder [15], deep learning approach [16], method based on evolutionarily generated patterns [17] and many others. The best algorithms have false positive probability of 10−3–10−4 per nucleotide. The rice genome contains ~4.3 × 108 DNA base, and more than 4 × 104 false positives will be generated using well-known methods. The probability of a false positive could be reduced to 10−6–10−8 to reduce the number of false positives and increase the reliability of the prediction. If promoter sequences can be correctly predicted, then genes and transcription start sites (TSS) could be more accurately identified.



In this work, multiple alignment for promoter sequences from the rice genome was performed and “a mathematical method for calculating multiple alignment for highly different sequences (MAHDS) was developed” [7]. Multiple alignment for nucleotide sequences may be calculated on the site http://victoria.biengi.ac.ru/mahds/auth (accessed on 19 May 2021) [18]. A method for creating promoter classes, based on multiple alignment, was also developed. In total, 5 classes of promoter sequences were created for which the volume of classes was more than 100 promoters. “The obtained classes of promoter sequences were used to search for other promoter sequences in the rice genome” [19]. A profile matrix am(16,600) was calculated for each class. Using dynamic programming, a search for potential promoter sequences was carried out for each matrix. In the sequence of chromosome S, the S3(k) window with the size of 650 bases was selected, and we searched for the best intersection of the matrix am(16,600) and the S3(k) sequence (see below, Section 2.4.). We took into account the correlation of neighboring base pairs, and, for this, we used 16 rows in the am(16 600) matrix. Window S3(k) moved in increments of 10 bases throughout the rice genome. In this study, 145,277 potential promoters were found. Of these, 18,563 are promoters of known genes, which is about 46% of the annotated genes. The number of false positives for the randomly mixed rice genome was about 10−8 per nucleotide. “At the same time, the correlation of the found potential promoter sequences (PPSs) with various dispersed repeats and transposons was studied. It was possible to show that ~87 thousand PPSs correlate with various dispersed repeats and transposons [12]. Other PPSs may be promoters of unknown genes, micro RNA genes [20], promoters associated with various mobile elements of the genome, as well as evolutionary traces of the resettlement of genes and their promoters” [19].




2. Materials and Methods


2.1. Promoter Sequences from the Rice Genome


A total of 4220 promoters, from the rice genome, were taken from http://linux1.softberry.com/berry.phtml?topic=plantprom&group=data&subgroup=plantprom (accessed on 19 May 2021). These promoters range from −200–+51 DNA bases near transcription start site. For this study, we obtained sequences from −499–+101 around the same 4220 transcription start sites. To achieve this, each of the 4220 promoter sequences in the rice genome were found and a region from −499–+100 was selected. We used the rice genome sequences from http://plants.ensembl.org/Oryza_sativa/Info/Index (accessed on 19 May 2021). Consequently, 4220 promoter sequences were obtained, by which promoter classes were created. The set of these sequences was denoted as Q, and each promoter sequence as S(i), i = 1, 2, …, N. The volume of the set Q was equal to N = 4220. Each promoter “had a length of 600 nucleotides. The promoter included sequences from −499–+100” [7] relative to the transcription start site (+1 position).




2.2. Multiple Alignment of Promoter Sequences from the Rice Genome by the MAHDS Method


To perform multiple alignment, we did the concatenation of VQ = 100 randomly selected sequences, from the set Q, into one sequence S1 of length K = 600 VQ. A small value of VQ allows us to accelerate the global alignment and all calculations. First, let us take a look at the general scheme for creating multiple alignments using the MAHDS method, shown in Figure 1 [18]. Thereafter, some of the points shown in Figure 1 will be considered in more detail below in separate paragraphs. The MAHDS method does not use direct calculation of multiple alignment by any comparison of sequences from the set Q. The main idea is to use multiple alignment images in the form of position-weight matrices to calculate multiple alignment (Figure 1, point 2) [18]. Initially, we generated random position-weight matrices (PWM). These matrices are calculated using random sequences obtained by the random mixing of promoter sequences from the Q set. The calculation of random PWM’s were done according to the Equations (1) and (2). The position-weight matrix contains 599 columns and 16 lines. The number of rows is equal to the number of pairs of nucleotides. Then these matrices are transformed in a certain way, and a set of matrices A is created that contains VA matrices. The essence of the transformation is to ensure that the sum of the squares of all elements of each matrix and Kd (Equations (3) and (4)) are constants for the whole A set. The creation of positional weight matrices from the A set is considered in Section 2.3.



Then the positional weight matrices from the A set are optimized by the genetic algorithm (Figure 1, points 3–5). The goal of this optimization is to create a PWM that has the best global alignment with the S1 sequence [21,22]. By the best alignment, we mean an alignment that will have the greatest value of the function Fo = F(K,K). Here, F(K,K) is the value of the similarity function at the point (K,K) of the dynamic programming matrix. In more detail, the global alignment of the matrix a(i) from the A set and the sequence S1 is discussed below in Section 2.4. Each matrix a(i) has 599 columns and 16 lines.



The genetic algorithm contains three steps. In the first stage (Figure 1, point 3), each matrix a(i) from the A set is aligned with the sequence S1. As a result, for each matrix, Fo is calculated and the vector Fo(i), i = 1, 2, …., VA, is created. In the second stage (Figure 1, point 4), the vector Fo(i) is arranged in descending order, so that Fo(1) is its maximum element. We take Fm = Fo(1) and denote the matrix that corresponds to Fm as am. Fo(i) is considered as an objective function, and the matrices a(i) as organisms for the genetic algorithm. Our task is to maximize Fm. This is achieved by introducing mutations into matrices from the A set. This is the third stage of the genetic algorithm, which is shown in Figure 1, point 5. For this, 1% of the matrices a(i) from the A set is randomly selected. Then for these matrices, we randomly, and equally likely, select the number of mutations from 1–10. Then, for each mutation, a cell of the a(i) matrix which has size 16 × 600 is randomly selected. Thereafter, we randomly and equally likely select a new value for the matrix cell in the range from −10.0–+10.0. The genetic algorithm is shown in [23]. The application of the genetic algorithm for multiple alignment of nucleotide sequences is described in detail in [18].



Simultaneously, with the introduction of mutations, one descendant is created instead of the matrix a (VA), which has the smallest value of the similarity function Fo(VA). In addition, 0.5% of the matrices exchanged their randomly selected parts, which was a kind of crossing-over for these “organisms”. The descendant and crossing over were created as in [23]. If Fm > F1 then we do F1 = Fm and we go back to point 3, Figure 1. If Fm ≤ F1, and this has already been going on for at least 10 times (Figure 1, point 7), then we go to point 8 and create a multiple alignment of the promoter sequences from the Q set. The multiple alignment is calculated by global alignment of the sequence S1 with respect to the am matrix. The construction of multiple alignment is considered below in Section 2.5.




2.3. Creation of Random Matrices from the A Set.


Sequences were randomly mixed from the Q set and the Qr set was created. Each sequence from the Qr set also had a length equal to 600 bases. Thereafter, the sequences were placed under each other and got multiple alignments without insertions and deletions with the number of rows N = 4220 and with the number of columns equal to Ns = 600. Then the probability of occurrence of the bases was calculated as p(i) = n(i)/K2. Here n(i) is the number of bases of type i in all sequences from the created multiple alignment, i ∈ {a,t,c,g}. K2 = NsN = 600 × 4220—is the total length of all sequences in the Qr set. Then, the probabilities of finding a base pair f(i,j) = p(i)p(j), j ∈ {a,t,c,g} were calculated. Here, t(i,j,k) was also calculated; this is the number of pairs (i,j) at positions k–1 and k, k varies from 2–Ns. Then we calculated:


  x ( i , j , k ) =   t ( i , j , k ) − N f ( i , j )     N f ( i , j ) ( 1 − f ( i , j ) )      



(1)




where Nf(i,j) is the expected number of the neighboring base pair (i,j), and x(i,j,k) is the cell of the a(1) matrix from the A set. Thus, the first matrix a(1) was filled from the A set. The first column of the matrix a(1) was also filled as:


  x ( i , j , 1 ) =   t ( i , 1 ) − N p ( i )     N p ( i ) ( 1 − p ( i ) )      



(2)




where t(i,1) is the number of bases i in the first column of the created multiple alignment. This formula is valid for j ∈ {a,t,c,g}, j ∈ {a,t,c,g}. The volume VA of the A set was 1000 sequences. Thereafter, each matrix from the A set was transformed. The created matrices were transformed so that R2 and Kd were the same and equal to 55,000 and −1.5, respectively. The constants R and Kd can be calculated using the following Equations (3) and (4):


   R 2  =   ∑  i = 1   16      ∑  j = 2    N s    a      ( i , j )  2   



(3)






   K d  =   ∑  t = 1   16      ∑  k = 2    N s    a    ( t , k )  p 1  ( t )  p 2  ( k )  



(4)




where    p 2   ( k )  = 1 / 599  , p1(t) = p(l)p(m), (l,m  ∈  {a,t,c,g}) and p(l) and p(m) are the probabilities of the l or m type nucleotides in Q set;    p 2   ( k )  = 1 / 599  . The matrix transformation procedure is described in details in [23]. The transformation was done so that the calculated F0(i) would have a similar distribution when random sequences are aligned. Thus, the best am matrix can be found based on the similarity function (Fm) and the p-value was not calculated. This greatly facilitated the computation.




2.4. Global Alignment of PWM and Sequence S1


First, let us define the sequence S2. This sequence contains 1, 2, …, 599 which is repeated VQ = 100 times. The length of the sequence S2 (as well as the sequence S1) is K = 600VQ. The symbols of the sequence S1 were denoted as s1(i), and the symbols of the sequence S2 as s2(i), i can vary from 1–K. Then the sequence S1 was aligned with the matrices a from the A set. The matrix cell was denoted as a(i,j), with i varying from 1–16, j from 1–599. The sequence S1 was encoded according to the following rule: A = 1, T = 2, C = 3, G = 4, where A, T, C and G are DNA bases. F is calculated as:


    F ( i , j ) = max  {    F ( i − 1 , j − 1 ) + a ( n ,  s 2  ( j ) )      F x  ( i − 1 , j − 1 ) + a ( n ,  s 2  ( j ) )      F y  ( i − 1 , j − 1 ) + a ( n , s 2 ( j ) )    }          



(5)






     F x  ( i , j ) = max  {    F ( i − 1 , j ) − d      F x  ( i − 1 , j ) − e    }          



(6)






     F y  ( i , j ) = max  {    F ( i , j − 1 ) − d      F y  ( i , j − 1 ) − e    }          



(7)







Initial conditions: F(0,0) = 0.0, F(i,0) = F(0,i) = –di. Here n = s1(k) + 4(s1(i)–1), i runs from 2–K and j runs from 2–K. For i = 1, n = s1(1). The element s1(i) is of the sequence S1 and s2(i) is an element of the sequence S2. a(i,j) is an element of the a matrix from the A set. The parameter n takes into account the correlation of bases in the matrix a. The previous position (k) must be calculated, which has already been included in the alignment. Therefore, the index k was calculated from the already created transitions in the F matrix, depending on the previous base of S1 that was included in the alignment. Depending on the index k, we took a(n,s2(i)). If the previous base of the sequence S1 is s(i–t), then k = i–t and n = s1(i–t) + (s1(i)–1)*4 are taken. t = 1 corresponds to movement along the main diagonal of the F matrix. In this case, there is no deletion in the S1 sequence in the alignment. t > 1 corresponds to a deletion of the t–1 bases in the sequence S1.



Deletions may also occur in the S2 sequence. Deletions in the S2 sequence correspond to deletions of columns in the matrix a. If the previous symbol in the sequence S2, which we took in alignment, has the number j–1, then there are no deletions in the sequence S2. If this number is j–t (t > 1) then this corresponds to a deletion of t–1 bases in the sequence S2. For these transitions, the correlations of adjacent bases were not considered. This is quite acceptable in cases with a relatively small number of deletions. In this case we took n = s1(i) and s2(j) = 1 in Equation (5).



We took, d = 35.0 and e = 8.0. Selection of the insertion/deletion penalty was performed as in our earlier work [23], using the study of model sequences. The reverse transition matrix was filled along with the F matrix. Therefore, the alignment of the sequences S1 and S2 was built using the reverse transition matrix and the F(K,K) was determined. The alignment of the S1 and S2 sequences was calculated for all matrices from the A set. As a result, the vector Fo(i), i = 1,…,VA containing F(K,K) for each of the matrices was obtained.




2.5. Calculations of Multiple Alignment from Two-Dimensional Alignment of the Sequences S1 and S2


We obtained the matrix am, which has the highest value of Fm when aligning with the sequence S1 as a result of the algorithm for constructing multiple alignment. The algorithm is shown in Figure 1. This alignment is depicted as a juxtaposition of the positions of the columns (sequence S2) with nucleotides of the sequence S1. In the S1 sequence, VQ = 100 promoter sequences from the rice genome are arranged one after another. In fact, the task was to create multiple alignment from the two-dimensional alignment of sequences S1 and S2 for promoter sequences from the Q set. The construction of multiple alignment involves a two-step cyclic process. Step 1. k = 1. First, we find all s2(i) = k, i = 1, 2, …, K, K = 600VQ. There are VQ = 100 such values. All those bases or deletions of bases that are in the sequence S1 opposite s2(i) = k are written in the current column of the matrix MA starting from the first. Deletions of bases are denoted by *. Step 2. Thereafter, we consider the bases in the sequence S1 opposite which are located * in the sequence S2. Asterisks should be located between s2(i) = k and s2(i) = k + 1 in the sequence S2, i = 1, 2, …, K. Then additional columns should be introduced in the MA matrix. In these columns, we write, in turn, all the bases from the sequence S1 located opposite the asterisks. The number of columns is equal to the length of the longest fragment in the sequence S1, which is located opposite asterisks (**...*) in the sequence S2. These asterisks on the left are bounded by s2(i) = k, and on the right, s2(i) = k + 1. Then we do k = k + 1 and repeat all the calculations. The process is stopped if k > 600. In the case k = 600, the asterisks should be located between s2(i) = 600 and s2(i) = 1 in the sequence S2, i = 1, 2, …, K in step 2.



Consider a small example. Suppose K = 15 and the alignment of sequences S1 and S2 is:


    1**23451*2345123*45     atcgtcaagg*caagtgca    



(8)







Then multiple alignment is:


    1**23*45     atcgt*ca     ag*g**ca     a**gtgca    



(9)








2.6. Creating Classes of Promoter Sequences


The algorithm for creating classes is shown in Figure 2. The VQ of randomly selected promoter sequences from the Q set was combined into the sequence S1 as we wrote about it above. The choice of VQ = 100 is based on the fact that for VQ > 100, the time for calculating global alignment increases significantly. Then the matrix am was calculated as described in Section 2.5. (Figure 2, point 1,2). “However, only part of the promoter sequences from the Q set can have a statistically significant alignment with the am matrix” [7]. There are two reasons for this; first, VQ is less than the number of promoters in the Q set (N = 4220) and most of the promoters were not included in the S1 sequence. Secondly, a certain number of promoters in the sequence S1 may not have statistically significant alignment with the matrix am.



Therefore, each promoter sequence S(i) (i = 1, 2, …, N) from the Q set was aligned with respect to the matrix am (Figure 2, point 3). This way, only those promoter sequences that have a statistically significant alignment with the matrix am were selected. The alignment algorithm was the same as in Section 2.4. In this case, K = 600, VQ = 1. Instead of the sequence S1, we only analyzed one after another sequence S(i) from the Q set. For each sequence from the Q set, we calculated F(K,K) (Section 2.2).



The statistical significance of the resulting alignments was estimated. For this, random Qr sequences were used (Section 2.3). Each sequence from the set Qr was aligned and the value of F(K,K) for each sequence was calculated. Thus, 4220 F(K,K) for randomly mixed sequences were obtained. For this set of the F(K,K), the mean     F ( K , K )  ¯    and variance   D ( F ( K , K ) )   were calculated.



In this study,   Z = { F ( K , K ) −   F ( K , K )  ¯  } /   D ( F ( K , K ) )     was calculated for each promoter from the Q set. If the promoter sequence S(i) from the Q set has Z > 5.0, then it is written in the class of promoter sequences that can be detected using the matrix am (Figure 2, point 4).



Thus, part of the promoter sequences from the Q set was written into the created class. Then we checked that the created class has more than 100 sequences. The minimum size of classes equal to 100 was defined, based on random sequence analysis (Figure 2, point 5). “When this procedure was performed on random sequences, the volume of classes ranged from 0–27 sequences with an average value of 16 sequences” [18]. This means that the probability of creating a class of 100 sequences, due to random factors, is negligible.



Then the promoters included in the created class from the Q set (Figure 2, point 6) were excluded. We moved to point 1 of Figure 2 and the procedure for creating a class of promoter was repeated again. As a result, the algorithm shown in Figure 2 was used to calculate the matrix am and multiple alignment of 100 sequences for which the am matrix was created. The alignment of each promoter sequence included in the created class was calculated with respect to the am matrix.



We found the maximum of x(i,j,k), k varies from 2–600 (Equation (1)) for the calculated multiple alignment of 100 sequences (on the basis of which the matrix am was created). For each position k, the base pair of 16 having the largest value x(i,j,k) was chosen. This value was denoted as X(k) and the dependences of X(k) on k for the first two classes of promoter sequences were calculated.



To do this, we calculated the probabilities of nucleotide bases p(i) (i = 1,2,3,4) for multiple alignment of each class. Then, for each position j in multiple alignment, we calculated the number of nucleotides y(i,j). We only took the positions of multiple alignment, where the number of nucleotides was >10. The number of such positions for all multiple align classes is 600. For each position j, we calculated m(j) =     ∑  i = 1  4   y ( i , j )    . Then we calculated x(i,j) = (y(i,j)–m(j)p(i))/(    m ( j ) p ( i ) ( 1 − p ( i ) )    . To build a consensus in each position j, we took that nucleotide (i), which had the greatest value x(i,j). If x(i,j) was <1.0, we took N into the position j. Thus, 5 consensus sequences were built for each class.




2.7. Search for Potential Promoter Sequences in the Rice Genome


On each chromosome, the S3(k) sequence with a length of 650 bases (K1 = 650) was selected. Here, k varied from 1–Chl–649 in increments of 10 bases, where Chl is the chromosome length. The sequence S3(k) was aligned with respect to the columns of the matrix am (sequence S2) for the created classes of promoter sequences. The alignment algorithm was the same as in Section 2.4, but with minor changes. Here, i can vary from 1–K1, and j can vary from 1–K, K = 600. The initial conditions for filling the matrix F are different: F(i,0) = F(0,j) = 0.0, i = 0, 1, …, K1, j = 0, 1, …, K. After filling the F matrix, we searched for a maximum in the rows F(i,K) and F(K1,j),), i = 0, 1, …, K1, j = 0, 1, …, K. Suppose we find the maximum of F at the point (im,jm); from this point using the reverse transition matrix, we build the alignment of the sequences S3(i) and S2 before crossing with F(i,0) and F(0,j), i = 0, 1, …, K1, j = 0, 1, …, K. This means that the best intersection of the sequence S3(k) and S2 is found. Then Z was calculated as in Section 2.6 for each k from 1–Chl–649 in increments of 10 bases. As a result, an array of Zl (k) was obtained. Here, the index l shows the class number of the promoter sequences. In our case, l varied from 1–5, since 5 classes of promoter sequences were created.



Zl(k) was also calculated for each of the inverted chromosomes and these arrays were denoted as    Z l  i n v   ( k )    . All local maxima, no closer than 600 bases from each other (intersection no more than 0%), were identified. We took the local maximum of the intersecting ones, having the largest value of Zl(k) and more than 5.0. This search for PPSs was performed for all 12 rice chromosomes. As a result, for each chromosome we have the coordinates of the PPSs, alignment of the PPSs with the class matrix am, Z for the PPSs, the class number, and the DNA strand (direct or complementary).





3. Results


3.1. Classes of Promoter Sequences from the Rice Genome


Five statistically significant classes of promoter sequences, with class volume 1740, 222, 199, 167, and 130 promoters, were created. This is consistent with the estimated class number of promoters in eukaryotic genomes [24]. All classes contained about 60% of the selected rice promoters (a total of 4220 sequences were used). The remaining 40% are in smaller classes. It can be observed that the first class is the largest, containing about 1740 of the 4220 promoters.



The conservation of bases in the first two classes of promoter sequences was studied. In Figure 3 and Figure 4 (black circles), we plotted the dependence X(k), k = 1, 2, …, 599 for the first two classes of promoter sequences. At the same time, the dependence X(k) for randomly mixed sequences was calculated. The multiple alignment created for the class of promoter sequences was recorded and the nucleotides were randomly mixed. Here, the position of the insertions or deletions were unchanged. The obtained graphs are shown in Figure 3 and Figure 4 (white circles).



Figure 3 shows that the promoter sequences of the first class from the rice genome have some base pairs for which X(k) is greater than X(k) for randomly mixed sequences. The probability of X(k) to be greater than 5.0 is less than 10−5. A conserved promoter sequence can be noticed in the region of k = 475, which corresponds to the TATA region of the promoter [20]. The most significant base pairs were found in positions from +1–+80. This may be due to both transcription initiation [1] and translation initiation [25]. It is likely that certain transcription or translation factors need only certain DNA bases or only certain combinations of them (or motifs). Therefore, a strong increase in X(k) was observed for k > +1 in Figure 3.



However, this phenomenon was not observed for the second class of promoter sequences (Figure 4). The values of X(k) in the second class for k > +1 are not much greater than X(k) for all other k. This may indicate that there are either different mechanisms of transcription initiation, of different genes in the rice genome, or different factors of initiation of both transcription and translation. It is also important to note that, for promoter sequences, X(k) from −499–+1 is greater than for random sequences. This may indicate that many DNA motifs in this region are important for the binding of transcription factors [26].



Also, the difference between X(k) obtained for promoter sequences and X(k) calculated for random sequences, was investigated. To do this, N(X) was calculated, which shows the number of X(k) from X–+∞. In total, there are 599 X(k) for each class of promoter sequences, therefore N(X) varies from 0–599. For the first and second classes of promoter sequences, the dependences of N(X) on X are shown in Figure 5 and Figure 6. These figures show that N(X), in the interval x from 0.0–3.0, is more than 2–5 times greater for promoter sequences than for random sequences. Comparing Figure 3 and Figure 4, as well as 5 and 6, it can be said that the difference in the alignment of promoter sequences from random sequences occurs both due to several tens of X(k) > 3.0, and due to several hundred X(k) between 0.0 and 3.0.



A total of 4220 promoters from the PlantProm DB 18 database (Q set) were used to create promoter sequence classes. These promoter sequences were detected by both experimental and theoretical methods. It is difficult to completely exclude the possibility that a certain number of sequences that are not promoters are in the Q set. As can be seen from the results, only about half of the 4220 sequences from Q set were included in the created classes. All sequences that did not enter into multiple alignment for each of the 5 classes (Figure 1 and Figure 2) were eliminated. When creating the classes, it was assumed that “pollution” of up to 20–40% does not have a significant effect on the created classes. This was tested by replacing the promoter sequences from the Q set with random sequences. It was found that the created classes were unaffected by replacing 25% of the sequences in the Q set with random sequences. With 50% random sequences in the Q set, only the first class of promoter sequences can be constructed. Therefore, the real similarity of promoters in the rice genome is believed to be reflected by the classification created.




3.2. PPS in the Rice Genome


The calculated am matrices for 12 chromosomes from the rice genome, were searched for PPSs as described in Section 2.7. Chromosome sequences of the rice genome were taken from http://plants.ensembl.org/Oryza_sativa/Info/Index (accessed on 19 May 2021). The results of this study are shown in Table 1. The coordinates of the annotated genes were taken from the site: http://plants.ensembl.org/info/data/ftp/index.html (accessed on 19 May 2021). The search for PPS was carried out by the sequences of two DNA strands. The sequence of the second strand was sequence which was complemented and reversed. A control search PPS in random sequences was also conducted, as well as in inverted sequences (without recoding to the complementary sequence).



The results for PPSs search in the rice chromosomes are shown in Table 1. From this Table, it can be seen that the number of PPSs is 3–5 times higher than the number of known genes in each chromosome. If these results are summarized for the entire rice genome, then 145,277 PPSs will be found, whereas the rice genome contains 38,756 annotated genes. The low level of false positives (FP) that we were searching for in the mixed chromosomes of rice or in inverted sequences, should also be noted. The number of false positives (FP) for randomly mixed rice genome is 2 (Table 1). If the fact that the Oryza sativa genome has approximately 430 megabases in size [27] is considered, then the probability of false positives for the search of PPS is 2/430 × 106 < 10−8 per nucleotide. If false positives are evaluated by inverted sequences (Table 1), then the probability of false positives is 347/430 × 106 < 10−6 per nucleotide. The achieved probability of false positives is approximately 3–4 orders of magnitude lower than that of all previously developed programs, and this allows us to analyze the complete rice genomes and identify PPSs without significant random noise.



20,654 of sites were found from −499–+100 for annotated genes, as shown in Table 1. This is the sum of matches ++, +−, −+, −− in Table 1. Classes were created for approximately 60% of the 4220 promoter sequences from the Q set. Therefore, it seems very logical that about half of the promoter sequences around known genes (this is sum of matches ++ and −−) have been identified in the right direction. The number of such promoters is 18,563. This is an argument in favor of the fact that the classification was carried out correctly. This means that classes for the set Q are common to all promoter sequences from the rice genome. It can also be noticed that about 2000 promoter sequences around annotated genes were identified in the opposite direction (Table 1). This may indicate the existence of bidirectional promoters in the rice genome [28,29]. It can be partially explained by fluctuations in the calculation of Z using the Monte Carlo method, as well as by overlapping promoter sequences on two DNA strands.



The number of PPS intersecting with the promoter sequences for each class is shown in Table 2. It can be seen that the most known promoter sequences can be found by the first class. This number is about 6–8 times more compared to the remaining 4 created classes. It can be said that the number of intersections with known promoters for each class is proportional to the number of promoters included in each class.



The density of PPSs in various rice chromosomes was also studied. The highest density is present on the first chromosome of rice, as shown in the Figure 7. The first chromosome has the average distance between the PPSs equal to 2 × 103 bases and the lowest density was observed in the 9th chromosome of rice. The 9th chromosome has one PPS for ~3 × 103 DNA bases.




3.3. The Intersection of PPS with Known Promoters and Transposons


The main question that arises from Table 1 is why there are so many PPSs, almost 4 times more than annotated genes. We thought that these PPSs could be associated with LTR, mobile elements, SINE, and LINE repeats. Therefore, the intersection of PPSs with the transposable elements (TEs), identified in [12], was studied. TE and PPSs are considered intersecting if they intersect at 80% or more of the length of any of them, as shown in Table 3. TEs on each rice chromosome were mixed, and the number of intersections with the PPS for different TEs was counted. This was done 100 times. As a result, the expected number of intersections and variances, for the random arrangement of TEs in rice chromosomes, were calculated. Thereafter,    X 1  = { C −  C ¯  } /   D ( C )     was calculated. “Here, C is the number of PPS intersections with TEs in the rice genome,    C ¯    is the expected number of PPS intersections with TEs, D(C) is the variance for the expected number of PPS intersections with TEs” [30]. The location of some TEs is strongly correlated with the PPS locations, as shown in Table 3. This is most noticeable for MULEtir, MULE and some other transposons.



If the total number of intersections is calculated, then a maximum of 87,233 PPSs are associated with TEs. If 20,654 PPSs associated with promoters of annotated genes are added to this amount, then 107,887 PPSs are associated with the already annotated sequences. However, there are 37,390 PPSs that occurred in previously unannotated sequences. In part, these may be promoters for micro RNAs, which are also transcribed by RNA polymerase-II [31,32], as well as promoters of unknown genes.



The intersection of the classes of PPS with TE is shown in Table 4. For the matrix of the first class, the number of such intersections is 41,630, and for the 4 remaining classes it is 14,029, 10,779, 10,475, and 10,320, respectively. The specificity of all 5 PPS classes was evaluated for different TEs. Let columns 1 and 2 be eliminated from Table 4 and the remaining matrix considered as M(i,j), i = 1, 2, …, 5, j = 1, 2, …, 33; then,    X 2  = { M −  M ¯  } /   D ( M )     is counted. Here M is the number of PPS intersections with TEs in the rice genome for each matrix,    M ¯    is the expected number of PPS intersections with TEs for each matrix, D(M) is the variance for the expected number of PPS intersections with TEs for each matrix.



Here,    M ¯    is calculated as X(i)Y(j)/Sum, where X(i), i = 1, 2, …, 5, is the sum of the M(i,j) for j = 1, 2, …, 33. Y(j), j = 1, 2, …, 33, is the sum of the M(i,j) for i = 1, 2, …, 5. Only those rows in Table 4, where there is at least one element for which X2 > 6.0 and M(i,j) > 100 were considered. The results of these calculations are shown in Table 5.



It can be seen that the PPS detected using the M1 matrix are most specific for LTR/Gypsy and MITE/Stow. PPS detected using the M2 matrix are most specific for DNAnona/Helitron and DNAauto/CACTG. As can be seen from Table 5, specificity was also observed for other matrices. It can be assumed that the classes of promoter sequences may be associated with various groups of biological processes.





4. Discussion


The results obtained in this paper were compared with some other algorithms and programs. Initially, the Neural Network Promoter Prediction (NNPP) was used [33]. For this, a set of 100 randomly selected promoter sequences was obtained from the rice genome (R1 set) as well as 100 randomly mixed sequences of the same length (R2 set). In the R1 set, NNPP found 78 promoter sequences, and for the R2 set there were 68 of such sequences. It is clear that the number of false positives for NNPP is very high. Then, TSSW [34] and TSSP [9] algorithms were also tested. TSSP works the same as TSSW, but uses the RegSite database of plant regulatory elements [35]. Moreover, the TSSP algorithm aims to search for promoter sequences in plant genomes. In this case, the R1 set and R2 set each contained 6 × 104 sequences. As a result, 20 sequences from the R1 set and 35 from the R2 set were found by the TSSW program. TSSP found 85 sequences from the R1 set and 24 from the R2 set. That is, the number of false positives here is approximately 0.5 × 10−3 per nucleotide. Similar results were obtained for BPROM [9]. Then, in order to study the R1 and R2 sets, PROMOTER2 was applied [36]. Here, volumes of sets equal to 500 sequences were used. The program calculates the Score parameter. If Score >1.0, then it is highly likely that the analyzed sequence is a promoter. In the case of the R1 set, 30 promoter sequences having Score >1.0 were found. In the case of the R2 set, 25 promoter sequences were found. These results show that PROMOTER2 has the large number of false positives and extremely low efficiency of searching for promoters.



It is interesting to discuss the limitations of the approach used to construct multiple alignment in this paper. In this work, approximately 50% of the known promoter sequences were found in the rice genome. This could be due to the fact that promoter sequences may have different lengths or contain oversized (more than 50 nucleotides) insertions or deletions of nucleotides. Then building multiple alignment with the MAHDS program is difficult. This is due to the fact that promoter sequences are combined into one sequence S1 for constructing multiple alignment. In this case, a large insertion, or deletion, at the beginning of the sequence S1 will prevent finding the optimal multiple alignment for the sequences that are behind it. This disadvantage can be taken into account when modernizing the MAHDS method. Since the promoter can have different sizes, this will lead to the fact that part of the promoter sequences will be outside the created classes. It was assumed that this is why 5 classes were created that cover approximately 50% of the Q set volume.



It is also interesting to consider why the first class of promoter sequences is several times larger than the remaining classes. First of all, this may be due to the presence of large-sized inserts or deletions in the nucleotide sequences of other classes relative to the first class. This may prevent the association of promoters into one large class at a statistically significant level by the method developed in this work. The presence of such inserts or deletions may be associated with a different set of transcription factors around the genes [37]. If we can improve our approach and reduce the influence of oversize inserts, then we can probably combine all the promoter sequences into one class.



We have created multiple alignments and classes for promoter sequences from the human genome [38] and the A. thaliana genome [18]. For the human genome, it was possible to create 25 classes of promoter sequences, the same number of classes was created for the A. thaliana genome. These classes already cover 75% of the known promoter sequences (~60% in this work, Section 3.1). At present, only the total number of PPS in these genomes has been obtained. For the A. Thalian genome, this amount is comparable to the results obtained for the rice genome (taking into account the size of the genome). In total, about 62 thousand PPS were found. More than 1.0 million PPS have been found in the human genome. These data show that the developed method for creating classes of promoter sequences, and searching for PPS, can be applied to study various genomes.



Consensus sequences for created classes are in the Supplement. It can be seen that the classes of promoter sequences are very different from each other. This is consistent with the fact that promoter sequences from the genome A. thaliana have many mutations, and the average number of replacements on the nucleotide is from 3.6–3.8 per nucleotide [18]. A similar picture is observed for the rice genome. In this case, it is impossible to build pair alignments of promoter sequences.



In general, the results of this work showed that the developed mathematical method can be effective in searching for the promoter sequences in the rice genome. Promoters of previously unknown genes [39,40,41,42], TEs and transcript start sites can be found using the developed method. Of course, the mathematical research was performed, but it opened up certain prospects for experimental work. This particularly concerns 37,390 PPSs which were revealed about unannounced sequences. We only got 347 false positives (FPs) when looking for PPPs in inverted and complementary sequences. Let’s roughly estimate the probability of finding at least 1000 false positives. We will consider FP as a random variable that has a normal distribution. Then the argument of the normal distribution is x ≈ (1000–347)/(347)0.5 = 35,5. The probability of such an event is certainly much less than 10−100. Therefore, from a mathematical point of view, these 37,390 PPS are not false positives. These PPS can be non-functioning promoter sequences, evolutionary traces of the resettlement of various genes or transposons. On the other hand, these may be promoter sequences of unknown genes, and they may indicate the existence of genes that have not been discovered [42]. Conducting purely experimental work in the future is considered useful in answering this question.




5. Conclusions


In this study, the method for multi alignment of the promoter sequences was developed. Then, mathematical methods were developed for calculation of the statistically important classes of the promoter sequences. Five promoter classes were created from the rice genome. A total of 145,277 potential promoter sequences (PPSs) were found in the rice genome. Of these, 87,233 PPSs are associated with TEs and 20,654 PPSs are associated with promoters of annotated genes. There are 37,390 PPSs that occurred in previously unannounced sequences. The number of false positives for a randomly mixed rice genome is ~10−8 per nucleotide. It was assumed that these PPSs are associated with unknown genes, with transposable elements, or micro-RNA. In general, the results of this work showed that the developed mathematical method can be effective for searching the promoter sequences in rice genomes. Promoters of previously unknown genes, TEs and transcript start sites can be found using the developed method.
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At https://www.mdpi.com/article/10.3390/sym13060917/s1 reader can find the following data. 1. PPSs for each chromosome from the rice genome. 2. multiple alignment for 100 promoter sequences for which the am matrix was built.
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Figure 1. Block diagram of the algorithm for multiple alignment of promoter sequences. 
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Figure 2. The block diagram of the algorithm for creating of the classes of promoter sequences. 
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Figure 3. The dependence of X(k) on the base number in the promoter sequence k for the first class of promoter sequences. Black circles are promoter sequences, white circles are random sequences. 
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Figure 4. The dependence of X(k) on the base number in the promoter sequence k for the second class of promoter sequences. Black circles are promoter sequences, white circles are random sequences. 
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Figure 5. This figure N(X) shows the number of X(k) from X–+∞ for the first class of promoter sequences. In total, there are 599 X(k) for each class of promoter sequences, therefore N(X) varies from 0–599. Black circles are promoter sequences, white circles are random sequences. 






Figure 5. This figure N(X) shows the number of X(k) from X–+∞ for the first class of promoter sequences. In total, there are 599 X(k) for each class of promoter sequences, therefore N(X) varies from 0–599. Black circles are promoter sequences, white circles are random sequences.



[image: Symmetry 13 00917 g005]







[image: Symmetry 13 00917 g006 550] 





Figure 6. This figure N(X) shows the number of X(k) from X–+∞ for the second class of promoter sequences. There are 599 X(k) for each class of promoter sequences, therefore N(X) varies from 0–599. Black circles are promoter sequences, white circles are random sequences. 
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Figure 7. Average number of PPSs (N) per 105 bases in each of 12 rice chromosomes (abscissa axis). 
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Table 1. The number of potential promoter sequences (PPS’s) found in rice chromosomes. The following four PPS intersections were limited to regions of −499–+100. ++ is the number of PPS intersections for annotated genes. +− is the number of PPS intersections for annotated genes on a complementary strand. −+ is the number of PPS intersections on a complementary strand for annotated genes. −− is the number of PPS intersections on a complementary strand for annotated genes on a complementary strand. R is the number of PPS’s in the sequence of randomly mixed chromosomes. M is the number of PPS’s in the inverted sequence of chromosomes.
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	Chromosome
	Number

of Genes
	Number PPS
	++
	+−
	−+
	−−
	R
	M





	1
	5350
	21,960
	1271
	246
	109
	1485
	0
	62



	2
	4296
	13,497
	1116
	106
	121
	1058
	0
	17



	3
	4648
	13,121
	1337
	61
	170
	817
	1
	54



	4
	3429
	14,775
	963
	46
	170
	640
	0
	39



	5
	3070
	11,034
	479
	150
	18
	981
	1
	40



	6
	3204
	11,381
	713
	87
	51
	849
	0
	31



	7
	2917
	10,016
	824
	55
	62
	697
	0
	18



	8
	2636
	10,223
	849
	23
	97
	481
	0
	33



	9
	2144
	7575
	579
	15
	87
	275
	0
	6



	10
	2184
	7943
	204
	124
	11
	664
	0
	3



	11
	2663
	11,648
	630
	39
	91
	512
	0
	33



	12
	2215
	12,104
	597
	69
	83
	542
	0
	11



	All
	38,756
	145,277
	9562
	1021
	1070
	9001
	2
	347
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Table 2. The number of PPS intersections with promoter sequences from the rice genome. The first column shows the class of PPS’s. The following four PPS intersections were limited to regions of −499–+100. ++ is the number of PPS intersections for annotated genes. +− is the number of PPS intersections for annotated genes on a complementary strand. −+ is the number of PPS intersections on a complementary strand for annotated genes. −− is the number of PPS intersections on a complementary strand for annotated genes on a complementary strand.
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	Class Number
	++
	+−
	−+
	−−





	1
	6133
	456
	561
	4955



	2
	792
	195
	145
	958



	3
	1169
	144
	163
	1218



	4
	755
	101
	112
	700



	5
	713
	125
	89
	1170
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Table 3. The intersections of the PPS with transposons in the rice genome.
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	N
	Name of Dispersed

Repeat OT Transposon
	Number of Intersections
	The Expected Number of Intersections
	X1





	1
	DNAnona/Helitron
	7466
	7044
	5.03



	2
	DNAnona/unknown
	1501
	870
	21.39



	3
	MITE/Tourist
	10,507
	8955
	16.40



	4
	MITE/Stow
	9891
	8189
	18.81



	5
	DNAauto/MULE
	2140
	2792
	−12.34



	6
	DNAnona/MULE
	12,288
	9531
	28.24



	7
	LINE/unknown
	2153
	4045
	−29.75



	8
	LTR/Gypsy
	18,043
	22,837
	−31.72



	9
	DNAnona/hAT
	3824
	3616
	3.46



	10
	DNAnona/MULEtir
	3328
	1793
	36.25



	11
	DNAnona/Tourist
	917
	463
	21.10



	12
	LTR/Copia
	2675
	4736
	−29.95



	13
	DNAauto/CACTA
	1265
	1967
	−15.83



	14
	SINE/unknown
	1252
	1666
	−10.14



	15
	DNAnona/CACTA
	3736
	2395
	27.40



	16
	DNAauto/hAT
	438
	479
	−1.87



	17
	DNAnona/PILE
	426
	403
	1.15



	18
	DNAauto/PILE
	259
	251
	0.50



	19
	LTR/TRIM
	190
	705
	−19.40



	20
	DNAauto/Helitron
	226
	487
	−11.83



	21
	Evirus/ERTBV-C
	39
	45
	−0.89



	22
	LTR/unknown
	119
	232
	−7.42



	23
	DNAnona/CACTG
	1141
	675
	17.94



	24
	DNAauto/CACTG
	2614
	2503
	2.22



	25
	LTR/Solo
	36
	15
	5.42



	26
	DNAauto/MLE
	154
	182
	−2.08



	27
	Evirus/ERTBV-B
	21
	59
	−4.95



	28
	Evirus/ERTBV-A
	22
	45
	−3.43



	29
	Evirus/ERTBV
	23
	20
	0.67



	30
	DNAauto/POLE
	161
	168
	−0.54



	31
	DNAnona/POLE
	253
	168
	6.56



	32
	DNAnona/MLE
	32
	44
	−1.81



	33
	Centro/tandem
	93
	298
	−11.88
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Table 4. Table shows the number of intersections of transposons with PPS’s, which were obtained using various position-weight matrices. Matrix classes are shown as columns M1, M2, …, M5.
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	N
	Name of Dispersed Repeat ot Transposon
	M1
	M2
	M3
	M4
	M5





	1
	DNAnona/Helitron
	3015
	1540
	795
	1089
	1027



	2
	DNAnona/unknown
	670
	268
	176
	136
	251



	3
	MITE/Tourist
	4507
	1850
	1329
	1216
	1605



	4
	MITE/Stow
	5376
	1208
	894
	944
	1469



	5
	DNAauto/MULE
	948
	370
	311
	240
	271



	6
	DNAnona/MULE
	6201
	1982
	1362
	1377
	1366



	7
	LINE/unknown
	813
	328
	383
	293
	336



	8
	LTR/Gypsy
	9877
	2610
	2333
	1903
	1320



	9
	DNAnona/hAT
	1883
	615
	411
	438
	477



	10
	DNAnona/MULEtir
	1528
	629
	486
	323
	362



	11
	DNAnona/Tourist
	441
	154
	151
	80
	91



	12
	LTR/Copia
	839
	447
	484
	522
	383



	13
	DNAauto/CACTA
	564
	170
	204
	187
	140



	14
	SINE/unknown
	653
	170
	132
	140
	157



	15
	DNAnona/CACTA
	1823
	542
	492
	482
	397



	16
	DNAauto/hAT
	241
	37
	61
	57
	42



	17
	DNAnona/PILE
	211
	53
	54
	38
	70



	18
	DNAauto/PILE
	91
	49
	48
	40
	31



	19
	LTR/TRIM
	85
	24
	30
	22
	29



	20
	DNAauto/Helitron
	100
	34
	24
	23
	45



	21
	Evirus/ERTBV-C
	1
	12
	12
	11
	3



	22
	LTR/unknown
	50
	17
	15
	18
	19



	23
	DNAnona/CACTG
	670
	169
	107
	121
	74



	24
	DNAauto/CACTG
	757
	611
	353
	654
	239



	25
	LTR/Solo
	15
	6
	3
	8
	4



	26
	DNAauto/MLE
	65
	22
	35
	10
	22



	27
	Evirus/ERTBV-B
	5
	5
	1
	6
	4



	28
	Evirus/ERTBV-A
	10
	3
	2
	4
	3



	29
	Evirus/ERTBV
	2
	8
	2
	1
	10



	30
	DNAauto/POLE
	59
	22
	37
	19
	24



	31
	DNAnona/POLE
	108
	38
	45
	29
	33



	32
	DNAnona/MLE
	16
	5
	6
	1
	4



	33
	Centro/tandem
	6
	31
	1
	43
	12



	
	Total:
	41,630
	14,029
	10,779
	10,475
	10,320
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Table 5. Table shows the deviation of the number of intersections of PPSs with transposons using the various position-weight matrices from the expected number of intersections. Each cell contains an X2 which is an argument of the normal distribution. If X2 is greater than 6.0, then there is a correlation between transposons and PPS. The promoter classes are shown as columns M1, M2, …, M5. Only those rows are shown where X2 > 6.0. The numbering of the first column in the table corresponds to the numbering of the first column in the Table 4.
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	N
	Name of Dispersed Repeat ot Transposon
	M1
	M2
	M3
	M4
	M5





	1
	DNAnona/Helitron
	−9.3738
	9.8600
	−4.2215
	6.4616
	4.8613



	3
	MITE/Tourist
	−7.3783
	3.9365
	0.8583
	−1.2957
	10.3410



	4
	MITE/Stow
	9.8136
	−9.6839
	−9.4540
	−7.1205
	8.7958



	7
	LINE/unknown
	−6.7306
	−0.9827
	7.1819
	2.1467
	5.1011



	8
	LTR/Gypsy
	14.3752
	−5.5078
	2.2207
	−5.7351
	−17.8504



	12
	LTR/Copia
	−12.3378
	0.8120
	8.4570
	11.2236
	3.7471



	24
	DNAauto/CACTG
	−13.9871
	9.3190
	1.6723
	19.2314
	−4.0017
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