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Abstract: In this paper we study a certain differential subordination related to the harmonic mean
and its symmetry properties, in the case where a dominant is a linear function. In addition to
the known general results for the differential subordinations of the harmonic mean in which the
dominant was any convex function, one can study such differential subordinations for the selected
convex function. In this case, a reasonable and difficult issue is to look for the best dominant or one
that is close to it. This paper is devoted to this issue, in which the dominant is a linear function,
and the differential subordination of the harmonic mean is a generalization of the Briot–Bouquet
differential subordination.

Keywords: differential subordination; harmonic mean; arithmetic mean; geometric mean; convex function

1. Introduction

Given r > 0, let Dr := {z ∈ C : |z| < r} and let D := D1. Let H(D) be the set of all
analytic functions in a domain D in C and letH := H(D). A function f ∈ H is said to be
subordinate to a function F ∈ H if there exists ω ∈ H such that ω(0) := 0, ω(D) ⊂ D and
f = F ◦ω in D. We write then that f ≺ F. If F is univalent, then

f ≺ F ⇔ ( f (0) = F(0) ∧ f (D) ⊂ F(D)). (1)

Assume that ψ : C2 → C and h ∈ H is univalent. We say that a function p ∈ H
satisfies the first-order differential subordination if the function D 3 z 7→ ψ(p(z), zp′(z)) is
analytic and

ψ(p(z), zp′(z)) ≺ h(z), z ∈ D. (2)

Then, we also say that p is a solution of (2). A univalent function q ∈ H is called a dominant
of solutions of differential subordination (2) (shortly, a dominant) if p ≺ q for all solutions
p ∈ H of (2). A dominant q̃ of (2) is called the best dominant of (2) if q̃ ≺ q for all dominants
q of (2) ([1–3], see ([4] p. 16)).

Note that the differential subordination (2) can be written as the differential equation

ψ(p(z), zp′(z)) = h(ω(z)), z ∈ D,

where ω ∈ H is such that ω(0) := 0 and ω(D) ⊂ D.
The question when (2) yields p ≺ h is the basis for the theory of differential subordi-

nations (see Lewandowski et al. [5], Miller and Mocanu [6–8], and the book of Miller and
Mocanu [4]).

Of particular interest are cases in which the subordinate function ψ in (2) is associated
with the arithmetic, geometric, and harmonic means. Differential subordinations related to
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the arithmetic and geometric means have been investigated by various authors. The case
of the arithmetic mean, that is, the differential subordinations of the form

ψ(p(z), zp′(z)) = p(z) + αzp′(z)Φ(p(z))

= (1− α)p(z) + α
(

p(z) + zp′(z)Φ(p(z))
)
≺ h(z), z ∈ D,

(3)

with α ∈ C, was discussed in [4] (pp. 121–131), with further references. The simplest form
of the differential subordination of type (3) is the following:

p(z) +
zp′(z)

γ
≺ h(z), z ∈ D,

where γ 6= 0. Such a subordination with γ ∈ C, Re γ > 0, was examined by Hallenbeck
and Ruscheweyh [9]. The differential subordinations related to the geometric mean were
introduced by Kanas et al. [10] (for further references see [11,12]).

Research on the differential subordinations related to the harmonic mean is a fresh
idea. It was started by Chojnacka et al. [1] and Cho et al. [2].

Let β ∈ [0, 1] and a, b ∈ C. For b + β(b− a) 6= 0, the harmonic mean of a and b is
defined as

ab
b + β(a− b)

.

Definition 1. Let β ∈ [0, 1] and Φ ∈ H(D). By H(β, Φ) we denote the subclass of H of all
nonconstant functions p such that p(D) ⊂ D, and the function

D 3 z 7→ p(z)(p(z) + zp′(z)Φ(p(z)))
p(z) + (1− β)zp′(z)Φ(p(z))

is either analytic or has only removable singularities with an analytic extension on D.

In [2], for β ∈ (0, 1], Φ ∈ H(D), p ∈ H(β, Φ) and a univalent function h ∈ H, the
differential subordination of the harmonic mean of the type

p(z)(p(z) + zp′(z)Φ(p(z)))
p(z) + (1− β)zp′(z)Φ(p(z))

≺ h(z), z ∈ D, (4)

was examined. The above differential subordination with β := 1/2 and selected functions
Φ and h was also considered in [13].

A function f ∈ H is said to be convex if it is univalent (analytic and injective) and
f (D) is a convex domain.

Let T := {z ∈ C : |z| = 1}. For a set A ⊂ C, its closure will be denoted as A.
For details on the corners of curves, see, for example, [14] (pp. 51–65).

Definition 2. By Q we denote the family of convex functions h with the following properties:
(a) h(D) is bounded by finitely many smooth arcs which form corners at their end points

(including corners at infinity);
(b) E(h) is the set of all points ζ ∈ T which corresponds to corners h(ζ) of ∂h(D);
(c) h′(ζ) 6= 0 exists at every ζ ∈ T \ E(h).

In [2], the following was shown.

Theorem 1. Let β ∈ (0, 1], h ∈ Q with 0 ∈ h(D), and Φ ∈ H(D) be such that D ⊃ h(T \ E(h))
and

Re Φ(h(ζ)) ≥ 0, Φ(h(ζ)) 6= 0, ζ ∈ T \ E(h).
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If p ∈ H(β, Φ), p(0) = h(0) and

p(z)(p(z) + zp′(z)Φ(p(z)))
p(z) + (1− β)zp′(z)Φ(p(z))

≺ h(z), z ∈ D,

then
p ≺ h.

Let us mention that the proof of the above theorem was based on the symmetry
properties of the harmonic mean related also to the inversion mapping of the complex
plane. In a similar way, the symmetry properties of the geometric mean were applied to
reprove in a new way the main theorem on the differential subordinations of the geometric
mean [12], first shown in [10].

In this paper we continue the research on the differential subordination of the form (4).
Now we assume that Φ is the composition of a linear function with the inversion func-
tion, and that h is a linear function. We also generalize the first-order Euler differential
subordination (see [4] (pp. 334–336)) for the nonlinear case.

The lemma below is the special case of Lemma 2.2d [4] (p. 22) and it is needed for the
proof of the main result.

Lemma 1. Let h ∈ Q and p ∈ H be a nonconstant function with p(0) := h(0). If p is not
subordinate to h, then there exist z0 ∈ D \ {0} and ζ0 ∈ T \ E(h) such that p

(
D|z0|

)
⊂ h(D),

p(z0) = h(ζ0) (5)

and

m0 :=
z0 p′(z0)

ζ0h′(ζ0)
≥ 1. (6)

2. Main Result

Given δ > 0 and γ > 0, let

Φδ,γ(w) :=
1

δw + γ
, w ∈ C \ {−γ/δ},

and
Φ0,γ(w) :=

1
γ

, w ∈ C.

For M > 0 let hM(z) := Mz, z ∈ D. Clearly, E(hM) = ∅. Moreover, for δ > 0,

Re Φδ,γ(hM(ζ)) = Re
1

δMζ + γ

=
1

|δMζ + γ|2 (δM Re(ζ) + γ) > 0, ζ ∈ T,

if and only if M < γ/δ. Clearly, for M > 0,

Re Φ0,γ(hM(ζ)) > 0, ζ ∈ T.

LetH(β, δ, γ) := H(β, Φδ,γ). Thus, the following conclusion follows from Theorem 1.
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Corollary 1. Let β ∈ (0, 1], δ ≥ 0, and γ > 0. Let 0 < M < γ/δ when δ > 0, and 0 < M < ∞
when δ = 0. If p ∈ H(β, δ, γ), p(0) = 0, and∣∣∣∣∣∣∣∣

p(z)
(

p(z) +
zp′(z)

δp(z) + γ

)
p(z) + (1− β)

zp′(z)
δp(z) + γ

∣∣∣∣∣∣∣∣ < M, z ∈ D,

then
|p(z)| < M, z ∈ D.

Now we will improve the above result, so in the same way we will improve Theorem 1
to that special selected Φ.

Theorem 2. Let β ∈ (0, 1], δ ≥ 0, and γ > 0. Let 0 < M < (γ− β + 1)/δ when δ > 0, and
0 < M < ∞ when δ = 0. If p ∈ H(β, δ, γ), p(0) := 0, and∣∣∣∣∣∣∣∣

p(z)
(

p(z) +
zp′(z)

δp(z) + γ

)
p(z) + (1− β)

zp′(z)
δp(z) + γ

∣∣∣∣∣∣∣∣ < M
δM + γ + 1

δM + γ− β + 1
, z ∈ D, (7)

then
|p(z)| < M, z ∈ D. (8)

Proof. Since hM is univalent, p(0) = hM(0) = 0 and (8) can be replaced by the inclusion
p(D) ⊂ hM(D); by using (1) the condition (8) is equivalent to the subordination p ≺ hM.

Suppose, on the contrary that p is not subordinate to hM. Since hM ∈ Q with E(hM) =
∅, by Lemma 1 there exist z0 ∈ D \ {0} and ζ0 ∈ T such that (5) and (6) hold. Thus

p(z0) = Mζ0

and for some m0 ≥ 1,
z0 p′(z0) = m0Mζ0.

Hence ∣∣∣∣∣∣∣∣
p(z0)

(
p(z0) +

z0 p′(z0)

δp(z0) + γ

)
p(z0) + (1− β)

z0 p′(z0)

δp(z0) + γ

∣∣∣∣∣∣∣∣ (9)

= |p(z0)|
∣∣∣∣ p(z0)(δp(z0) + γ) + z0 p′(z0)

p(z0)(δp(z0) + γ) + (1− β)z0 p′(z0)

∣∣∣∣
= M

∣∣∣∣ Mζ0(δMζ0 + γ) + m0Mζ0

Mζ0(δMζ0 + γ) + (1− β)m0Mζ0

∣∣∣∣
= M

∣∣∣∣ δMζ0 + γ + m0

δMζ0 + γ + (1− β)m0

∣∣∣∣.
Consider first the case δ > 0. Since then 0 < M < (γ− β + 1)/δ and m0 ≥ 1, it follows
that δMζ0 + γ + m0 6= 0 and δMζ0 + γ + (1− β)m0 6= 0 for ζ ∈ T. Define

q(ζ) :=
δMζ + γ + m0

δMζ + γ + (1− β)m0
, ζ ∈ T. (10)

As q is a linear-fractional mapping having real coefficients, q(T) is a circle symmetrical
with respect to the real axis. Moreover, it is easy to check that
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q(1) =
δM + γ + m0

δM + γ + (1− β)m0
<

−δM + γ + m0

−δM + γ + (1− β)m0
= q(−1).

Thus, particularly

|q(ζ0)| ≥ q(1) =
δM + γ + m0

δM + γ + (1− β)m0
, ζ ∈ T. (11)

Since m0 ≥ 1, so
δM + γ + m0

δM + γ + (1− β)m0
≥ δM + γ + 1

δM + γ− β + 1
. (12)

Hence, from (11) and (9) we deduce that∣∣∣∣∣∣∣∣
p(z0)

(
p(z0) +

z0 p′(z0)

δp(z0) + γ

)
p(z0) + (1− β)α

z0 p′(z0)

δp(z0) + γ

∣∣∣∣∣∣∣∣ ≥ M
δM + γ + 1

δM + γ− β + 1
, (13)

which contradicts (7).
When δ = 0, q given by (10) is a constant function. It is clear that then the inequality

(12) so the inequality (13) holds with δ = 0. This ends the proof of the theorem.

Remark 1. Since 0 ∈ hM(D) and

δM + γ + 1
δM + γ− β + 1

≥ 1,

Corollary 1 follows from Theorem 2 for the so-selected Φ and h := hM.

Note that Theorem 2 can be formulated as follows.

Theorem 3. Let β ∈ (0, 1], δ ≥ 0, and γ > 0. Let 0 < M < (γ− β + 1)/δ when δ > 0, and
0 < M < ∞ when δ = 0. If p ∈ H(β, δ, γ), p(0) := 0, and

p(z)
(

p(z) +
zp′(z)

δp(z) + γ

)
p(z) + (1− β)

zp′(z)
δp(z) + γ

≺ Mz, z ∈ D, (14)

then

p(z) ≺
(

1− β

δM + γ + 1

)
Mz, z ∈ D.

Remark 2. It is interesting to ask which is the best dominant of (14). Applying Theorem 2.3e
of [4] we can expect that the best dominant q̃ of (14) should be a univalent solution q := q̃ of the
differential equation

q(z)
(

q(z) +
zq′(z)

δq(z) + γ

)
q(z) + (1− β)

zq′(z)
δq(z) + γ

= Mz, z ∈ D,

if it exists. As can be easily checked, the function

q(z) :=
(

1− β

δM + γ + 1

)
Mz, z ∈ D,

with δ 6= 0, does not satisfy the above equation. Therefore, the problem of finding the best dominant
(14) is open.
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Theorem 3 gives the sequence of corollaries listed below. The case M = 1 can be
considered when γ + 1 > δ + β. The last inequality obviously holds when δ = 0.

Corollary 2. Let β ∈ (0, 1], δ ≥ 0 and γ > 0 be such that γ + 1 > δ + β. If p ∈ H(β, δ, γ),
p(0) := 0, and

p(z)
(

p(z) +
zp′(z)

δp(z) + γ

)
p(z) + (1− β)

zp′(z)
δp(z) + γ

≺ z, z ∈ D,

then

p(z) ≺
(

1− β

δ + γ + 1

)
z, z ∈ D.

For δ = 1 and γ = 0 Theorem 3 is reduced to the following conclusion.

Corollary 3. Let β ∈ (0, 1] and 0 < M < 1− β. If p ∈ H(β, 1, 0), p(0) := 0, and

p(z)
(

p(z) +
zp′(z)
p(z)

)
p(z) + (1− β)

zp′(z)
p(z)

≺ Mz, z ∈ D,

then

p(z) ≺
(

1− β

M + 1

)
M, z ∈ D.

For β = 1 and δ > 0 Theorem 3 applies to the special case of the well-known Briot–
Bouquet differential subordination of the first-order (see, e.g., [15]).

Corollary 4. Let δ > 0, γ > 0, and 0 < M < γ/δ. If p ∈ H(1, δ, γ), p(0) := 0, and

p(z) +
zp′(z)

δp(z) + γ
≺ Mz, z ∈ D, (15)

then

p(z) ≺
(

1− 1
δM + γ

)
Mz, z ∈ D.

Remark 3. For the Briot–Bouquet differential subordination, the best dominant was found in [15]
(see also [4] (Theorem 3.2j, p. 97)). We will provide it below for the case considered in Corollary 4.
Let (see [4] (p. 46))

Rγ,1(z) := γ
1 + z
1− z

+
2z

1− z2 , z ∈ D.

Thus Rγ,1(0) = γ and Rγ,1(D) is the complex plane with the half-lines Re w = 0 and | Im w| ≥√
1 + 2γ as its two slits. Let

q(z) :=
(

1− 1
δM + γ

)
Mz, z ∈ D.

We have
δq(0) + γ = Rγ,1(0) = γ

and since δM < γ, it follows also

Re(δq(z) + γ) > −δ

(
1− 1

δM + γ

)
M + γ
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= γ− δM +
δM

δM + γ
> 0, z ∈ D.

Hence
δq + γ ≺ Rγ,1.

Now applying Theorem 3.2j of [4] we state that the function

q̃(z) := zγ exp(δMz)
(

δ
∫ z

0
tγ−1 exp(δMt)dt

)−1
− γ

δ
, z ∈ D,

is a univalent solution of the differential equation

q(z) +
zq′(z)

δq(z) + γ
= Mz, z ∈ D.

Consequently, if p ∈ H(1, δ, γ), p(0) := 0, satisfies (15), then

p(z) ≺ q̃(z) ≺
(

1− 1
δM + γ

)
Mz, z ∈ D

and q̃ is the best dominant of (15).

For M = 1, which holds when γ > δ, we have the following.

Corollary 5. Let 0 < δ < γ. If p ∈ H(1, δ, γ), p(0) := 0, and

p(z) +
zp′(z)

δp(z) + γ
≺ z, z ∈ D,

then

p(z) ≺
(

1− 1
δ + γ

)
z, z ∈ D.

The case δ = 0 in Theorem 3 reduces to Corollary 2.7 in [3]. To be self-contained, we
will provide more detailed proof than in [3], where it has been shown that q given in (17) is
the best dominant.

Corollary 6. Let β ∈ (0, 1], γ > 0, and M > 0. If p ∈ H(β, 0, γ), p(0) := 0, and

p(z)
(

p(z) +
zp′(z)

γ

)
p(z) + (1− β)

zp′(z)
γ

≺ Mz, z ∈ D, (16)

then

p(z) ≺ q(z) :=
(

1− β

γ + 1

)
Mz, z ∈ D. (17)

Moreover, the function q is the best dominant of (16).

Proof. We will show that q is the best dominant of (16). We will find the univalent solution
q of the differential equation

q(z)
(

q(z) +
zq′(z)

γ

)
q(z) + (1− β)

zq′(z)
γ

= Mz, z ∈ D, (18)
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such that q(0) := 0. We apply the technique of power series to find the analytic solution of
(18) of the form

q(z) =
∞

∑
n=1

anzn, z ∈ D. (19)

Let α := 1/γ. Since q is required to be univalent, we have

a1 = q′(0) 6= 0. (20)

From (18) we equivalently obtain

(q(z))2 + αzq(z)q′(z) = M
[
zq(z) + α(1− β)z2q′(z)

]
, z ∈ D.

Putting the series from (19) into the above equality we get

a1z2 + 2a1a2z3 + (2a1a3 + a2
2)z

4 + (2a1a4 + 2a2a3)z5 + . . .

+α
(

a2
1z2 + 3a1a2z3 + (4a1a3 + 2a2

2)z
4 + (5a1a4 + 5a2a3)z5 + . . .

)
= M

[
a1z2 + a2z3 + a3z4 + a4z5 + . . .

+α(1− β)
(

a1z2 + 2a2z3 + 3a3z4 + 4a4z5 + . . .
)]

, z ∈ D.

Comparing the early coefficients, we get

a2
1(1 + α) = Ma1(1 + α(1− β)),

a1a2(2 + 3α) = Ma2(1 + 2α(1− β)),

a1a3(2 + 4α) + a2
2(1 + 2α) = Ma3(1 + 3α(1− β)),

a1a4(2 + 5α) + a2a3(2 + 5α) = Ma4(1 + 4α(1− β)),

(21)

and generally, for n = 2k− 1, k ≥ 2,

(2 + (2k− 1)α)(a1a2k−2 + a2a2k−3 + · · ·+ ak−1ak)

= M(1 + (2k− 2)α(1− β))a2k−2,
(22)

and for n = 2k, k ≥ 2,

2(1 + kα)

(
a1a2k−1 + a2a2k−2 + · · ·+ ak−1ak+1 +

1
2

a2
k

)
= M(1 + (2k− 1)α(1− β))a2k−1.

(23)

Taking (20) into account, from the first equation in (21) it follows that

a1 =
M(1 + α(1− β))

1 + α
. (24)

This and the second equation in (21) gives a2 = 0. Substituting a2 = 0 into the third equation
in (21), because of (20), we see that a3 = 0. This way, using mathematical induction, we can
prove that

a2 = a3 = · · · = a2k−3 = 0, (25)

and that the Formula (22) reduces to

(2 + (2k− 1)α)a1a2k−2 = M(1 + (2k− 2)α(1− β))a2k−2,
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which in view of (24) yields a2k−2 = 0. So, using (25), Equation (23) reduces to

2(1 + kα)a1a2k−1 = M(1 + (2k− 1)α(1− β))a2k−1,

which in view of (24) yields a2k−1 = 0. Thus, we proved that an = 0 for all n ≥ 2. In this
way, by (19) and (24) it follows that

q(z) =
M(1 + α(1− β))

1 + α
z, z ∈ D,

is the unique analytic univalent solution of (18). This ends the proof of the lemma.

3. Conclusions

Research on the differential subordinations of the harmonic mean began recently with
two papers [1,2]. In these papers, general theorems for the differential subordinations of
the harmonic mean, in which any convex function is the dominant, were proved. Detailed
studies of such subordinations, in which the dominant is a specific convex function, offer a
number of new and non-trivial problems. One of them is to determine the best dominant
or one that is close to it. It also means an improvement for a specific convex function of the
above-mentioned general results. This issue is difficult, and at the same time, interesting
for study. Such research was undertaken only in [3]. In this paper, a situation is considered
in which the dominant is a linear function, and the scheme of the differential subordination
of the harmonic mean is constructed in such a way as to be a generalization of the Briot–
Bouquet differential subordination. The main result of this paper is contained in Theorem 2,
in which the constant on the right side of the inequality (7) is determined, which increases
the initial constant M. The result of Theorem 3 is equivalent to this. As noted in Remark 1,
the obtained linear function is not the best dominant. This problem is therefore still open.
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