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Abstract: We investigated the energy of N points on an infinite compact metric space (A, d) of a
diameter less than 1 that interact through the potential (1/ds)(log 1/d)t, where s, t ≥ 0 and d is the
metric distance. With E s

logt (A, N) denoting the minimal energy for such N-point configurations,

we studied certain continuity and differentiability properties of E s
logt (A, N) in the variable s. Then,

we showed that in the limits, as s → ∞ and as s → s0 > 0, N-point configurations that minimize
the s, logt-energy tends to an N-point best-packing configuration and an N-point configuration that
minimizes the s0, logt-energy, respectively. Furthermore, we considered when A are circles in the
Euclidean space R2. In particular, we proved the minimality of N distinct equally spaced points on
circles in R2 for some certain s and t. The study on circles shows a possibility for the utilization
of N points generated through such new potential to uniformly discretize on objects with very
high symmetry.

Keywords: discrete minimal energy; best-packing; Riesz energy; logarithmic energy

1. Introduction

The general setting of the discrete minimal energy problem is the following. Let (A, d)
be an infinite compact metric space and K : A× A→ R∪ {∞} be a lower semicontinuous
kernel. Note that in some contexts, the kernel K(x, y) is called a potential. For a fixed set of
N points ωN ⊂ A, we define the K-energy of ωN as follows:

EK(ωN) := ∑
x 6=y

x,y∈ωN

K(x, y).

The minimal N-point K-energy of the set A is defined by

EK(A, N) := min
ωN⊂A

#ωN=N

EK(ωN),

where #ωN stands for the cardinality of the set ωN . A minimal N-point K-energy configuration
is a configuration ωK

N of N points in A that minimizes such energy, namely

EK(ω
K
N) = min

ωN⊂A
#ωN=N

EK(ωN).

It is known that ωK
N always exists and in general ωK

N may not be unique.
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Two important kernels in the theory of minimal energy are Riesz and logarithmic
kernels. The (Riesz) s-kernel and log-kernel are defined by

Ks(x, y) :=
1

d(x, y)s , s ≥ 0, (1)

and
Klog(x, y) := log

1
d(x, y)

,

for all (x, y) ∈ A× A, respectively. It is not difficult to check that both kernels are lower
semicontinuous on A × A. The s-energy of ωN and the minimal N-point s-energy of the
set A are

Es(ωN) := EKs(ωN) and E s(A, N) := min
ωN⊂A

#ωN=N

Es(ωN)

and we denote by ωs
N := ωKs

N and call this configuration a minimal N-point s-energy configu-
ration. Similarly, the log-energy of ωN and the N-point log-energy of the set A are

Elog(ωN) := EKlog(ωN) and Elog(A, N) := min
ωN⊂A

#ωN=N

Elog(ωN)

and we denote by ω
log
N := ω

Klog
N and call this configuration a minimal N-point

log-energy configuration.
Let us provide a short survey of these two energy problems.
The study of s-energy constants and configurations has a long history in physics,

chemistry, and mathematics. Finding the arrangements of ωs
N where the set A is the unit

sphere S2 in the Euclidean space R3 has been an active area since the beginning of the
19th century. The problem is known as the generalized Thomson problem (see [1] and [2]
(Chapter 2.4)). Candidates for ωs

N for several numbers of N are available (see, e.g., [3]).
However, the solutions (with rigorous proof) are obtainable for a handful of values of N
(see, e.g., [4–7]). For example, when N = 5, the generalized Thomson problem becomes
surprisingly difficult. Schwartz, using computer-aided proof, showed that such ωs

5 on S2

can be the vertices of the triangular bipyramid or a square-based pyramid (depending
on s) in a single monograph of 180 pages [8] (see also a synopsis of his work [7]). For a
general compact set A in the Euclidean space Rm, the study of the distribution of a minimal
N-point s-energy configurations of A as N → ∞ can be found in [9,10]. In [10], it was
shown that when s is any fixed number greater than the Hausdorff dimension of A, the
minimal N-point s-energy configurations of A are “good points” to represent the set A.
This is because such configurations are asymptotically uniformly distributed over the
set A as N → ∞ (see the precise statement in [10] (Theorems 2.1 and 2.2)). The results
in [10] have wide ranging applications in various fields of computational science, such as
computer-aided geometric design, finite element tesselations, statistical sampling, etc.

The log-energy problem has been heavily studied when A is a subset of the Eu-
clidean space R2 (or C) because it has had a profound influence in approximation theory
(see, e.g., [11–15]). For A ⊂ C, the points in ω

log
N are commonly known as Fekete points

or Chebyshev points which can be used as interpolation and integration nodes (see [16]).
The log-energy problem received other special attention when Steven Smale posed Problem
#7 in his book chapter entitled “Mathematical problems for the next century” [17]. Problem
#7 asks for a construction of an algorithm which on input N ≥ 2 outputs a configuration
ωN = {x1, . . . , xN} of distinct points on S2 embedded in R3 such that

Elog(ωN)− Elog(S2, N) ≤ c log N

(where c is a constant independent of N and ωN) and requires that its running time
grows at most polynomially in N. This problem arose from his joint work with Shub [18]
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on complexity theory. In order to answer this question, it is natural to understand the
asymptotic expansion of Elog(S2, N) in the variable N (see [19] for conjectures and the

progress). The problem concerning the arrangements of ω
log
N on the unit sphere S2 in R3 is

posed by Whyte [20] in 1952. Whyte’s problem is also attractive and intractable. We refer
to [21] for a glimpse of this problem.

In [2], Borodachov, Hardin, and Saff investigated asymptotic properties of minimal
N-point s-energy constants and configurations for fixed N and varying s. Since this is our
main focus in this paper, we will state these results below.

The first theorem (Ref. [2] (Theorem 2.7.1 and Theorem 2.7.3)) concerns the continuity
and differentiability of the function

f (s) := E s(A, N), s ≥ 0. (2)

In order to state such a theorem, let us define a set

Gs
log(A, N) :=

{
∑
x 6=y

x,y∈ωN

Ks(x, y)Klog(x, y) : ωN ⊂ A and Es(ωN) = E s(A, N)

}
,

for s ≥ 0.

Theorem 1. Let (A, d) be an infinite compact metric space and let N ≥ 2 be fixed. Then:

(a) the function f (s) defined in (2) is continuous on [0, ∞);
(b) the function f (s) is right differentiable on [0, ∞) and left differentiable on (0, ∞) with:

f ′+(s) := lim
r→s+

f (r)− f (s)
r− s

= inf Gs(A, N), s ≥ 0,

and:

f ′−(s) := lim
r→s−

f (r)− f (s)
r− s

= sup Gs(A, N), s > 0.

We will see in Theorems 2 and 3 below that there are certain relations between minimal
s-energy problems as s→ ∞ and the best-packing problem defined as follows. The N-point
best-packing distance of the set A is defined as

δN(A) := max{δ(ωN) : ωN ⊂ A}, (3)

where
δ(ωN) := min

1≤i 6=j≤N
d(xi, xj)

denotes the separation distance of an N-point configuration ωN = {x1, . . . , xN}, and N-point
best-packing configurations are N-point configurations attaining the maximum in (3). For fur-
ther details on the best-packing problem, we refer the reader to [2] (Chapter 3).

The following theorem [2] (Corollary 2.7.5 and Proposition 3.1.2) explains the behavior
of E s(A, N) as s→ 0+ and s→ ∞.

Theorem 2. For N ≥ 2 and an infinite compact metric space (A, d),

lim
s→0+

E s(A, N)− N(N − 1)
s

= Elog(A, N)

and
lim
s→∞

(E s(A, N))1/s =
1

δN(A)
.
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Before we state more results, let us define a cluster configuration. Let s0 ∈ [0, ∞].
We say that

• An N-point configuration ωN ⊂ A is a cluster configuration of ωs
N as s→ s+0 if there is a

sequence {sk}∞
k=1 ⊂ (s0, ∞) such that lim

k→∞
sk = s0 and lim

k→∞
ω

sk
N = ωN in the topology

of AN induced by the metric d.
• An N-point configuration ωN ⊂ A is a cluster configuration of ωs

N as s→ s−0 if there is
a sequence {sk}∞

k=1 ⊂ [0, s0) such that lim
k→∞

sk = s0 and lim
k→∞

ω
sk
N = ωN in the topology

of AN induced by the metric d.
• An N-point configuration ωN ⊂ A is a cluster configuration of ωs

N as s→ s0 if there is a
sequence {sk}∞

k=1 ⊂ [0, ∞) such that lim
k→∞

sk = s0 and lim
k→∞

ω
sk
N = ωN in the topology

of AN induced by the metric d.

The properties of the cluster configurations of minimal N-point s-energy configura-
tions as s varies (see [2] (Theorem 2.7.1 and Proposition 3.1.2)) are described i Theorem 3.

Theorem 3. Let (A, d) be an infinite compact metric space and for s ≥ 0 and N ≥ 2, let ωs
N

denote a minimal N-point s-energy configuration on A. Then,

(a) For s0 > 0, any cluster configuration of ωs
N as s → s0 is a minimal N-point s0-energy

configuration;
(b) Any cluster configuration of ωs

N as s→ 0+ is a minimal N-point log-energy configuration;
(c) Any cluster configuration of ωs

N as s→ ∞ is a N-point best-packing configuration.

In this paper, we consider the following s, logt-kernel:

Ks
logt(x, y) =

1
d(x, y)s

(
log

1
d(x, y)

)t
, s ≥ 0, t ≥ 0. (4)

with a corresponding s, logt-energy of ωN and minimal N-point s, logt-energy of the set A:

Es
logt(ωN) := EKs

logt
(ωN) and E s

logt(A, N) := min
ωN⊂A

#ωN=N

Es
logt(ωN),

respectively. We set

ω
s,logt

N := ω
Ks

logt

N ,

and call it a minimal N-point s, logt-energy configuration. Note that the kernel Ks
logt(x, y) is

lower semicontinuous on A× A and this s, logt-energy can be viewed as a generalization
of both s-energy and log-energy. The kernel in (4) first appeared in the study of the
differentiability of the function f (s) = E s(A, N) in [2] (Theorem 2.7.3). To the authors’
knowledge, no study involving s, logt-energy constants and configurations has appeared
in the literature previously.

The first goal of this paper was to prove the analogues of Theorems 1–3 for s, logt-
energy constants and configurations. We would like to emphasize that we will limit our
interest to the sets A with diam(A) < 1, where

diam(A) := sup
x,y∈A

d(x, y)

denotes the diameter of A. For the case where diam(A) ≥ 1, the values of the kernel
Ks

logt(x, y) can be 0 or negative and the analysis becomes laborious.

The second goal was to investigate the arrangements of ω
s,logt

N on circles in R2. Using

an available tool in (Ref. [2] (Theorem 2.3.1)), we show that ω
s,logt

N on any circle with a
diameter less than 1 are N distinct equally spaced points. The motivation of this study
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for objects with very high symmetry comes from the study of the limiting distributions
of ωs

N , s > 0 and ω
log
N on the m-dimensional sphere Sm in the Euclidean space Rm+1 in [2]

(Theorem 6.1.7). In [2] (Theorem 6.1.7), it was shown that ωs
N , s > 0 and ω

log
N on Sm are

asymptotically uniformly distributed with respect to the surface area measured on Sm

as N → ∞ (see also [22] for applications of this result). Our study on circles exhibits

a possibility for the utilization of ω
s,logt

N to uniformly discretize m-dimensional spheres
in Rm+1.

The remainder of this article is organized as follows. The main results of this paper
are stated in Section 2. The proof of the main results are in Section 3. We keep all auxiliary
lemmas in Section 4. Finally, conclusions and future work are discussed in Section 5.

2. Main Results

2.1. Asymptotic Properties of Discrete Minimal s, logt-Energy

The asymptotic behavior of minimal N-point s, logt-energy constants and configura-
tions as s→ ∞ can be explained in the following theorem.

Theorem 4. Let N ≥ 2 and t ≥ 0 be fixed. Assume that (A, d) is an infinite compact metric space
with diam(A) < 1. Then,

lim
s→∞

(
E s

logt(A, N)
)1/s

=
1

δN(A)
.

Furthermore, every cluster configuration of ω
s,logt

N as s → ∞ is an N-point best-packing
configuration on A.

For a fixed t ≥ 0, we define

g(s) := E s
logt(A, N), s ≥ 0.

The continuity of g(s) is stated below.

Theorem 5. Let N ≥ 2 and t ≥ 0 be fixed. Assume that (A, d) is an infinite compact metric space
with diam(A) < 1. Then, the function g(s) is continuous on [0, ∞).

As a consequence of the continuity of g(s), we analyze a property of cluster configura-

tions of ω
s,logt

N as s→ s0 > 0 in the following theorem.

Theorem 6. Let N ≥ 2 and t ≥ 0 be fixed. Assume that (A, d) is an infinite compact metric

space with diam(A) < 1. Denote by ω
s,logt

N a minimal N-point s, logt-energy configuration on

A. Then, for any s0 > 0, any cluster configuration of ω
s,logt

N , as s → s0, is a minimal N-point
s0, logt-energy configuration on A.

For s ≥ 0 and t ≥ 0, we set

Gs
logt+1(A, N) := {Es

logt+1(ωN) : ωN ⊂ A and Es
logt(ωN) = E s

logt(A, N)}.

The differentiability properties of g(s) are described in Theorems 7 and 8.
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Theorem 7. Let N ≥ 2 and t ≥ 0 be fixed. Assume that (A, d) is an infinite compact metric space
with diam(A) < 1. Then, the function g(s) is right differentiable on [0, ∞) and left differentiable
on (0, ∞) with

g′+(s) := lim
r→s+

g(r)− g(s)
r− s

= inf Gs
logt+1(A, N), s ≥ 0, (5)

and

g′−(s) := lim
r→s−

g(r)− g(s)
r− s

= sup Gs
logt+1(A, N), s > 0. (6)

Observing that

inf G0
log(A, N) = Elog(A, N) and g(0) = N(N − 1),

when s, t = 0, Theorem 7 simply implies that

lim
s→0+

E s(A, N)− N(N − 1)
s

= Elog(A, N).

Theorem 8. Let N ≥ 2 and t ≥ 0 be fixed. Assume that (A, d) is an infinite compact metric space
with diam(A) < 1. Then,

(a) The function g(s) is differentiable at s = s0 > 0 if and only if

inf Gs0
logt(A, N) = sup Gs0

logt(A, N);

(b) If ω∗N is a cluster point of ω
s,logt

N as s→ s+0 ≥ 0, then

Es0
logt+1(ω

∗
N) = inf Gs0

logt+1(A, N) = g′+(s0);

(c) If ω∗∗N is a cluster point of ω
s,logt

N as s→ s−0 > 0, then

Es0
logt+1(ω

∗∗
N ) = sup Gs0

logt+1(A, N) = g′−(s0);

(d) For s0 > 0, if there exists a configuration ω∗N that is both cluster configurations of ω
s,logt

N
as s→ s+0 and s→ s−0 , then the function g(s) is differentiable at s = s0 with

Es0
logt+1(ω

∗
N) = g′(s0).

In Theorem 8, we provide criteria for the differentiability of g(s). In particular,
the part (a) in Theorem 8 implies that if all minimal N-point s0, logt-energy configura-
tions on A have the same distribution of distances, then g(s) is differentiable at s0.

2.2. Minimality of ω
s,logt

N on Circles

Let du be the 2-dimensional Euclidean metric of R2. For α > 0, we denote by

S1
α := {x ∈ R2 : du(0, x) = α}

the circle centered at 0 of radius α. We let L(x, y) be the geodesic distance between the
points x and y on S1

α; that is, the length of the shorter arc of S1
α connecting the points

x and y.
The minimality of N distinct equally spaced points on S1

α with the Euclidean metric du
or the geodesic distance L for the certain s, logt-energy problems is stated in Propositions 1–3.
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Proposition 1. Let N ≥ 2, s ≥ 0, t ≥ 1, and 0 < α < π−1. Then, ωN is a minimal N-point
s, logt-energy configuration on S1

α with the geodesic distance L if and only if ωN is a configuration
of N distinct equally spaced points on S1

α.

Proposition 2. Let N ≥ 2, 0 < α < (eπ)−1, and s, t satisfy s > 0, t ≥ 0 or s = 0, t > 0. Then,
ωN is a minimal N-point s, logt-energy configuration on S1

α with the geodesic distance L if and
only if ωN is a configuration of N distinct equally spaced points on S1

α.

Proposition 3. Let N ≥ 2, s ≥ 0, t ≥ 1, and 0 < α < 1/2. Then, ωN is a minimal N-point
s, logt-energy configuration on S1

α with the Euclidean metric du if and only if ωN is a configuration
of N distinct equally spaced points on S1

α.

Note that our approach works only for the case diam(S1
α) < 1 and the conditions 0 <

α < π−1 in Proposition 1 and 0 < α < 1/2 in Proposition 3 are required for diam(S1
α) < 1.

The case diam(S1
α) ≥ 1 remains open for further investigation.

3. Proofs of Main Results

We keep all proof of the main results in this section. In our proof, we may sometimes
refer to lemmas. In order to avoid any interruption, we keep all lemmas in Section 4.

Proof of Theorem 4. Let t ≥ 0 be fixed, s > 0, ω
s,logt

N be a minimal N-point s, logt-energy
configuration on A, and let ω∞

N be an N-point best-packing configuration on A. Since

diam(A) < 1 and the points in ω
s,logt

N are distinct, there is a constant c > 0 such that

0 < δ(ω
s,logt

N ) ≤ c < 1

where the constant c only depends on the set A. This implies that

(
log

1
c

)t
≤

log
1

δ(ω
s,logt

N )

t

.

Then,

1
δN(A)

(
log

1
c

)t/s
≤ 1

δ(ω
s,logt

N )

(
log

1
c

)t/s
≤ 1

δ(ω
s,logt

N )

log
1

δ(ω
s,logt

N )

t/s

≤
(

Es
logt (ω

s,logt

N )

)1/s
=
(
E s

logt (A, N)
)1/s

≤
(

Es
logt (ω

∞
N )
)1/s

≤ 1
δN(A)

(
Elogt (ω∞

N )
)1/s

. (7)

Since

lim
s→∞

1
δN(A)

(
log

1
c

)t/s
=

1
δN(A)

and
lim
s→∞

1
δN(A)

(
Elogt(ω∞

N )
)1/s

=
1

δN(A)
,

it follows that
lim
s→∞

(
E s

logt(A, N)
)1/s

=
1

δN(A)
.

Let ω∗N be a cluster configuration of ω
s,logt

N as s → ∞. This implies that there is a

sequence {sk}∞
k=1 ⊂ R such that sk → ∞ and ω

sk ,logt

N → ω∗N as k → ∞. Arguing as in (7),
we have

1

δ(ω
sk ,logt

N )

(
log

1
c

)t/sk

≤
(

Esk
logt(ω

sk ,logt

N )

)1/sk

=
(
E sk

logt(A, N)
)1/sk ≤

(
Esk

logt(ω
∞
N )
)1/sk
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≤ 1
δ(ω∞

N )

(
Elogt(ω∞

N )
)1/sk

.

Taking k→ ∞, we obtain

δN(A) = δ(ω∞
N ) ≤ δ(ω∗N).

This means that ω∗N is also an N-point best-packing configuration on A.

Proof of Theorem 5. First of all, we show that g(s) is continuous on (0, ∞). Let s > 0

and let ω
s,logt

N be a minimal N-point s, logt-energy configuration on A. Using Lemma 4,

we obtain for any ω
s,logt

N ,

lim inf
r→s−

g(r)− g(s)
r− s

≥ lim inf
r→s−

Er
logt(ω

s,logt

N )− Es
logt(ω

s,logt

N )

r− s

≥ lim
r→s−

Er
logt+1(ω

s,logt

N ) = Es
logt+1(ω

s,logt

N ) ≥ sup Gs
logt+1(A, N) > 0, (8)

and

lim sup
r→s−

g(r)− g(s)
r− s

≤ lim sup
r→s−

Er
logt (ω

r,logt

N )− Es
logt (ω

r,logt

N )

r− s
≤ lim sup

r→s−
Es

logt+1(ω
r,logt

N ), (9)

where the second inequality in (8) follows from the arbitrariness of ω
s,logt

N and the last
inequality in (8) follows from Lemma 3.

Let ωN be a fixed configuration of N distinct points of A. Note that 0 < δ(ωN) < 1.
For all r ∈ (s/2, s), we have 1

δ(ω
r,logt

N )

s/2log
1

δ(ω
r,logt

N )

t

≤

 1

δ(ω
r,logt

N )

rlog
1

δ(ω
r,logt

N )

t

≤ Er
logt(ω

r,logt

N )

≤ Er
logt(ωN) ≤

(
1

δ(ωN)

)r(
log

1
δ(ωN)

)t
N(N − 1)

≤
(

1
δ(ωN)

)s(
log

1
δ(ωN)

)t
N(N − 1).

That is,

(δ(ω
r,logt

N ))s/2

log
1

δ(ω
r,logt

N )

−t

≥ (δ(ωN))
s
(

log
1

δ(ωN)

)−t
(N(N − 1))−1.

This implies that for all r ∈ (s/2, s),

δ(ω
r,logt

N )

log
1

δ(ω
r,logt

N )

−2t/s

≥ (δ(ωN))
2
(

log
1

δ(ωN)

)−2t/s
(N(N − 1))−2/s =: c1 > 0.

Since by Lemma 1,

h(x) := x
(

log
1
x

)−β

, β > 0,
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is a strictly increasing function on (0, 1), there exists a constant c2 > 0 such that for all
r ∈ (s/2, s),

δ(ω
r,logt

N ) ≥ c2 > 0.

Therefore, Es
logt+1(ω

r,logt

N ) are bounded above where r ∈ (s/2, s). From this and (9),

lim sup
r→s−

g(r)− g(s)
r− s

≤ lim sup
r→s−

Es
logt+1(ω

r,logt

N ) < ∞. (10)

Let s ≥ 0. Using Lemma 4, we also obtain for any ω
s,logt

N ,

lim sup
r→s+

g(r)− g(s)
r− s

≤ lim sup
r→s+

Er
logt(ω

s,logt

N )− Es
logt(ω

s,logt

N )

r− s

≤ lim
r→s+

Er
logt+1(ω

s,logt

N ) = Es
logt+1(ω

s,logt

N ) ≤ inf Gs
logt+1(A, N) < ∞, (11)

and

lim inf
r→s+

g(r)− g(s)
r− s

≥ lim inf
r→s+

Er
logt (ω

r,logt

N )− Es
logt (ω

r,logt

N )

r− s
≥ lim inf

r→s+
Es

logt+1(ω
r,logt

N ) > 0, (12)

where the second inequality in (11) follows from the arbitrariness of ω
s,logt

N and the last
inequality in (12) follows from Lemma 3.

The inequalities (8) and (10)–(12) imply that for all s > 0,

0 < lim inf
r→s−

g(r)− g(s)
r− s

≤ lim sup
r→s−

g(r)− g(s)
r− s

< ∞ (13)

and for all s ≥ 0,

0 < lim inf
r→s+

g(r)− g(s)
r− s

≤ lim sup
r→s+

g(r)− g(s)
r− s

< ∞. (14)

The inequalities in (13) and (14) further imply that g(s) is continuous for all s > 0 and
is right continuous at s = 0.

Proof of Theorem 6. Let s0 > 0. In order to show Theorem 6, it suffices to show that any

cluster configuration of ω
s,logt

N as s→ s+0 or as s→ s−0 is a minimal N-point s0, logt-energy
configuration on A.

Let ω∗N be a cluster configuration of ω
s,logt

N , as s → s+0 . Then, there is a sequence

{sk}∞
k=1 ⊂ (so, ∞) such that sk → s0 and ω

sk ,logt

N → ω∗N as k → ∞. Let α = diam(A).
For any configuration of N distinct points ωN on A, notice that αsEs

logt(ωN) is an increasing

function of s. Applying the continuity of g(s) := E s
logt(A, N) at s0, we have

αs0 Es0
logt(ω

∗
N) = lim

k→∞
αs0 Es0

logt(ω
sk ,logt

N ) ≤ lim
k→∞

αsk Esk
logt(ω

sk ,logt

N )

= lim
k→∞

αskE sk
logt(A, N) = αs0E s0

logt(A, N).

This implies that Es0
logt(ω

∗
N) = E

s0
logt(A, N). Hence, ω∗N is a minimal N-point s0, logt-

energy configuration on A.
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Let ω∗∗N be a cluster configuration of ω
s,logt

N , as s → s−0 . Then, there is a sequence

{sk}∞
k=1 ⊂ [0, s0) such that sk → s0 and ω

sk ,logt

N → ω∗∗N as k→ ∞. Without loss of generality,
we may assume that s0/2 < sk < s0 for all k. For any configuration of N distinct points
ωN of A, observe that δ(ωN)

sEs
logt(ωN) is a decreasing function of s. It follows from the

continuity of the function g(s) that g(s) is bounded above by some number M > 1 for all
s ∈ (s0/2, s0). For every s0/2 < sk < s0,

(δ(ω
sk ,logt

N ))−s0/2
(

log
1

δ(ω
sk ,logt

N )

)t

≤ (δ(ω
sk ,logt

N ))−sk

(
log

1

δ(ω
sk ,logt

N )

)t

≤ Esk
logt(ω

sk ,logt

N ) ≤ M.

Then,

δ(ω
sk ,logt

N )

(
log

1

δ(ω
sk ,logt

N )

)−2t/s0

≥ M−2/s0 > 0.

Using Lemma 1, there is a constant c > 0 such that

δ(ω
sk ,logt

N ) ≥ c > 0 for all k ∈ N.

Using the continuity of g(s) := E s
logt(A, N) at s0, we have

(δ(ω∗∗N ))s0 Es0
logt(ω

∗∗
N ) = lim

k→∞
(δ(ω

sk ,logt

N ))s0 Es0
logt(ω

sk ,logt

N )

≤ lim
k→∞

(δ(ω
sk ,logt

N ))sk Esk
logt(ω

sk ,logt

N ) = lim
k→∞

(δ(ω
sk ,logt

N ))skE sk
logt(A, N)

= (δ(ω∗∗N ))s0E s0
logt(A, N).

This implies that Es0
logt(ω

∗∗
N ) = E s0

logt(A, N). Hence, ω∗∗N is a minimal N-point s0, logt-

energy configuration on A.

Proof of Theorem 7. Firstly, we show (5). Let s ≥ 0 be fixed and {rk}∞
k=1 ⊂ (s, ∞) be a

sequence such that rk → s as k→ ∞ and

lim
k→∞

Es
logt+1(ω

rk ,logt

N ) = lim inf
r→s+

Es
logt+1(ω

r,logt

N ). (15)

Since AN is compact, there exists a subsequence {s`}∞
`=1 ⊂ {rk}∞

k=1 such that

lim
`→∞

ω
s`,logt

N = ω∗N (16)

and ω∗N is a minimal N-point s, logt-energy configuration by Theorem 6. By

lim
k→∞

Es
logt+1(ω

rk ,logt

N ) = lim
`→∞

Es
logt+1(ω

s`,logt

N ),

(11), (12), (15) and (16), we get

lim inf
r→s+

g(r)− g(s)
r− s

≥ lim inf
r→s+

Es
logt+1(ω

r,logt

N ) = lim
`→∞

Es
logt+1(ω

s`,logt

N )

= Es
logt+1(ω

∗
N) ≥ inf Gs

logt+1(A, N) ≥ lim sup
r→s+

g(r)− g(s)
r− s

. (17)
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Then,
g′+(s) = inf Gs

logt+1(A, N). (18)

It is easy to check that from Lemma 3, the constant inf Gs
logt+1(A, N) in (18) is finite.

This verifies (5).
Then, we prove (6). Let s > 0 be fixed and {rk}∞

k=1 ⊂ [0, s) be a sequence such that
rk → s as k→ ∞ and

lim
k→∞

Es
logt+1(ω

rk ,logt

N ) = lim sup
r→s−

Es
logt+1(ω

r,logt

N ). (19)

Because AN is compact, there exists a subsequence {s`}∞
`=1 ⊂ {rk}∞

k=1 such that

lim
`→∞

ω
s`,logt

N = ω∗∗N

and ω∗∗N is a minimal N-point s, logt-energy configuration by Theorem 6. Then, we get

lim
k→∞

Es
logt+1(ω

rk ,logt

N ) = lim
`→∞

Es
logt+1(ω

s`,logt

N ). (20)

Using (8), (9), (19) and (20), we obtain

lim inf
r→s−

g(r)− g(s)
r− s

≥ sup Gs
logt+1(A, N) ≥ Es

logt+1(ω
∗∗
N )

= lim
`→∞

Es
logt+1(ω

s`,logt

N ) = lim sup
r→s−

Es
logt+1(ω

r,logt

N ) ≥ lim sup
r→t−

g(r)− g(s)
r− s

.

Then,
g′−(s) = sup Gs

logt+1(A, N). (21)

Then, we want to show that sup Gs
logt+1(A, N) is finite. Let ωN be a fixed configuration

of N distinct points on A and let ω
s,logt

N be any minimal N-point s, logt configurations. Then,

(δ(ω
s,logt

N ))−s

log
1

δ(ω
s,logt

N )

t

≤ Es
logt(ω

s,logt

N )

≤ Es
logt(ωN) ≤ (δ(ωN))

−s
(

log
1

δ(ωN)

)t
N(N − 1).

That is,

δ(ω
s,logt

N )

log
1

δ(ω
s,logt

N )

−t/s

≥ δ(ωN)

(
log

1
δ(ωN)

)−t/s
(N(N − 1))−1/s =: c1 > 0.

It follows from Lemma 1 that there is a constant c2 > 0 such that for any ω
s,logt

N ,

δ(ω
s,logt

N ) ≥ c2 > 0.

Since by Lemma 2,

p(x) :=
1
xs

(
log

1
x

)t+1
,
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is a strictly decreasing function on (0, 1), the set Gs
logt+1(A, N) is bounded above. This

implies that sup Gs
logt+1(A, N) in (21) is finite. Hence, (6) is proved.

Proof of Theorem 8.
(a): This is a direct consequence of Theorem 7.

(b): Let s0 ≥ 0 and ω∗N be a cluster configuration of {ωs,logt

N } as s→ s+0 . Then, there exists

a sequence {sk}∞
k=1 ⊂ (s0, ∞) such that lim

k→∞
sk = s0 and lim

k→∞
ω

sk ,logt

N = ω∗N . Then, ω∗N is

a minimal N-point s0, logt-energy configuration by Theorem 6. Using (5) and the similar
argument used to show (12), we have

Es0
logt+1(ω

∗
N) = lim

k→∞
Es0

logt+1(ω
sk ,logt

N ) ≤ lim
k→∞

g(sk)− g(s0)

sk − s0
= g′+(s0) = inf Gs0

logt+1(A, N).

Since inf Gs0
logt+1(A, N) ≤ Es0

logt+1(ω
∗
N),

Es0
logt+1(ω

∗
N) = inf Gs0

logt+1(A, N) = g′+(s0).

(c): Let s0 > 0 and ω∗∗N be a cluster configuration of {ωs,logt

N } as s→ s−0 . Then, there exists

a sequence {sk}∞
k=1 ⊂ [0, s0) such that lim

k→∞
sk = s0 and lim

k→∞
ω

sk ,logt

N = ω∗∗N . Then, ω∗∗N is

a minimal N-point s0, logt-energy configuration by Theorem 6. Using (6) and the similar
argument used to show (10), we have

Es0
logt+1(ω

∗∗
N ) = lim

k→∞
Es0

logt+1(ω
sk ,logt

N ) ≥ lim
k→∞

g(sk)− g(s0)

sk − s0
= g′−(s0) = sup Gs0

logt+1(A, N).

Since Es0
logt+1(ω

∗∗
N ) ≤ sup Gs0

logt+1(A, N),

Es0
logt+1(ω

∗∗
N ) = sup Gs0

logt+1(A, N) = g′−(s0).

(d): This is a direct consequence of (b) and (c).

Proof of Proposition 1. Let N ≥ 2, s ≥ 0, t ≥ 1, and 0 < α < π−1. We prove this
proposition using Lemma 5. The function k : (0, 1) :→ R in the lemma is

k(x) =
1
xs

(
log

1
x

)t
.

By Lemma 2, k(x) is strictly decreasing on (0, 1). Since for all x ∈ (0, 1),

k′′(x) =
1

xs+2

(
log

1
x

)−2+t[
(−1 + t)t + (t + 2st) log

1
x
+ s(1 + s) log2 1

x

]
> 0, (22)

k(x) is strictly convex on (0, 1). Hence, because the function k(x) satisfies all required prop-
erties in Lemma 5, all minimal N-point K-energy configurations on S1

α are configurations
of N distinct equally spaced points on S1

α with respect to the arc length and vice versa.

Proof of Proposition 2. Let N ≥ 2, 0 < α < (eπ)−1, and s, t satisfy s > 0, t ≥ 0 or
s = 0, t > 0. We can use the same lines of reasoning as in the proof of Proposition 1 except
the function k is considered on (0, 1/e) and for all x ∈ (0, 1/e),

k′′(x) =
1

xs+2

(
log

1
x

)−2+t[
(−1 + t)t + (t + 2st) log

1
x
+ s(1 + s) log2 1

x

]



Symmetry 2021, 13, 932 13 of 16

≥ 1
xs+2

(
log

1
x

)−2+t[
t2 + 2st log

1
x
+ s(1 + s) log2 1

x
+

(
log

1
x
− 1
)

t
]
> 0.

Hence, because the function k(x) satisfies all required properties in Lemma 5,
Proposition 2 is proved.

Proof of Proposition 3. Let N ≥ 2, s ≥ 0, t ≥ 1, and 0 < α < 1/2. Again, we want to use
Lemma 5. The function k : (0, πα]→ R in the lemma is

k(x) =
(

1
2α sin(x/2α)

)s(
log

1
2α sin(x/2α)

)t
.

Since 2α sin(x/2α) is strictly increasing on (0, πα] and (1/xs)(log(1/x))t is strictly
decreasing on (0, 1), k(x) is strictly decreasing on (0, πα]. Then, we want to show that k(x)
is strictly convex on (0, πα], meaning that

k′′(x) > 0 for all x ∈ (0, πα). (23)

To show (23), it suffices to show that q′′(x) > 0 for all x ∈ (0, π/2), where

q(x) :=
(

1
2α sin x

)s(
log

1
2α sin x

)t
.

Because for all x ∈ (0, π/2),

q′′(x) = s(cot2 x)(2α sin x)−s
(

log
(

1
2α sin x

))t−1

+(t− 1)(cot2 x)(2α sin x)−s
(

log
(

1
2α sin x

))t−2(
s log

(
1

2α sin x

)
+ t
)

+(csc2 x + s cot2 x)(2α sin x)−s
(

log
(

1
2α sin x

))t−1(
s log

(
1

2α sin x

)
+ t
)
> 0,

k(x) is strictly convex on (0, πα]. Hence, the function k(x) satisfies all required properties
in Lemma 5. This completes the proof.

4. Appendix: Auxiliary Lemmas

Lemmas 1–3 are very fundamental but highly important. For example, making use of
Lemma 3 and the assumption that diam(A) < 1, we can conclude that

E s
log(A, N) ≥ N(N − 1)

(diam(A))s

(
log

1
diam(A)

)t
> 0.

Lemma 1. Let β ≥ 0 and h : (0, 1)→ (0, ∞) be a function defined by

h(x) := x
(

log
1
x

)−β

for all x ∈ (0, 1).

Then, h(x) is strictly increasing on (0, 1).

Proof of Lemma 1.
Because

h′(x) = β

(
log

1
x

)−(β+1)
+

(
log

1
x

)−β

and (log(1/x))−β > 0 for all x ∈ (0, 1) and β ≥ 0, h′(x) > 0 for all x ∈ (0, 1). Therefore,
h(x) is strictly increasing on (0, 1).
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Lemma 2. Let (s, t) ∈ [0, ∞)× [0, ∞)] \ {(0, 0)} and p : (0, 1)→ (0, ∞) be a function defined by

p(x) :=
1
xs

(
log

1
x

)t
for all x ∈ (0, 1).

Then, p(x) is strictly decreasing on (0, 1).

Proof of Lemma 2. Using Lemma 1, we set β = t/s and

p(x) =
(

1
h(x)

)s
=

1
xs

(
log

1
x

)t

is strictly decreasing on (0, 1).

Lemma 3. Let (A, d) be an infinite compact metric space with diam(A) < 1 and s, t ≥ 0. Then,
for all N-point configurations ωN ⊂ A,

Es
logt(ωN) ≥

N(N − 1)
(diam(A))s

(
log

1
diam(A)

)t
.

Proof of Lemma 3. The proof relies on the fact that p(x) in Lemma 2 is strictly decreasing
on (0, 1).

The following is the main lemma of this paper. It allows us to prove analogues of
Theorems 1–3.

Lemma 4. Let (A, d) be an infinite compact metric space with diam(A) < 1 and ωN =
{x1, . . . , xN} be any configuration of N distinct points of A. Then, for any s > r ≥ 0 and
t ≥ 0,

Er
logt+1(ωN) ≤

Es
logt(ωN)− Er

logt(ωN)

s− r
≤ Es

logt+1(ωN).

Proof of Lemma 4. Let xi, xj ∈ ωN where 1 ≤ i 6= j ≤ N, let s > r ≥ 0, and let t ≥ 0. Then,

1
d(xi, xj)r log

1
d(xi, xj)

≤

1
d(xi, xj)s −

1
d(xi, xj)r

s− r
≤ 1

d(xi, xj)s log
1

d(xi, xj)
.

Since

(
log

1
d(xi, xj)

)t

> 0,

1
d(xi, xj)r

(
log

1
d(xi, xj)

)t+1

≤

1
d(xi, xj)s

(
log

1
d(xi, xj)

)t

− 1
d(xi, xj)r

(
log

1
d(xi, xj)

)t

s− r

≤ 1
d(xi, xj)s

(
log

1
d(xi, xj)

)t+1

.

It follows that

Er
logt+1(ωN) ≤

Es
logt(ωN)− Er

logt(ωN)

s− r
≤ Es

logt+1(ωN).
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Let Γ be a rectifiable simple closed curve in Rm, m ≥ 2, of length |Γ| with a chosen
orientation. We recall that L(x, y) is the geodesic distance between the points x and y on Γ.
With the help of the following lemma [2] (Theorem 2.3.1), we can prove propositions 1–3.

Lemma 5. Let k : (0, |Γ|/2]→ R be a strictly convex and decreasing function defined at u = 0
by the (possibly infinite) value lim

u→0+
k(u) and let K be the kernel on Γ× Γ defined by K(x, y) =

k(L(x, y)). Then, all minimal N-point K-energy configurations on Γ are configurations of N
distinct equally spaced points on Γ with respect to the arc length and vice versa.

5. Discussion and Conclusions

We introduce minimal N-point s, logt-energy constants and configurations of an
infinite compact metric space (A, d). Such constants and configurations are generated
using the kernel (or potential):

Ks
logt(x, y) =

1
d(x, y)s

(
log

1
d(x, y)

)t
, s ≥ 0, t ≥ 0.

In this paper, we studied the asymptotic properties of minimal N-point s, logt-energy
constants and configurations of A with diam(A) < 1 where N, t are fixed and s is varying.
In Theorem 4, we show that

lim
s→∞

(
E s

logt(A, N)
)1/s

=
1

δN(A)
.

and minimal N-point s, logt-energy configurations on A tend to an N-point best-packing
configuration on A as s→ ∞. Then, we show that the s, logt-energy

g(s) := E s
logt(A, N)

is continuous and right differentiable on [0, ∞) and is left differentiable on (0, ∞) in
Theorems 5 and 7. Using the continuity of E s

logt(A, N) in the variable s, we show in

Theorem 6 that for any s0 > 0, any cluster configuration of ω
s,logt

N , as s→ s0, is a minimal
N-point s0, logt-energy configuration on A.

We want to emphasize that when t = 0, our proof of Theorems 4–8 can handle the
case diam(A) ≥ 1. However, when t > 0, we require that diam(A) < 1. This is because
our methods rely on the positivity of the kernel Ks

logt(x, y) and the property that Ks
logt(x, y)

decreases as d(x, y) increases. These limitations would leave room for future improvement
(when t > 0 and diam(A) ≥ 1).

Note that the kernel Ks
logt(x, y) is symmetric, namely Ks

logt(x, y) = Ks
logt(y, x). When

the metric space (A, d) has a great symmetry, we observe that such minimal N-point s, logt-
energy configurations should be evenly distributed over the set A. The most prominent
sets with a great symmetry are the spheres:

Sm := {x ∈ Rm+1 : du(x, 0) = 1},

where du is the m + 1-dimensional Euclidean metric. As a motivated result, it is known
that for s > 0, minimal N-point s-energy configurations and minimal N-point log-energy
configurations on the metric space (Sm, du) are asymptotically uniformly distributed with
respect to the surface area measure on Sm as N → ∞ (see [2] (Theorem 6.1.7)). We refer
the reader to the review article [22] for a number of applications of uniformly distributed
points on the sphere Sm. Our investigation in this paper on circles in R2 serves as a basis
example of our observation. In Propositions 1–3, we prove that for certain values of s and t,
all minimal N-point s, logt-energy configurations on the circle S1

α with diam(S1
α) < 1 are

the configurations of N distinct equally spaced points S1
α.
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In addition to the problem on the sphere Sm, explaining the limiting distribution
as the N → ∞ of minimal N-point s, logt-energy configurations on a compact set in a
finite dimensional Euclidean space would be another interesting problem. We refer the
reader to Chapters 4 and 8 in [2] or [9,10] for the study of such a problem for the minimal
N-point s-energy and log-energy configurations. The study of such limiting distribution
problem is important in both theoretical and computational sciences. For example, it shows
applications in computer-aided geometric design, finite element tesselations, and statisti-
cal sampling.
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