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Abstract: This article is a survey of our recent work on the connections between Koba-Nielsen
amplitudes and local zeta functions (in the sense of Gel’fand, Weil, Igusa, Sato, Bernstein, Denef,
Loeser, etc.). Our research program is motivated by the fact that the p-adic strings seem to be
related in some interesting ways with ordinary strings. p-Adic string amplitudes share desired
characteristics with their Archimedean counterparts, such as crossing symmetry and invariance
under Mobius transformations. A direct connection between p-adic amplitudes and the Archimedean
ones is through the limit p — 1. Gerasimov and Shatashvili studied the limit p — 1 of the p-adic
effective action introduced by Brekke, Freund, Olson and Witten. They showed that this limit gives
rise to a boundary string field theory, which was previously proposed by Witten in the context of
background independent string theory. Explicit computations in the cases of 4 and 5 points show
that the Feynman amplitudes at the tree level of the Gerasimov-Shatashvili Lagrangian are related to
the limit p — 1 of the p-adic Koba—-Nielsen amplitudes. At a mathematical level, this phenomenon
is deeply connected with the topological zeta functions introduced by Denef and Loeser. A Koba—
Nielsen amplitude is just a new type of local zeta function, which can be studied using embedded
resolution of singularities. In this way, one shows the existence of a meromorphic continuations for
the Koba-Nielsen amplitudes as functions of the kinematic parameters. The Koba—Nielsen local zeta
functions are algebraic-geometric integrals that can be defined over arbitrary local fields (for instance
R, C, Qp, F,((T))), and it is completely natural to expect connections between these objects. The limit
p tends to one of the Koba-Nielsen amplitudes give rise to new amplitudes which we have called
Denef-Loeser amplitudes. Throughout the article, we have emphasized the explicit calculations in
the cases of 4 and 5 points.

Keywords: string amplitudes; Koba—-Nielsen amplitudes; Virasoro—Shapiro amplitudes; regulariza-
tion; p-adic string amplitudes; local zeta functions; resolution of singularities

1. Introduction

In the recent years, the connections between string amplitudes and arithmetic geome-
try, p-adic analysis, combinatorics, etc. have been studied extensively, see e.g., [1-9] and
the references therein.

The string amplitudes were introduced by Veneziano in the 60s, In [10], further
generalizations were obtained by Virasoro [11], Koba and Nielsen [12], among others.
In the 80s, Freund, Witten and Volovich, among others, studied string amplitudes at the
tree level over different number fields, and suggested the existence of connections between
these amplitudes, see e.g., [4,13,14]. In this framework the connection with local zeta
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functions appears naturally. This article is intended as a survey of our recent work on the
connections between Koba-Nielsen amplitudes and local zeta functions [6-9] in the sense
of Gel'fand, Weil, Igusa, Sato, Bernstein, Denef, Loeser, etc.

The p-adic string theories have been studied over the time with some periodic fluctu-
ations in their interest (for some reviews, see [3-5,15]). Recently aconsiderable amount of
work has been performed on this topic in the context of the AdS/CFT correspondence [16-19].
String theory with a p-adic worldsheet was proposed and studied for the first time in [20].
Later this theory was formally known as p-adic string theory. The adelic scattering amplitudes
which are related to the Archimedean ones were studied in [21]. The tree-level string ampli-
tudes were explicitly computed in the case of p-adic string worldsheet in [14,22]. One can
obtain these amplitude, in a formal way, from a suitable action using general principles [23].
In [24], it was established that the tree-level string amplitudes may be obtained starting with
a discrete field theory on a Bruhat-Tits tree. Determining the convergence of the amplitudes
in momentum space is a difficult task, both in the standard and p-adic case; however, for the
latter, this was precisely done for the N-point tree amplitudes in [8]. In this article we show
(in a rigorous mathematical way) that the p-adic open string N-point tree amplitudes are
bona fide integrals that admit meromorphic continuations as rational functions, this is done
by associating to them multivariate local zeta functions (also called multivariate Igusa local
zeta functions) [25-28]. In [6] we establish in a rigorous mathematical way that Koba—Nielsen
amplitudes defined on any local field of characteristic zero (for instance R, C, Q) are bona
fide integrals that admit meromorphic continuations in the kinematic parameters. In the
regularization process we use techniques of local zeta functions and embedded resolution
of singularities.

The p-adic strings are related to ordinary strings at least in two different ways. First,
connections through the adelic relations [21] and second, through the limit when p — 1[23,29].
In [29] was showed that the limit p — 1 of the effective action gives rise to a boundary string
field theory, this was previously proposed by Witten in the context of background independent
string theory [30,31]. The limit p — 1 in the effective theory can be performed without any
problem, since one can consider p as a real parameter and take formally the limit p — 1.
The resulting theory is related to a field theory describing an open string tachyon [32]. In the
limit p — 1 also there are exact noncommutative solitons, some of these solutions were found
in [33]. In [34] a very interesting physical interpretation of this limit was given in terms of a
lattice discretization of ordinary string worldsheet. In the worldsheet theory we cannot forget
the nature of p as a prime number, thus the analysis of the limit is more subtle. The correct
way of taking the limit p — 1 involves the introduction of finite extensions of the p-adic
field Q. The totally ramified extensions give rise to a finer discretization of the worldsheet
following the rules of the renormalization group [34].

In [35] Denef and Loeser showed that the limit p approaches to one of a local zeta
function give rise a new object called a topological zeta function. By using Denef-Loeser’s
theory of topological zeta functions, in [9], we show that the limit p — 1 of tree-level p-adic
string amplitudes give rise to new amplitudes, that we have named Denef-Loeser string
amplitudes. Gerasimov and Shatashvili showed that in the limit p — 1 the well-known
non-local effective Lagrangian (reproducing the tree-level p-adic string amplitudes) gives
rise to a simple Lagrangian with a logarithmic potential [29]. In [9], we conjecture that the
Feynman amplitudes of this last Lagrangian are related to the Denef-Loser amplitudes.

In [7] we establish rigorously the regularization of the p-adic open string amplitudes,
with Chan-Paton rules and a constant B-field. These amplitudes were originally introduced
by Ghoshal and Kawano. To study these amplitudes, we introduce new multivariate local
zeta functions depending on multiplicative characters (Chan—Paton factors) and a phase
factor (the B-field) which involves an antisymmetric bilinear form. We show that these
integrals admit meromorphic continuations in the kinematic parameters, this result allows
us to regularize the Ghoshal-Kawano amplitudes, the regularized amplitudes do not have
ultraviolet divergencies. The theory is only valid for p congruent to 3 mod 4, this is to
preserve a certain symmetry. The limit p — 1 is also considered for the noncommutative
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effective field theory and the Ghoshal-Kawano amplitudes. We show that in the case of
four points, the limit p — 1 of the regularized Ghoshal-Kawano amplitudes coincides with
the Feynman amplitudes attached to the limit p — 1 of the noncommutative Gerasimov—
Shatashvili Lagrangian.

We denote by K a local field of characteristic zero (for instance R, C, Qp), and set
f=,.-.,fm)and s := (s1,...,5m) € C", where the f;(x) are non-constant polynomials
in the variables x := (x1, ..., x,) with coefficients in K. The multivariate local zeta function
attached to (f, ®), where © is a test function, is defined as

o(f,s) /@ H|fl )7 del, when Re(s;) > 0 for all i,

and where [T/, dx; is the normalized Haar measure of (K", +). These integrals admit
meromorphic continuations to the whole C™, [25,26,36], see also [37,38]. The study of
Archimedean and non-Archimedean local zeta functions was started by Weil in the 60
s, in connection to the Poisson-Siegel formula. In the 70 s, Igusa developed a uniform
theory for local zeta functions in characteristic zero [25,26], see also [36,39,40]. In the p-adic
setting, the local zeta functions are connected with the number of solutions of polynomial
congruences mod p! and with exponential sums mod p' [28]. Recently, Denef and Loeser
introduced the motivic zeta functions which constitute a vast generalization of p-adic local
zeta functions [41,42].

In the 50 s, Gel'fand and Shilov studied the local zeta functions attached to real polyno-
mials in connection with fundamental solutions, indeed, the meromorphic continuation of
Archimedean local zeta functions implies the existence of fundamental solutions (i.e., Green
functions) for differential operators with constant coefficients. This fact was established,
independently, by Atiyah [43] and Bernstein [44]. It is relevant to mention here that in the
p-adic framework, the existence of fundamental solutions for pseudodifferential operators
is also a consequence of the fact that the Igusa local zeta functions admit a meromorphic
continuation, see ([45], Chapter 5), ([46], Chapter 10). This analogy turns out to be very
important in the rigorous construction of quantum scalar fields in the p-adic setting, see [47]
and the references therein.

Take N > 4, and complex variables s1; and s(y_1); for 2 < j < N —2 and s;; for

2<i<j<N-2 Puts:= (sij) € CP, where D = M denotes the total number of
indices ij. In [6] we introduce the multivariate local zeta funct1on

/H|x|5“|1—x\ T - Svndxl, M

KN-3 = 2<i<j<N-2

where Hfi E2dxi is the normalized Haar measure on KN—3. We called these integrals Koba-
Nielsen local zeta functions. In ([6], Theorems 4.1 and 6.1), we show that these functions
are bona fide integrals, which are holomorphic in an open part of CP, containing the set
given by

N-2

-2 g
< Re(sjj) < N for all ij. (2)

Furthermore, they admit meromorphic continuations to the whole CP.
The Koba-Nielsen open string amplitudes for N-points over K are formally defined as

-2 N-2
kik; kn_1k; kik;
= HI gl =TT -l e

gi-3 = 2<i<j<N-2 i=2
where k = (ky,..., kn), ki = (koj,...,k;;) € RF, fori = 1,...,N (N > 4), is the mo-
mentum vector of the i-th tachyon (with Minkowski product kik; = —ko ko, + kyik1; + -+
ki iky ), obeying
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Zkizo, kikiZZfOIizl,...,N.

The parameter / is an arbitrary positive integer. Typically, [ is taken to be 25 for bosonic
strings. However, we do not require using the critical dimension. We choose units such
that the tachyon mass is m? = —2.

(N)

In the real case, A, ’(k) is (up to multiplication by a positive constant) the open

Koba—Nielsen amplitude of N-points, see ([4], Section 8), ([48], Section 2). If N = 4, A]g ) (k)
is the Veneziano amplitude [10]. In the complex case, by using the results of ([48], Section 2),
in [49], the N-point, closed string amplitude at the tree level is the product of A((CN) (k) times
a polynomial function in the momenta k. This fact implies that the techniques and results

presented in [6] are applicable to classical closed string amplitudes at the tree level.

We use the integrals Z]g\]) (s) as regularizations of the amplitudes A]%N) (k). More
precisely, we redefine

N N
A]&( )(k) = Z]E{ )(S) |S,‘]‘:kl‘k]‘/ (3)
where Z]%N) (s) now denotes the meromorphic continuation of (1) to the whole CP, see ([6],

Theorem 6.1). Furthermore, A%N) (k) extends to a meromorphic function to the whole

CNU+1) see ([6], Theorem 7.1).
The articles [6,8] deal with the meromorphic continuation of local zeta functions of

type Z]%N) (s), but their results are complementary. The main result of [8] is the existence of

a meromorphic continuation for Z]%N) (s) in the case in which K is a non-Archimedean local

field of arbitrary characteristic. For instance Q, or F;((T)), the field of formal Laurent series

with coefficients in a finite field ;. The methods used are based on the stationary phase

formula, which allows the explicit calculation of Z]g(N) (s). On the other hand, the results

presented in [6] depend completely on Hironaka’s resolution of singularities theorem [50],
which is available only for fields of characteristic zero. In this framework, the results of [6]
show that for any field of characteristic zero K, all the zeta functions Z]%N) (s) converge on a
common domain, see (2), and that the possible poles can be described in a geometric form.

We propose the following conjecture:
Conjecture 1. There is a meromorphic function T(s) in CP such that

Z]E{N) (s)=T(s) ] Z&])(s)for any s € CP,
p<eo

This conjecture and ([6], Theorem 6.1) imply that [, Z(S:) (s) admits a meromorphic

continuation to the whole CP. By using (3), this conjecture implies that

AR (s) = T(s) [T AQ) ()

p<oo

is meromorphic function in CP. Freund and Witten established (formally) that the ordinary
Veneziano and Virasoro—-Shapiro four-particle scattering amplitudes can be factored in
terms of an infinite product of non-Archimedean string amplitudes [21]. More precisely,
they established that the product of the p-adic string amplitudes multiplied by the crossing-
symmetric Veneziano amplitude is equal to one. Later Aref’eva, Dragovich and Volovich
noted that the infinite product used by Freund and Witten is divergent, and established
that the product of the p-adic string amplitudes multiplied by the crossing-symmetric
Veneziano amplitude is equal to an expression containing the Riemann zeta function [51].
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(N)

We already mentioned that the Denef-Loeser amplitudes A;,,

(s) are the limit of the

Koba-Nielsen amplitudes A(S\;) (s) when p tends to one. This is a consequence of the fact

that Zt(é\:,) (s) =lim, Z&:) (s), which in turn is a consequence of the motivic integration
theory, see e.g., [41,52]. Motivic integration is a generalization of the p-adic integration

and the integration with respect to the Euler characteristic. By using this theory one can

&]()T)) (L) such that

N N N N
25, (8) = 28y (L) l1=p and 21 (5) = Zgy ) (1) 11,
which in turn implies the existence of new type of ‘motivic string amplitude’ at the three level

A((CI\(]()T)) (L) which is a generalization of the p-adic Koba—Nielsen and Denef-Loeser amplitudes.

construct a function Z

g\(]()T)) (L) have a physical meanzﬁ;? Is there an

effective action such that the Feynman integrals at the three level are exactly the A(C( () (L)?

Problem 1. Does the motivic string amplitudes A

In [9], we verified that the four and five-point Feynman amplitudes of the
Gerasimov-Shatashvili Lagrangian are related by lim,, .3 A((@I\;) (s). Then we propose the
following conjecture:

Conjecture 2. The Feynman amplitudes at the three level of the Gerasimov—Shatashvili Lagrangian
are by related li AN
y related limy, 1 Ag (s).

A precise formulation of this conjecture is given at the end of Section 6.

This survey is organized as follows. In Section 2, we review briefly basic aspects of
string amplitudes. Section 3 aims to provide an introduction to p-adic analysis. Section 4 is
dedicated to the p-adic Koba—Nielsen amplitudes. We compute explicitly the amplitudes
for 4 and 5 points. At the end of the section we provide an outline of the proof that the
p-adic Koba-Nielsen amplitudes admit meromorphic continuations as rational functions
in p~%ki. The Koba-Nielsen amplitudes can be defined over any local field (i.e., R, C,
Qp, Fp((T)), etc.). Section 5 is dedicated to amplitudes defined on local fields such as
Qp, Fp((T)). A central idea is that the limit p tends to one of the p-adic Koba-Nielsen
amplitudes gives a new amplitude, the Denef-Loeser amplitude. We compute the Denef-
Loeser amplitudes for 4 and 5 points. Section 6 deals with the physical interpretation
of the limit p — 1 of p-adic string amplitudes. In this section we show, in the case of 4
and 5 particles, that the Feynman integrals at the tree level of the Gerasimov—Shatashvili
Lagrangian are related Denef-Loeser amplitudes. We also give a precise formulation of
Conjecture 2. Section 7 deals with the N-point p-adic string amplitudes, with Chan—Paton
rules and a constant B-field. We emphasize the explicit calculations of these amplitudes in
the cases N = 4, 5. In Section 8, we briefly review some basic definitions and some central
results about analytic manifolds on local fields of characteristic zero, Hironaka’s resolution
of singularities theorem and multivariate Igusa zeta functions. In Section 10, we give an
outline of the proof of the fact that Koba—Nielsen amplitudes defined on local fields of
characteristic zero admit meromorphic continuations in kl-k]- € C. Inthe cases N = 4,5, we
show explicitly the existence of a meromorphic continuations for amplitudes by outlining
the construction of certain embedded resolution of singularities.

2. Generalities of String Amplitudes

String theory is the theory of tiny one-dimensional extended objects propagating in
an underlying Riemannian or pseudo-Riemannian spacetime manifold M. The theory
is defined as a theory for a dynamical embedding map X : ., v — M, where ¥, y is
a compact and oriented Riemann surface with a possible nonempty boundary (0X # 0)
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characterized by the genus g, their number of boundaries b and N marked points. ¢ n
has local coordinates ¢ = (0’0,0'1) (c® with a = 0,1). Under a Wick rotation ¢! — ¢!
and 02 = icY, the metric written in terms of coordinates (¢!, 0?) becomes a metric with
Euclidean signature. In addition to X there is a non-dynamical filed /,;, on ¢ n, which is
the intrinsic metric. The string may oscillate in the target space M and it has an infinite
number of quantum modes of oscillation carrying a representation of the Poincaré group
of the target space ( In the present review will be enough to consider M to be the flat
Minkowskian spacetime) and characterized by a mass and a spin. In the bosonic string
the spectrum consists of a tachyonic mode with negative square mass. There are a finite
number of massless modes described by massless fields on M. These modes are the
target space metric g, with Lorentzian signature (=, +,...,+), the antisymmetric field
By, and the dilaton field ®, where p,v = 0,...,D — 1. M is the target space which is a
Riemannian manifold of 26 dimensions in the case of the bosonic string and 10 dimensions
for the superstring [53-55]. The Euclidean worldsheet action for the bosonic open string is
given by

I=5+¢, 4)
where
T
5=5 /Z Ao/ (100, X9, X gy (X) — 27tia! By 9, X9, X, )
; ©)
T 1 » ab ! /
== XF9,XY g (X) — = X"9, XY
2 ./Zd oV, X"9, X g (X) — 5 [ dlBu XX,
where T = ﬁ is the string tension, here ' = ¢2 and /; stands for the string length. In the

above action the physical degrees of freedom are X* and h,y, d; is the tangential derivative
along 0% and By, is an antisymmetric field. Moreover, the action S’ is given by

S’ = Dpx(%),

where x(X) = ;& [ d?cv/hR + BT is the Euler characteristic of £ and BT is the Gibbons-
Hawking boundary term that we encode in x (%) with the number of boundaries b. Notice
that the vacuum expectation value of the dilaton @ can also be incorporated in the
action through this topological term. It is also worth noting that this is the most general
action that has worldsheet reparametrization invariance, in particular Weyl invariance
(hap — A(0)hgp), and is renormalizable by power counting (this implies that there must
be two worldsheet derivatives in each term). The second term is analogous to placing an
electromagnetic field in the background with which the string interacts; it is a gauge field
in that sense. Mathematically it is the integration of the pullback of the B-field to the string
worldsheet. If we define A, := B, X", the second term of the second line in (5) may be
written as

i
u
72/3 AHBtX , (6)

which is exactly the term considered in [56] where the partition function of the action was
obtained explicitly at tree level. Strings propagating in non-trivial backgrounds have been
considered in other works [57].

We now consider flat space as well as a constant B-field. The open string action (5)
determines the Neumann boundary conditions

0o X" + 27ia’ By 0 X" |52 = 0,

where 0, is the normal derivative to dX. We should note that these conditions are in general
complex, because we have taken a Wick rotation to a Euclidean signature. We will be
concerned about the case when the string worldsheet ¥ is a disk, which corresponds to
the open string in the classical limit. It is known that the disk can be transformed into the
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upper half plane via a conformal transformation, whose boundary is the real line. In these
variables the Neumann boundary conditions are [58]

g;ﬂ/(a - S)XV + 27T06/B‘uy(a + S)XV|Z:Z = O,

where 0 = 9/9z and 0 = 9/9z, with Im z > 0.

The perturbative scattering amplitudes of N particles are defined as the correlation
function of N vertex operators V,, (k;). Furthermore, these amplitudes admit an expansion
over the genus g of x(X) = 2 — 2¢g — b as follows:

o 2¢-2+b
A(Ay ki, AN k) = Y AS TV Ag (A ke, AN k),
§=0

where A := ¢®0 is the coupling constant of string and A, is the Feynman functional integral

z

1
Ag(Ay ko Ankn) = o [ DXDhexp(=$ (k).
g(A1, K NRN) = o S p(=5) EVA,( i)
here Vol stands for the volume of the symmetry groups leaving invariant the action (4).
Here the integration is carried out over M j, ; the moduli space of Riemann surfaces of
genus g, b boundaries and N marked points inserted on the boundary. The difficulty of
integration increases with higher values of g, b and N. Fortunately it can be carried out in
an explicit form for a few simple cases with lower values of g, b and N. Thus, for instance,
the case for closed strings with genus ¢ = 0 and N = 4, or open strings with g = 0,
b =1and N = 4, are explicitly performed. Vertex operators V,, (k;) are functionals of the
embedding fields X and their derivatives. They are given by

Valk) = [ v, (@)X,

where W (0) represents a functional of X and its derivatives associated with the species of
field in the string spectrum, X (o) = (XY,...,X?), k = (k%,...,k?®) are the position and
momentum vectors in target space M and

25
kX(0) =Y KX (0)
uv=0

is the Minkowskian inner product. For instance for tachyons A = ¢, Wt(a) = 1. For gauge
fields A = A and Wy (o) = €,0:X*, where ¢, is the polarization vector. The graviton is
Wg(o) = ewh”b 0, X", X", where ¢, is the polarization tensor. For bosonic closed strings,
the tachyon is the lowest state and it has a k? = %, where k? := kk is the Minkowskian
norm. The open string tachyon has k* = % In units where the Regge slope &’ = 1 or
where the string tension T = % we have that for the closed string tachyon k? = 8 and for
the open string k? = 2, which will be used in the following sections of the present survey.
The massless open string gauge field and the closed string graviton have k* = 0.

For open strings one can see that in the functional integral with action (5) the expansion
in Taylor’s series of exponential of the second term of (5), leads to a superposition of
amplitudes with different powers of the vertex operator of the gauge field (6) inserted in
the boundary oX.

From now on, we restrict ourselves to the case of bosonic closed strings with ¢ = 0
and bosonic open strings with ¢ = 0 and b = 1, i.e., the 2-sphere and the disk. For closed
strings, by worldsheet diffeomorphisms and Weyl transformations of X, allow us to fix the
worldsheet metric /1, to the Euclidean flat metric .. This is the called the conformal gauge.
In the absence of a B-field, there is a remnant SL(2, C) symmetry which cannot be fixed
by the local Weyl symmetry. This is called the conformal Killing symmetry. This symmetry
does act on the complex worldsheet coordinates (z,z) of the 2-sphere separately. In the
holomorphic sector (for the anti-holomorphic sector a similar argument is applied)
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az+b
7
cz+d

where ad — bc = 1 and a,b,¢,d € R. This symmetry allows the choice of three points on
the sphere which could be at 0, 1 and oo. For open strings the remnant symmetry preserves
the boundary is SL(2,R). In the open string case the vertex operators are inserted on the
boundary of the disk and this symmetry can be used to fix three points on the boundary
that also may be 0, 1 and co. As with the case of closed strings, for open strings the presence
of a B-field spoils the SL(2, R) symmetry avoiding the possibility to fix three points of the
positions of the vertex operators on the boundary oX.
The two-point function with these boundary conditions is given by

(X (2)XV()) =~ [ log |z — 2| — g log |z ~ £

” @)
+ G loglz — 2/ + s 0 log 22, 4 DI
J 27’ 877
with
1 1 g
wo—
o <g+27m’ng27rzx’B> ’ ®

oM = —(2ma’)? 1 5 1 W,
g+2ma’B g —2ma’B

and where D* are quantities independent on z. Basically, what we want are the N-tachyon
scattering amplitudes at tree level for the action (5). This is done by inserting the following
N tachyon vertex operators V(k,z) = ¢*X(2) at different points of the boundary of the
open string worldsheet 0 and obtaining the correlation functions of these operators.

To obtain it we must realize that the correlators in the path integral formalism can be
computed as Gaussian integrals [54]. Consider the following integral

/DXexp </ dzz(XAX—i-i]X)) ~ exp(i/dzzdzz’](z)K(z,z’)](z')), )

where A is a differential operator. The symbol ~ has been used to indicate that there are
some proportional factors not relevant to the analysis. Here K is the inverse operator,
or Green’s function, that satisfies

AK(z,Z') =6(z— 7).

We can see that we can use this result to obtain the scattering amplitudes by choosing
the appropriate source J(z).

(V(k1,21)V(ka,22) ... V(kn, zn))
~ /DXexp{—S +ilkyXy(0) + -+ knXn (o)}

Since we are interested in the vertex operators inserted at the boundary, we should
restrict the propagator to it. By taking z = 7 and z’ = 7/ for real 7, 7’ in (7) we get

(XH(1)X"(1')) = —a'GM log|T — 7’| + %GVngn(T - 1), (10)
where sgn is the sign function. Now we can see that it suffices to choose the current as

J(r) =) o(r — 1)k
1
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in (9). From this we can obtain the scattering amplitudes by finally integrating the expected
values of the vertex operators over the entire boundary of the worldsheet, which now is just
integrating over the real variable 7. The result is

/dN V(ky,7)V(ka, 22) - V(kn, ™)) ~ /dNTexp< Y Klok"sgn(7 — Tm)>

I>m

X exp <zx’2lek’” log| —Tm|> (11)
I,m

_ /AdNTeXp< Z klekmsgn Tl — Ty ) 1_[|Tl ‘“’lekm,

I>m I,m

where k'0k™ := k;ﬂ}“’k]’? and k'GK™ := klﬂGV”kUm. These amplitudes are of the Koba—
Nielsen type. The factor involving the sign function in the last line is actually more general,
because it only depends on the variables through the sign functions, and any derivatives of
it are 0. This allows us to write

<ﬁ P(aX(1),0*X(T) . .. )eikIX(Tz)>
G,0

=1

/!

. N
= o5 Tiom kb Hisgn(n=ru) <H PI(0X (1), X (1) ... )eikzX<Tz)> .
=1 GA=0

The symbol (- - - ) g = 0 means that the expectation value taken on the second line is
using the propagator (10) without the second term. This is achieved by writing the polynomial
as an exponential and keeping only the corresponding linear terms. For example [48]:

V(T k,z) = ig'aX"e*X () = [exp(ikX + i"dX")]

linear”

where [ - - Jjinear indicates to only keep linear terms in {. So, we can see two direct effects
of the B-field on the action (5). The first is that the effective metric on spacetime becomes
Guv given in (8). The second is that at tree level (Remember, this came from the fact that
we are in the full upper half plane with the simplest zero genus topology) the scattering
amplitudes acquire a phase factor that depends on the cyclic ordering of the momenta k*
and the matrix 6. But the overall form of the amplitudes is the same as without the B-field.

In the case of open strings for N points with vanishing B-field and with flat metric
Guv = 1w and units with «’ = 1 and for a fixed ordering of the external momenta k;,
from (11) we obtain the Koba—Nielsen amplitude, with the three fixed points in x; = 0,
XN—-1 = 1 and XN = OO,

~ : N-—2
A]%N)(k) = / dxydxz -+ -dxyn_o H |xj|k1k;‘|1 _ x].lkalkj

0<xp<x3<--<axn-_2<1 =2

< T lxi—xlkh,

2<i<j<N—2

where we have changed the variables T to x’s variables in (11), In [48,53-55].
The four-point amplitude is Veneziano’s amplitude

. 1
AW (k) = /0 dx|x[Fik2 |1 — x|koks, (12)

It is known that this definition of Veneziano’s amplitude describes only one of the
three decay channels s, t and u corresponding to the different inequivalent permutations of
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the momenta. If we consider the sum over the three channels and performing a suitable
change of variables [59] is possible to write the total amplitude as

AL ) = [ dxfx 1 — ik,

In terms of the gamma function the above amplitude writes

AW () = [(-1-d/s)I(-1—a't)  T(~1-a's)0(=1—a'u)
R - T(-2—a/(s+1)) [(—2—a'(s+u))
n [(—1—atH)T(—1—a'u)
[(—2—a'(t+u))
where s, t and u are the Mandelstam variables and they are defined as s :== —(p1 + p2)?,

—(p1+p3)?and u := —(p1 + ps)? and they satisfy s +t +u = — Y; k7 = ¥; M?, and

(u) :/ dt et
0

is the gamma function. Thus, the 4-point amplitudes whose integration is R it already
includes the three channels.
Moreover, this procedure also works for N point amplitudes [4,48] and it yields

N-2
N . .
AL = [ dxadxa - dxy g [T 1 =l

< T lxi—xlkh
2<i<j<N-2

For completeness we write the form of closed strings in absence of B-field the N-point
amplitude is given by

N "
A( ) /CN ZHd2ZZH|Zi _Zj|k,k]/2'

i<j
The four-point amplitude is the Virasoro-Shapiro amplitude
A((C‘L)(k) _ / Pz|z|kks/2|] _ p[kaka/2

L1 %)N(-1 = 5)I(-1— %)
T2+ %5)I(2+ T2+ %)

It is worth noting that the Veneziano four-point amplitude (12), describing only
one channel, can be written also as an integral over the whole R if we introduce some
multiplicative characters as sgn(x):

AW (k) = %/Rdx|x|k1k2|1—x|k2k3+%/Rdx|x|k1k2|1—x|k2k3sgn(x) sgn(l— x),

where the function sign(x) is +1 of x > 0 and is —1if x < 0 [14].
The generalization for N-point amplitudes is given by

. N-2 1—sgn| —xj(1—x;)
4 ; ; &
Aﬁg)(k) = /RM3 dxydxs - - - dxn_» g |x]-|"1"f|1 xj|kN-1k,{ [ : i )] }
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o1
x 1 xi—leklkfz{l—Sgn[(—l)(xi—xﬂ]},
2<i<j<N-2

In [14]. The open string amplitude (11) with a non-vanishing B-field can be carried out
in this form using the multiplicative character sign(x). This form is of particular interest in
connection to the Ghoshal-Kawano amplitudes [60] studied later in this survey.

3. Essential Ideas of p-Adic Analysis

In this section, we review some ideas and results on p-adic analysis that we will use
throughout this article. For an in-depth exposition, the reader may consult [3,61,62].

3.1. The Field of p-Adic Numbers

Throughout this article p will denote a prime number. The field of p-adic numbers Q,
is defined as the completion of the field of rational numbers Q with respect to the p-adic
norm | - |, which is defined as

0 if x=0
x|, =
p*'Y if x:p'}’ﬂl

where a and b are integers coprime with p. The integer <y := ord(x), with ord(0) := +oo0, is
called the p-adic order of x. We extend the p-adic norm to Q}, by taking

-— . _ n

l|x[]p := 1r£l;a§xn |xi|p, forx = (x1,...,xn) € Q).
We define ord(x) = minj<;<,{ord(x;)}, then ||x||, = p~ord(*), The metric space
(QZ, IE ||p) is a complete ultrametric space. As a topological space Q, is homeomorphic

to a Cantor-like subset of the real line, see e.g., [3,61].
Any p-adic number x # 0 has a unique expansion of the form

x = pord(x) i xipi,
i=0
where x; € {0,1,2,...,p — 1} and xo # 0.

For r € Z, denote by Bf'(a) = {x € Q;||x — al|, < p"} the ball of radius p” with center at
a=(ay,...,a,) € Q}, and take B}(0) := B}'. Please note that B}'(a) = Br(a1) x - - - X By(an),
where B,(a;) := {x € Qp; |x; — a;], < p"} is the one-dimensional ball of radius p" with center
ata; € Q. The ball Bj equals the product of n copies of By = Zj, the ring of p-adic integers.
In addition, B/ (a) = a+ (p~"Z,)". We also denote by S!'(a) = {x € Qi llx — all, = p"}
the sphere of radius p” with center at a € Q", and take S”(0) := S”. We notice that S} = Ly
(the group of units of Zj), but (Z; ) ! C Sij- The balls and spheres are both open and closed
subsets in Q;. In addition, two balls in QZ are either disjoint or one is contained in the other.

As a topological space ( ool ||p) is totally disconnected, i.e., the only connected

subsets of Q) are the empty set and the points. A subset of ), is compact if and only if it is
closed and bounded in Q7, see e.g., ([3], Section 1.3), or ([61], Section 1.8). The balls and

spheres are compact subsets. Thus, ((Q)z, IE ||p) is a locally compact topological space.

Remark 1. There is a natural map, called the reduction mod p and denoted as ~, from Z, onto
[Fy, the finite field with p elements. More precisely, if x = 2]90:0 xjpf € Ly, thenx = xo € F, =
{0,1,...,p—1}. Ifa=(aq,...,a,) € Z’;, thena = (ay,...,a,).
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3.2. Integration on Qj)

Since (Qp, +) is a locally compact topological group, there exists a Borel measure dx,
called the Haar measure of (Qy, ++), unique up to multiplication by a positive constant, such
that [, dx > 0 for every nonempty Borel open set U C Qp, and satisfying [, dx = [;dx
for every Borel set E C Qy, see e.g., ([63], Chapter XI). If we normalize this measure by the
condition |[; Z, dx =1, then dx is unique. From now on we denote by dx the normalized

Haar measure of (Qp, +) and by d"x the product measure on (Qp, +).

A function ¢ : Q; — Cis said to be locally constant if for every x € Q) there exists
an open compact subset U, x € U, such that ¢(x) = ¢(u) for all u € U. Any locally
constant function ¢ : Q) — C can be expressed as a linear combination of characteristic
functions of the form ¢(x) = Y32 ; ¢ 1y, (x), where ¢, € C and 1y, (x) is the characteristic
function of Uy, an open compact subset of Q7, for every k. If ¢ has compact support, then

p(x) =YLt , crly, (x) and in this case

/cp(x)d”x = cl/d”x—i- ct cL/d”x.
Qp U U,

A locally constant function with compact support is called a Bruhat-Schwartz function.
These functions form a C-vector space denoted as D (QZ) . By using the fact that D (QZ)

is a dense subspace of C, (Q;), the C-space of continuous functions on Qj with compact

support, with the topology of the uniform convergence, the functional ¢ — sz @(x)d"x,

@ € D(Q’;) has a unique continuous extension to C. (Qz , as an unbounded linear

functional. For integrating more general functions, say locally integrable functions, the
following notion of improper integral will be used.

Definition 1. A function ¢ € L} _is said to be integrable in Qpif

loc

m
. n _ . n
i, ot tim B [otd's
B, s
]

exists. If the limit exists, it is denoted as sz @(x)d"x, and we say that the (improper) integral exists.

3.3. Analytic Change of Variables

A function h : U — Q) is said ’E) be analytic on an open subset U C Qy, if for every
b € U there exists an open subset U C U, with b € U, and a convergent power series
Y a;(x — b) for x € U, such that hi(x) = Yenn a;(x — b)' for x € U, with x = x}' - - xj,
i= (i1,...,in). In this case, a%h(x) =Yicnwn aia%l(x — b)' is a convergent power series. Let
U, V be open subsets of Q;. A mapping h: U — V, h = (hy,...,hy,) is called analytic if
each h; is analytic.

Let ¢ : V — C be a continuous function with compact support, and leth: U — V be
an analytic mapping. Then

qu(y)d”y = Lflqv(h(x))IIaC(h(x))lpd”x, (13)

where Jac(h(z)) := det {g—ﬁ;(z)} 1<i<ns See e.g., ([64], Section 10.1.2).
1<j<n

Example 1. In dimension one, the change of variables Formula (13) implies that

/dx = |a|p/dy,
al u
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forany a € Qp and any Borel set U C Q. For example,

/dx: / dx = \P”Ip/dy=P’/dy=P’, (x=p""y) (14)
B, p*TZP Zp Zp
and

/dx:/dxf / dx=p —pl=p(1-ph). (15)
Sy By B, 1

Example 2. We now compute the following integral

Z(s) = / |x[3dx, s € C, with Re(s) > 0 € C.
Zyp

We use the partition Z, = pZy U L, where Z;; is the group of units of Zy:
Ly ={x €Ly |x|p =1} = {;)xipi € Lp; xo # 0}.
1=

Using (15),

2) = [ eax+ [Ixipdx = pt e+ [ ax

PZp Zy Zy A
= p 1 [Ialpdx+ (=) = p 12 + (1 p 7).
Zp
Therefore,
1-— p’l
Z(s) = mfor Re(s) > —1. (16)

Example 3. We now consider the integral

Z(s) = / |1 = x[5dx, s € C, with Re(s) > 0 € C.
Zy

Assuming that Zy = U, (a0 + pZy), where T = {1,2,...,p — 1}, and (16) we have

p—1
Z(s) = /|1—x|;,dx+z / |1—x|;,dx:p-1-5/|y|;dy
1+pZy a0=2 ag+pZyp Zy

p—1 -1

. 1
L [ ot pyldy = p o E

g T p(p—2).
11022 Zp p

3.4. Some p-Adic Integrals

In this section, we compute some integrals that we will use later on.
Example 4. We consider the following integral:

Z(s) = / |x —ylpdxdy, s € C, with Re(s) >0 € C.
Lip ¥y
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) Using the partition Z3 = (pZy)* U S§, with S§ = pZ, x Ly ULy x pLy VL) X Ly,
we have

Z(s) = /|xfy|§,dxdy+ / |x — y[5dxdy + / |x — yl}dxdy

(PZp)? Ly <L Ly xpZy
+ / |x — ylpdxdy = p25Z(s) +p! / dxdy +p~! / dxdy
L3 XL Zpx L L3 XLy
+ / |x — ylpdxdy.
L XL

To compute the last integral, we use the partition

(Zy)y*= U (a0+pZy) x (a1 + pZy)

ag,aleF;f
as follows:
/ |x—y|§,dxdy:7 Z ) / |x — y[5dxdy
Zp Ly OIEED (a4 pZy) % (ar-+pTy)
=p? Y ) / |ao + px — a1 — pylsdxdy +p 27 Y ) / |x — y[,dxdy
aoa,z;éaﬂjp ZyxZyp ﬂoélélzeaﬂip ZpxZLy
=p 2 (p-1(p—2)+p 2 (p—1)Z(s).
Hence,
1-— p’l
Example 5. We now show that
s -2 —2-s 1-p !
Z(s) = / F=ylpdxdy =p=(p=Dp=2)+p " (p- Dy 5= (9

Ly xZy,
Indeed, by changing variables as x = uv,y = v,
Z(s) = / ju —1[pdudo = (1-p") / PRSI
3 XL zx

Now the result follows from Example 3.

Example 6. We now compute the following integral
Z(s1,82,83) 1= / 11— x[}' |1 —y|?|x — [} dxdy,
Zy xZy
where s1,5,53 € C satisfying Re(s1), Re(s2), Re(s3) > 0. By using the partition
(Z;)z = U (a0+pZp) x (a1 +pZp),
ag,a1€F}

where Fy ={1,2,..,p — 1},
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p—1 p—1

Z(suss) = ¥ Y [ -y - ylpdxdy
T (akpzy) ¢ (arp2)
p—1 p—-1

2 Y Y Jaga (51,52,83).

LZO:1 ay =1

By changing variables as x = ag + pu, y = ay + pv we have

Jagay (81,52,83) = P72/|1 — (a0 + pu) |} 1 = (a1 + po) [}[ (a0 + pu) — (a1 + po) [ dudo.
Z;

Now, we compute the integrals 4, o,. This calculation involves several cases.
Case 1. If ag#1, a1#1 ag # ay, then |1 — (ag + pu)|p = 1, |1 — (a1 + po)|, = 1,
and |(ag + pu) — (a1 + pv)|p = 1. and

Jaoa, (51,52,83) = pfz/dudv =p 2
z;

There are (p — 2)(p — 3) integrals of this type.

Case 2. If ag # 1,a1 # 1 ag = ay, then, |1 — (ag + pu)|, = 1, |1 — (a1 + po)|p, = 1L
By Example (17),

o —2—53 1 _ -1
Jag,ar (51,52,83) = p~ 2% / u—ﬂ?Wﬂh—pl_;lsg)

ZLip XLy

7

for Re(s3) > —1. There are p — 2 integrals of this type.
Case 3. Ifag = 1,a1 # 1, then |1 — (a1 + pv)|, = 1, [(ap + pu) — (a1 + pv)|p, = 1.
By using (16)

p 21— ph
1 _ P*lfsl

Jag.ay (51,82, 83) = P_2_51/|M\;1d”dv = ’
z
for Re(s1) > —1. There are p — 2 integrals of this type.
Case 4. If ag # 1,a1 = 1, this case is similar to Case 3,

p22-ph

o
Jagay (51,52,83) = p 52/|x3\§,2dx3 T 1-p =

Zp

for Re(s) > —1. Therefore

72753 1 |
Zlsys2m) = p 2 p =D p =) + (-2
—2—s -1 —2—s -1
p i (l—p ) p (1 -p )
+ (p - 2) 1 _ p*l*S] + (p - 2) l _ p71752 .

on the region of C3 defined by Re(s1) > —1, Re(sy) > —1, and Re(s3) > —1.
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4. p-Adic Open String Amplitudes
In [14], Brekke, Freund, Olson and Witten work out the N-point amplitudes in explicit

form and investigate how these can be obtained from an effective Lagrangian. The p-adic
open string N-point tree amplitudes are defined as

N N2k, kn_1ki ki Y
AN (k) = / [Tl =% T x5 TTdx, (19
=2 =2
Q

Ns i= 2<i<j<N-2

P

where Hf\;zdxi is the normalized Haar measure of Qy’3, k= (ki,...,kn), ki = (koj,--- ki;),
i=1,...,N, N > 4,is the momentum vector of the i-th tachyon (with Minkowski product
kikj = —koikoj + kiik1,j + - - - + ki ik ;) obeying

N
Zki =0, kiki =2fori = 1,...,N.
i=1
The parameter [ is an arbitrary positive integer. Typically, [ is taken to be 25. However,
we do not require using the critical dimension. In [8], we show that the p-adic open string
amplitudes (19) are bona fide integrals and that they have meromorphic continuations
as rational functions in the kinematic parameters. We attach to these amplitudes a mul-
tivariate Igusa-type zeta function. Fix an integer N > 4 and set T := {2,...,N —2},

D = W=3INZ) 4 o(N —3) and CP as
{sjeCic{l,N-1},je T} it N=4

{sijeCie{l,N—-1},jeTorije Twithi <j} if N>5.

We now put s = (s;;) € CP and kjk; = s;; € C satisfying s;j = sjifor1 <i <j<N—1
The p-adic open string N-point zeta function is defined as

N-2 N-2
. S(N-1)i i
20 = [ TTkfn=sb™ T1 -l [lan @)
R i=2 2<i<j<N-2 i=2
14

where s = (s;;) € CP, [TY,dx; is the normalized Haar measure of @y =3, and

N-2
A= {(xz,...,xNz) 6@2{_3} Exi(l_xi) H (xi_xf) :O}'

2<i<j<N-2

In the definition of integral (20) we remove the set A from the domain of integration
to use the formula a° = 5" for 2 > 0 and s € C. The reason for using the name ‘zeta
function’ is that the integral (20) is a finite sum of multivariate local zeta functions.

Take ¢(x2,...,xN—_2) alocally constant function with compact support, then

N-2 N-2
N . S(N—1)i ..
Z‘E’ )(S) = / 4)(x2,...,xN_2) | I |xi|;1’|1—xi|p<N b I I |xi—xj];” I Idxi,
i=2 2<i<j<N-2 i=2

Q,I)FS\A

for Re(s;;) > 0 for any ij, is a multivariate Igusa local zeta function. In characteristic zero,
a general theory for this type of local zeta functions was elaborated by Loeser in [36].
In particular, these local zeta functions admit analytic continuations as rational functions
of the variables p~ /.

We want to highlight that the convergence of the multivariate local zeta functions
depends on the fact that the locally constant function ¢ has compact support. For example,
we consider the following integral:
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J(s) = /|x|;dx,s e C.
Q

If the integral J(sp) exists for some sy € R, then the integrals

Jo(so) = [Ixfdx and Ji(s0) = [ |xfax

Zp Qp~Zyp

_p1
exist. The first integral J,(sg) = 1;}%,50 for sy > —1. For the second integral, we use that

\x\zo is locally integrable, and thus

5 pf+jSo/dx = (1-p) 3 P+ < oo

[e)
Niso) =Y [ Ixfpdx=
]:1;77 i7 5

if and only if sy < —1. Then, integral J(s) does not exist for any complex value s.
Theorem 1 in [8] establishes that the p-adic open string N-point zeta function is a
holomorphic function in a certain domain of CP and that it admits an analytic continuation
to CP (denoted as Z(N)(s)) as a rational function in the variables p~%,i,j € {1,...,N —1}.
Hence, in the theory of local zeta functions, the convergence and the existence of a mero-

morphic continuation as a rational function in the variables p~%,i,j € {1,...,N — 1} of
integrals of type (20) is a new and remarkable result.

The p-adic open string N-point zeta functions ZN)(s) are regularizations of the
amplitudes AN (k). More precisely, we define

AN (k) = 2N (s) | g, withi € {1,... N=1},j € TorijeT,

where T = {2,...,N —2}. By Theorem 1 in [8], AN (k) are well-defined rational func-
tions of the variables pfkikf ,1,j €{1,...,N =1}, which agree with integrals (87) when
they converge.

In the following two sections, using the methods given in [8], we compute the p-adic
open string amplitudes in the cases N = 4, 5.

4.1. p-Adic Open String 4-Point Amplitude
The 4-point string amplitude is given by

AW (k) = /|x2|’;1"2|1 — xp[8Fd,,
Qy

We attach to this amplitude the local zeta function:

Z0(s) = [ [xaly? 1= xafda
Q

We now divide the integration domain (Qy) into sectors. Given I £ T = {2}, the at-
tached sector is defined as

Sect(I) = {x; € Qp; |xi|p <1 <=ieI}.

Then, we have two sectors:

I ™I Sect(I)
{2} 1] Zy
1% {2} Qp\Zyp,
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and
zW(s) = zW(s,2) + zW(s,{2}),
where
D(si{2}) = [lnalih - xaldx
Zyp
and

YA (s;@) = / |x2|“;12|1 _ x2|§,32dx2.
Qp~Zyp

We now compute Z*)(s; {2}). By using the Examples 2 and 3:

zW(s;{2}) /|x2|512dx2 + /|1 — x2[3Rdx; (21)
ZX

1_ -1 —1—512 1_ —1 —1—532
(1-pY)p +( p)p

— 1,1
=1-2p " + T—plon T—p =

7

for Re(Slz) > —1and Re(532) > —1.
We now consider integral Z(*) (s; @). By using the ultrametric inequality |1 — xa|, = |x2],
for x; € Qp \Zp,

Z(4)(s;®): / |x2|;12+532dx2‘
Qp~Zyp

To compute this last integral we proceed as follows. For I € N\{0}, we set

(Qp~Zp) ;:={x2€ (Q~\7Zy);—1 <ord(x;) < -1},

(PZp), = {x2 € (pZp);1 < ord(x2) <1},
and
I,l(s) = / |XQ|;12+S32dX2.
(Q~2Zyp)

Notice that (Qp \ Z) ,, (pZy), are compact sets and that
(@ ~Zp), = (PZp),

x2 — ]772/

is an analytic change of variables satisfying dx, = then using this change of variables,

/ =
\]/ |512+S32 1 S12+s3 2"

Now, by using that |, vZ, Wdy converges for Re(s) < 1 and the dominated conver-
4

we have

gence theorem, lim;_,, I_;(s) = Z*)(s; @), i.e.
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=1\, 14s12+s
p )P 127532

d (1—
4) (. _ Y2 _

Z( )(S, {@}) - / | Spptsp+2 1— p1+512+532
pZy U

on Re(s12) + Re(s3p) < —1. Therefore

B —1—s —1-s 14+s12+532
(4) B p 2 _ 1 p 12 p 32 p
zZ%(s) = P (1 p ){1 —p1-sn + 1_ p(717532) + 1 — pltsitsy !

this function is holomorphic in

Re(s1p) > —1,Re(s3y) > —1and Re(syp) + Re(szp) < —1,

which is a nonempty open subset in C? because it contains the open set defined by
the conditions:

2 1 2 1
2R - _Z <R _Z
3 < e(s12) < 7 and 3 < e(s32) < 5

We denote the meromorphic continuation of integral Z(*) (s) also by Z*) (s). Now, we
regularize the p-adic open string 4-point amplitude using Z @) (s):

AD (k) 1= ZW(8) |51,k kp s39—ksks
p—2 . pflfhkz P*1*k2k3 pl+k1k2+k2k3
oy (t=r)i5t gk iRk ] pltkikathoks

_ p _ 2 _ 1 pflfklkz P717k2k3 p717k2k4
= + (1 P ){1 ki T P 1-kaks T 1Kok (- (22)

This amplitude can be rewritten as

1
AW (k) = Ky + 5 L xij,
2,5
with

xi]- =
where ) ;; means the summation over all pairs of compatible channels 7j. Then

1
AW (k) =Ky + E{xu + X13 + X14 + X23 + Xp4 + X34}

Indeed, by using that Y-} ; k; =0, k? = 2, we obtain

kiks + koks + k3ky +2 =0, (23)
kiky + kiks + kiks +2 =0, (24)
kiko + koks + kokys +2 =0, (25)
kiky + koky + ksky +2 = 0. (26)

From (23)—(26), we obtain

kiky = kzky, kiks = kyky, k1ky = koks.

Then
AW (k) = Kyq + x12 + x23 + %24, (27)
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which agrees with (22).

4.2. p-Adic Open String 5-Point Amplitude
The p-adic open string 5-point amplitude is given by

kik kik kyk kyk kok
k) = [l lxlf 1 - walf - ol - ol s,

and the 5-point local zeta function is given by

z®(s) = /|952|512|X3|513|1 (211 = x3[3° |x2 — x3[;P dxadixs,
Q

where s;; € C. We divide the integration domain Q% in sectors. Given I £ T = {2,3} the
attached sector is defined as

Sect(I) = {(xl,xz) cQlnl,<leic 1}.
Table 1 shows all the sectors for the computation of the 5-point amplitude.

Table 1. Sectors of the 5-point amplitude.

I ™I Sect(I)

%) {2,3} (Q\Zp) x (Qp\Zy)
{2} {3} Zp x (Qp\Zy)
{3} {2} (Q\Zy) X Z
{2,3} 7] Ly X Lp.

Now, by using the notation

ZO0si1) = [ [xaliPlaaliP = xali21 - x5l ke — xafPdxads,
Sect(I)

we have
Z0)(s) = 20 (s;2) + 20 (s; {2}) + Z20) (5; {3}) + 2®)(s; {2,3}).
Case 1. Sect({@}) = (Qp\Zp) x (Qp\Zy).

By changing of variables as x, — %, X3 — % and using Lemma 7 of [8], we have

Vsifoh) = [l Rl 0 - x P dadzs,
(Qp\Zp)?
a5 —sa—sme, 11
:/pz - |u|p512 542 |U|p513 543 |;—5|;,23dudv
14

523

—2+4s12+540+523+2+513+543+523+2—523 / |v — u|

7 |u |;12 +s4p+523+2 dudy (28)

=P |U|S13+343+523+2

_ p2+512+542+523+513+543(1 _ p—l) (1 _ p—l)p1+512+542+523
- 1— p2+512+542+823+513+543

1— p1+512+542 +523

(1—p Hpttowtssten (1 plp~1-n»

+ 1— P1+S13+S43+323 1— p717523 + (p - 2)p_

The integral Z®) (s; {@}) is holomorphic in the solution set of the following conditions:
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Re(s12) + Re(sg) + Re(sps) < —1, (29)
Re(s13) + Re(sg3) + Re(s3) < -1,
Re(sp3) > —1,
Re(s12) + Re(sg) + Re(s13) + Re(sy3) + Re(spz) < —2

Case 2. Sect({2}) = Zp x (Qp\Zp).
In this case, [x2|, < 1and |x3], > 1, now by ultrametric property |1 — x3|, = [x3|,
and [x; — x3|p = |x3]p, then
z¥(s;{2}) = / |22 |2 23321 — xa[p2]1 — 3 x2 — x3[Pdxpdxs
Zpx(Qp\Zp)
— / |x2|;12|x3|;13+543+523‘1 _ xz\;‘udxzdxg,
Zpx (Qp\Zp)
_ |x2|512\1—x2\542dx2/
Z/ p 2 (@2
P

|x3|;13+543+523dx3
p\Zp)

5 5
=2y (5{2)2 (55 (2}).
The calculation of Z(®)(s; {2},0) is similar to the case of integral (21):

(1—pHp 2 (A-—phHp ==

G — 1y _
20(s5(23,0) = p7 (- 2) + S P e

The integral Z(®) (s; {2},0) is holomorphic in the domain

Re(slz) > —1and Re(542) > —1. (30)
The calculation of Z(® (s; {2},1) is similar to the calculation of Z(*)(s; {@}) given in the
Subsection of 4-point zeta function. By changing of variables as x3 = ;—S,dxg, = “;%‘32,
P
we obtain
d
+s43+ Y3
Z(S)<S; {2}1) = / |X3|;713 Ty = / |y3’2+513+s43+523
p

Qp\Zp PZyp
(1 _ pfl)p1+513+543+523
1— p1+513+543+523

The integral Z ) (s;{2},1) is holomorphic in
Re(s13) + Re(sg3) + Re(sp3) < —1. (31)

Case 3. Sect({3}) = (Q,\Zp) X Zp.

In this case, |x2|, > 1, by the ultrametric inequality |1 — x2|, = |x2[p and |xp — x3]p =
|x2[p, then
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V(s (3D = / 2?2532 1 — 222 |1 — x3[p° |2 — x5 [P dxadxs
(Q@p\Zp) x2Zp
- / [ ‘Su+542+523|x |sl3|1 - x3|;43dxzdx3
Qp\Zp XZP
= /|x3‘513|1 *X3\S43dX3 / |x2|;12+542+523dx2
Qp\Zp

N N
A 5245 )
These integrals are similar to the ones obtained in the case of Sect({2}):

(1—pHptes  (A—phHp'lss
1—p1—n + 1—ploss 7 (32)

V(s {3},0)=p lp-2)+

the integral Z®)(s; {3},0) is holomorphic in
Re(Slg) > —1and Re(543) > —1. (33)

And

(1 _ p )pl+512+542+523
( {3} 1) p1+312+542+523 4

the integral Z(®)(s; {3},1) is holomorphic in
Re(s12) + Re(sg) + Re(sy3) < —1. (34)

Case 4. Sect({2,3}) = Zy x Zy.
Using the partition Z%, = (pZy)* U S§, with S} = pZ, x Ly UZy X pLy ULy X Ly,
we have
Z(S)(s; {2,3}) = / |x2|512|x3|513|1 x2|s42|1 - x3|543\x2 — x3|Pdxodxs
prZp
=: I (s) + Ixa(s) + Iz3(s) + Isa(s),

where

131(5) = f |x2‘512 |x3|513|x2 — X3|;23dXQdX3,
(v2y)°

132(5) = f |X2‘;12 |1 — X3|;43dXQdX3,
PZyxZLy

133(5) = f |x3\ 3|1 x2|s42dx2dx3,
Ly xpZy

134<S) = f |1 —x2|p2|1 —X3|S4S|XZ—X3|;23dedX3.
Z; <Ly

Using Lemma 4 of [8], we have
! (S) _ p—2—512—513—523 p_l_slz(l o p—l)Z p—l—sl3(1 . p—l)Z
312 1— p—2—512—513—523 1— p*lfslz 1— p*1*513

p - p )
1— p*1*523

+ +(p-1(p-2)p?
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The integral I3 (s) is holomorphic in
Re(slz) > -1, Re(513) > —1, Re(523) > —1, and Re(slz) +Re(313) +Re(523) > —2. (35)
Using Examples 2 and 3,
(I-—p Hp ' ef-—phHhplss
Ia(s) = 1—pl-sn 1—pl-ss +p o (p—2)|,
and
(A-—p Hp e[ —phHp'l=e
I33(s) = [ Tyt P (p—=2)|
These integrals are holomorphic in
Re(512) > —1, Re(513) > —1, Re(542) > —1, and Re(543) > —1. (36)
Finally, by Example 6,
B —2—523 1 _ -1
fa(s) = p 2p =2 (p =)+ (p—-2) P @)
—2—s -1 —2—s -1
pe(d-p) pe-p)
+ (p - 2) 1 _ p717542 + (p - 2) 1 _ p717543
This integral is holomorphic in
Re(sgp) > —1, Re(sgz) > —1, and Re(sy3) > —1. (38)

In conclusion, the 5-point local zeta functions is holomorphic on the region of C° defined by

Re(s1p) > —1, Re(s13) >
Re(s12) + Re(sq2) + Re(s23) <

Re(s13) + Re(ss3) + Re(s23) < —
Re(s12) + Re(s13) + Re(s3) >

Re(s12) + Re(s42) + Re(s13) + Re(sg3) + Re(523) < -2

-1, Re(542) > —1, and Re(543) > —1,
< -1,

which is a nonempty subset, since it contains the open set
2~ Re(s;) <0,
3
—% < Re(sy;) < —%,
—% < Re(s(n-1)i) < —%.

We regularize the p-adic open string 5-point amplitude using the meromorphic continuation
of Z©®) (s) by setting

5 . 5
Al )(k) =2 )(S) |Slz:klk2,513:k1k3,54z:k4k2,543:k4k3,523:k2k3 :

The amplitude A®) (k) agrees with the one computed in [14] using the Feynman rules of
the effective Lagrangian:

A®) (k) = K5 + Ky Loxij+ Y XijXkl, 39)
i<j {i,jkI}c{12345}
i<jk<l
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where K5 = w, Ky = %2

channels. By a pair of compatible channels ij, kI we mean that 7, j, k and | are different,
and thati < j, k <.

,and 7j and kI are summed over all pairs of compatible

4.3. p-Adic Open String N-Point Amplitudes

We fix an integer N > 4 and consider the general N-point zeta function:

N-2
/ H |xi[]1 — T |- j|:f [ Idx: (40)
i=2

Qi3 i= 2<i<j<N-2

We divide the domain of integration Qy =3 into sectors. Given [ C T = {2,3,...,N —2} the
attached sector is defined as

Sect(I) = {(xz,...,xN,z) @N 5 ilxil, <1 @zel}

Hence, the N-point zeta function (40) can be written as

= Z z(N)

ICT
where
Z(N)(S,‘I) = / (s,x; N del,
Sect(I)
with

H|xlf“|1—xl T el

2<i<j<N-2

and x = (XQ, R ,foz) € QI;’_S.
By Lemma 2 in [8],

ZWN)(s; 1) = pMs) /H|xi|‘;“\l — xi|;(N71>" IT |xi— x]|sl I [axi

i€l 2<i<j<N-2 i€l
zy ijel
S
[T fxi—xl)
2<i<j<N-2
ijeT\I
X dx;
/ 2+511+5 +22<]<N 2,j#i Sij H !
Z‘T\” H |XZ ieT\1
14 i€eT~\I

= MOz (5,1 ZN (s, T ),

where

M(s):=|T~I|+ ), (su+sn-ni)+ ) si+ Y, sij
ieTwl 2<i<JEN-2  2<i<j<N-2
i€T~\1,jeT iel,jeT~I

In addition Z(()N) (s;1), Z;N) (s; T~ I) are multivariate local zeta functions and

Ni(s) = ¥ pMOzMN (5,12 (5,7 1), (41)
ICT
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(N) (g o) — -
i (s;9) =1fori=0,1.

In [8] we show that Z(N) (s) has an analytic continuation to the whole CP as a rational
function in the variables p~°/ by showing that all functions that appear on the right-hand

side of (41) are holomorphic in a region H(C) in CP (Definition 3 and Remarks 9 and 10
in [8]) defined by

with the convention that Z

[J] + ) (Re(s1;) +Re (S(N—l)i)) + ) Re(sy) (42)
i€] 2<i<j<N-2
ie]
+ ). Re(sj) <Ofor]eFy;
2<i<j<N-2
iceT\],je]
K|—14+ ), Re(sjj) >0forK € y; (43)
2<i<j<N-2

i,jekK

1+ Re(s;j) > 0forij € G C{ij;2<i<j<N-2}, (44)

where §1, §, are families of nonempty subsets of T, and G is a nonempty subset of
{i;2<i<j<N-=2,i,jeT}

IJ| + gRe(sﬁ) + 22§i<j§N—2, i,].EIRe(sij) >0for] xS € g, (45)
IS

with S C ], t € {1, N — 1},and §3 a family of nonempty subsets of I x I;

K|—14+ )} Re(sjj) > 0forK € 3y, (46)
2<i<j<N-2
ijeK
where §4’s a family of nonempty subsets of I;

1+ Re(si]') > 0 forij € Gr, 47)

where Gr is a nonempty subset of {2 <i <j <N -2, i,j€ J} with (N—1)i,1i € Gr.
In Lemma 9 of [8], we show that region H(C) contains and open and connected subset
of CP defined by the conditions

_32W1 < Re(s;j) <0, (48)

—% < Re(sy) < —%, (49)

2 <Relsv-) < 3, 50)

for N > 5, N; = w, i,j € {2,.., N —2}. For the case N = 4 we only consider

conditions (49) and (50). Like in the cases N = 4and N = 5, the key point is to reduce the in-
tegrals ZéN) (s;1), Z;N) (s; T\ I) to certain simple integrals, for which admit meromorphic
continuations to the whole CP as rational functions in the variables p~ .

We now state the meromorphic continuation of the open string N-point zeta function.

Theorem 1 (Theorem 1 in [8]). (1) The p-adic open string N-point zeta function, ZN)(s),
gives rise to a holomorphic function on H(C), which contains an open and connected subset
of CP. Furthermore, Z(N)(s) admits an analytic continuation to CP, denoted also as Z(N)(s),
as a rational function in the variables p~%i,i,j € {1,...,N —1}. The real parts of the poles
of ZWN)(s) belong to a finite union of hyperplanes, the equations of these hyperplanes have the
form (42)~(47) with the symbols ‘<’, ">" replaced by ‘=". (2) If s = (s;;) € CP, with Re(sj) > 0
fori,j € {1,...,N —1}, then the integral ZN) (s) diverges to +oo.
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5. String Amplitudes over Non-Archimedean Local Fields
5.1. Non-Archimedean Local Fields

A non-Archimedean local field K is a locally compact topological field with respect to
a non-discrete topology, which comes from a norm |-| satisfying

|x + ylx < max{|x|g, [y},

for x,y € K. A such norm is called an ultranorm or non-Archimedean. Any non-Archimedean
local field K of characteristic zero is isomorphic (as a topological field) to a finite extension
of Qp. The field Qy is the basic example of non-Archimedean local field of characteristic
zero. In the case of positive characteristic, K is isomorphic to a finite extension of the
field of formal Laurent series IF;((T)) over a finite field IF;, where g is a power of a prime
number p.

The ring of integers of K is defined as

Ry = {x € K; x| < 1}.

Geometrically R is the unit ball of the normed space (K, || ). This ring is a domain
of principal ideals with a unique maximal ideal, which is given by

Px = {x e K |x|g <1}

We fix a generator 7 of Pk ie., Px = mRg. A such generator is also called a local
uniformizing parameter of K, and it plays the same role as p in Q).
The group of units of R is defined as

Rg = {x € Rg;|x|g = 1}.

The natural map Rg — Rg/Px = Fy is called the reduction mod Px. The quotient
Rig/Pg =Fg q= p/, is called the residue field of K. Every nonzero element x of K can be

written uniquely as x = 774y, u € Ry. We set ord(0) = co. The normalized valuation of
K is the mapping

K — ZU{co}
x —  ord(x).

Then |x| = %) and | 7| = g~ L.
We fix & C R a set of representatives of [, in Ry, i.e., & is a set which is mapped
bijectively onto IF; by the reduction mod Px. We assume that 0 € &. Any nonzero element

x of K can be written as
0 .
x = nord(x) 2 X7,
i=0

where x; € & and x( # 0. This series converges in the norm |-|.
We extend the norm ||k to K" by taking

x|k := g%IXi\K,

for x = (x1,...,x,) € K".We define ord(x) = minj<;<,{ord(x;)}, then ||x||x = g~°"*®).

The metric space (K", || - ||x) is a complete ultrametric space.
As we mentioned before, any finite extension K of Q; is a non-Archimedean local
field. Then

PRk = "Ry, m e N.
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If m = 1 we say that K is a unramified extension of Q. In other case, we say that
K is a ramified extension. It is well known that for every positive integer e there exists a
unique unramified extension K, of Q, of degree ¢, which means that K, is a Q,-vector
space of dimension e. From now on, 7t denotes a local uniformizing parameter of K,
thus pRg, = mRg,, Rg,/Pg, = Fpe and |7|g, = p~°. For an in-depth exposition of
non-Archimedean local fields, the reader may consult [62,65], see also [3,61].

5.2. Open String Amplitudes over Non-Archimedean Local Fields

The open string amplitudes can be defined over any local field. In this section, we
consider Koba—-Nielsen string amplitudes on KK, the unique unramified extension of Q, of
degree e for all e € N\ {0}. We recall that if K, is the unramified extension of degree e of
Qp, then pRg, = Rk, Rg,/Px, = Fpe and ||k, = p~°. Thus, 7 in K, plays the role of p
in Qp.

The Koba—-Nielsen amplitudes on K, are defined as

N-2

AL (k) /Hm’“" a0 T1 el [Tdn 6D

KN-3 = 2<i<j<N-2

where I—[i]\i 52 dx; is the Haar measure of (Kg\’ -3, +) normalized so that the measure of Rﬂlze_3
is 1.

The procedure used to regularize the p-adic amplitudes extends to amplitudes of the
form (51). In this case, the open string N-point zeta function is defined as

. N-2
ZM(s) = / F(s, %N, K,) [ ] dx;, (52)
k-3 i=2
where
N-2 s s
F(s,x;N,Ke) = [Tl |1 —xl|Ke [T |xi—xl.
i=2 2<i<j<N-2
megz(%)GCQWMH):QEQQ:Q+HNFG)LQT:{Z&””N—Zme
=Y pMOzN (51,00 ZQ (s TN 1), (53)
ICT
where
M(S) = |T ~ Il + Z (Sli + S(Nfl)i) + Z Sij + Z Sij
i€T~I 2<i<j<N-2 2<i<j<N-2
i€T\1, jeT icl,jeT~1
z8(si1,0) = [Tz == T Jw - [ Tx,
ALl iel 2<i<j<N-2 iel
Ry, ijel
and

z3) (s TN 11,) =

|T~I|
Ke

where

(s,x;N,K,) H dx;,
ieT\1



Symmetry 2021, 13, 967

28 of 53

Si]'

1 |x; — xj Ke
2<i<j<N-2
ijeT\1
Fi(s,x N K,) := 2+s1i+8(N—1)itLo<j<N-2,j#i Sij
IT |xilg,

ieT\I

By convention Zg)(s; 2,0)=1, Zg)(s; 2,1)=1.

All the zeta functions appearing in the right-hand side of Formula (53) admit analytic
continuations to the whole CP as rational functions in the variables p~* and they are

(N)

holomorphic on a common domain in CP. Therefore Zy, (s) is a holomorphic function
in a certain domain of CP admitting a meromorphic continuation to the whole CP as a
rational function in the variables p~“¥, see Theorem 1 of [8].

We use Z]&N) (s) as regularizations of Koba-Nielsen amplitudes AN (k, K,), more

e

precisely, we define
N N
AL (k) = Z80(5) lsy—kpk, -

Then Ag) (k) is a well-defined rational function in the variables pfek"'kf , which agree
with the integral (51) when it converges.

5.3. The Limit p Tends to One

The functions

z3)(s;1,0), ZY (s; T~ 1,1)

are multivariate local zeta functions. Thus, to make mathematical sense of the limit of
Z((@I\;) (s) as p — 1 we use the work of Denef and Loeser, see [35,66], and compute the limit

of Z]g) (s) as e — 0 instead of the limit of Z((@Z\;) (s) as p — 1. In order to compute the limit

(N)

e — 0 is necessary to have an explicit formula for Zy ’(s), so in [9] we determined the

explicit formula by finding explicit formulae for integrals Zﬁg) (s;1,0) and Z]g) (s TNIL1),
see Theorem B in [9]. After that, we define

Ziy) (5:1,0) = lim Z((s;1,0)
and
Z)(s; TN 1,1) = lii%zg)(s; T 1,1),

which are elements of Q(si]-, i,j€{l,...,N—1}), the field of rational functions in the
variables s;;, i,j € {1,...,N — 1} with coefficients in Q. Then, by using (53), we defined
the open string N-point topological zeta function as

N N N

Zp)(s) = Y Zin)(s:1,0)Z()) (s, T~ 1, 1).
ICT

(N)

top

Q(Si/’, i,je{l,...,N— 1}) We now define the Denef-Loeser open string N-point amplitudes

at the tree level as

The open string N-point topological zeta function Z; ' (s) is a rational function of

(N)
tOp
withie {1,...,N—1},j€ Tori,j € T,where T = {2,...,N — 2}. Thus, the Denef~Loeser
amplitudes are rational functions of the variables k; - kj,i,j € {1,...,N}.

(N)

A (k) = Ztop (S) ‘S,'j:k,"kjl
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5.4. Feynman Rules, Explicit Formulae and Denef-Loeser Amplitudes

Using the Feynman rules of the effective Lagrangian, an ‘explicit formula’ of the type

k

N-3 _ 1 p ik 1
ANE) =Ky + ¥ Ky ¥ (e
1=2 1<a<b<I P 1—p "

was given in ([14]), where the constants Ky, K;,_;, € Q(p). Of course, a rigorous demon-
stration of a such formula is an open problem. Taking formally the limit p tends to one,
we get

(N)

Atop

N-3 1
k) =K% + y K. L
(k) NS i o Zpa ki kg, + 1

5.5. Denef-Loeser Open String 4-Point Amplitudes
The open string 4-point zeta function on K, is defined as

4
29(s) = [l - xlfdx.
i

We divide the integration domain in sectors

Sect(I) ={x; € Q: |xjlg, <1<=iecl}, IS T={23},

I ™I Sect(I)
{2} %) Rg,
%) {2} K. \Rg,.

In this way, we obtain that
z{)(s) = 21 (s {2),0) + p o) 20 (52}, 1)

= / |x2|§é§ 11— x2|§§:dx7_ + pe(1+s12+532) / ‘x2|ﬂ—€f—s12—s32dx2’
R]Kg R]Ke

with

“4) /.. 1 —e (] —p E)pﬁ(—l—su) (1 _ p_e)pe(_l_SSZ)
ZKe (s:{2},0) =1-2p~“+ 1-— pe(—1_512) + 1-— Pe(—l—s3z)

and

(1 _ pfe)pe(1+s12+532)

(4) (. =
ZKE (S, {2}/1> - 1— Pe(l+512+532)

Taking the limit e approaches to zero,

1 1
z(s:{2},0) = -1
top(s{} ) +512+1+S32—|—1
and
1
ZW (s 1) = ——————
top(s { } ) 512+532+1
Consequently
1 1 1
zW () = -1 - :
top(5) +512+1+532+1 s12+s2+1
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Using the kinematic relations ki + k + k3 + k4 = 0 and kl2 = 2 we obtain k1k, +
k3ky +1 = —1 — koky, then the Denef-Loeser string 4-point amplitude is given by

(4) _ 1 1 1
AW () = -1 . 4
fop () Tk t1  kaka 41 ks 1 (54)

5.6. Denef-Loeser Open String 5-Point Amplitudes
The open string 5-point zeta function on K, is given by

/|x2|§<12|x3|513|1 2] (1 — 2338 |x2 — x3| P dxdcs.

By dividing the integration domain in sectors as in Section 4.2, we obtain the results
presented in Table 2.

Table 2. Sectors of the 5-point Denef-Loeser amplitude.

I I€ Sect(I)
{2} {3} Rg, x K. \Rg,
{3} {2} Ke\Rg, x Rk,
{2,3} 1% Rg, x Rg,
(%] {2,3} Ke\Rg, x K. \Rk,.

The open string 5-point topological zeta function is defined as

z%(s Z Zp)(s;1,0)Zio) (s T~ 1, 1).

top top

Table 3 contains explicit formulae for all the integrals ZEOI)Y (s;1,0) and ZEO; (s;TIL1).

Table 3. Explicit calculation of z5 )(s; 1,0), z® (s; TN L1).

top top
1 zgo;(s 1,0) Z0) (s T~ 11)
{2} 1+ e + o — e
1+512 T+s4 T1+s13+543+523
1 1 1
{3} —1+ 14513 + 1+s43 ~ T¥snfsntss
1 1 1 1
|:1+512 + 1+s13 + Ttss 1:| 2+s12+513+8523
1 1 1 1
+1+512 |:1+S43 o 1} + T+s13 [1+S42 -1
{2,3} 1
- - et
1+523 1+S42 1+S43
1 1 1 1
2+sp+s3+523 [1+54z + T+s43 T 17 ~ 1]
_ 1
2+852+553+523
{2} 1 X |: T+si2tsntss 1+ T+s13+ss+s2
v

Therefore, the Denef-Loeser open string 5-point amplitude is given by

1 1

5) (1) — 1

Ay, (k) =2-Y + Y ,

op i<j1 + klk] (LI {12345} 1+ klk] 1+ kkkl
i<jk<l
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where
Z 1 1
Gikhenasasy LT kik 1 ki
i<jk<l
B 1 1 n 1 1 " 1 1
a 1+ kiky1+ksky 14kiky1+ksks 1+ kiky 1+ kyks
1 1 1 1 1 1
+ + +
1+ kiks1+kyky 14kiks1+kpks 1+ kiksz 1+ kyks
1 1 1 1 1 1
+ + +
1+ kiky 14+ koks 1+ kiky1+koks 14 kikg 1+ ksks
1 1 1 1 1 1
+ + +
1+ kiks 1+ kpks 1+ kiks 1+ koky 14 kiks 1+ ksky
1 1 1 1 1 1

1+ koks 1+ kyks

1+ ksks 1+ koky

1+ koks 1+ ksky

This amplitude agrees with the calculation

5 .
Afop (k) = lim A®) (k) (55)
1 1 1
:Ktop_'_Ktopzi_'_Z .
S R T R0 TR T

done using the explicit formula for given by the Feynman rules given in [14]. Here
KPP =2, K = —1.

5.7. Non-Archimedean Closed Strings

In Archimedean string theory, it is known that closed strings can be produced from
the scattering of open strings [55]. Therefore, for p-adic string theory, it is desirable to
construct a p-adic closed string theory. This was first studied in [20], see also [4,67].

The usual Archimedean closed string is described by two coordinates (7, 0) with the
periodical condition ¢/ = ¢ + 27. That is, the string worldsheet is a cylinder, which can be
conformally mapped to the whole complex plane C. In order to obtain tree-level scattering
amplitudes we need to insert vertex operators on C. Using the SL(2, C) symmetry, we can
fix three insertions points. As with the open string, it is conventional to fix three points to
0,1 and oo. The simplest non-trivial example is the 4-point tachyon scattering amplitude
for closed strings, also known as the Virasoro-Shapiro amplitude, is

c(—a(s)/2)Tc(—a(t)/2)
Te(—a(s)/2—a(t)/2) ’

4 Kk /4 kyks/4 L
A((C)(k) _ /|Z|(Cl 2/ 1—zf 3/4q, —
C

where k; € CP and kik;j = —ko,ikoj + - - -k ik j is the Minkowski product; |z|¢ 1= zZ is the
square complex norm, a(x) = x/4 + 2, and

Ic(s):= /exp[27ti(2+2)]|z|fc_1dz
C

is the Gelfand-Graev gamma function over C [4]. For the closed strings case, the momenta
vectors satisfy

N
kk=8 Y k=0 (56)
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This explains the factor of 1/4 in the exponents relative to the open strings case.
The generalization of these amplitudes to N-points is given by

kn_1k;/4 kk /al
A(E:N) / I—I ‘Zz kqk; /4 Zi|(CN 1ki/ H 2 I—I dz;, (57)

cli-s i= 2<i<j<N- 2

where k = (kq,...,ky). As we can see, these amplitudes are very similar to the Koba—
Nielsen amplitudes, except for the fact that they are being integrated over complex variables
and the replacement k; — %ki.

To construct p-adic versions of Virasoro-Shapiro amplitudes, one can consider Q,
as the analog of R, and a quadratic extension of Q, as the analog of C. However, this
quadratic extension is not unique, and is not an algebraically closed field. This naive
approach is followed in [4,20]. This approach is not very useful here, because we work
with open string amplitudes over any finite extension of Q.

Definition 2. Given an open string N-point amplitude A]%N) (k) defined over a non-Archimedean

local field K, we attach to it a Virasoro-Shapiro amplitude defined as Ag) (k) = A]g) (3k), where
Kj is the unique unramified extension of K of degree 2.

Then, by the results of [6], .A]gg) (k) admits a meromorphic continuation as a rational
function in the variables g~ 2,

6. A Physical View of the Limit p — 1 on p-Adic String Amplitudes

The problem of finding a relation between the physical string amplitudes and the
p-adic one has been present since the initial proposal. One of the first attempts is that of the
Adelic amplitudes which can be written as an infinite product of physical non-Archimedean
amplitudes [14,21].

There are other possibilities to look for a link between Archimedean and Non-Archimedean
amplitudes. One of them is to consider the limit p — 1. This limit is very intriguing and
there are different interpretations of it [23,29,34]. For instance, in [23] it was argued that the
analytic continuation of p to the complex numbers can be reflected in the Lagrangian and
equations of motion by turning the non-local equations of motion into a local and linear dy-
namical description with a logarithmic potential. This is an ordinary theory with real physical
amplitudes. In [29] it was argued that as similarly found in [23], the expansion of the effective
action around p — 1 leads to a linear theory with logarithmic potential. Besides that, this
theory is deeply related to the boundary string field theory proposed by Witten [30] in the
context of the developing of a background independence string theory. The limit p — 1 also
can be interpreted in terms of some scaling transformations of the renormalization group for
the Bruhat-Tits tree [34].

As we have seen in this survey, the non-Archimedean nature is encoded in the world-
sheet theory. In this context we must recall that p as a prime number, thus the analysis
necessarily needs to be carry out in a rigorous way. The right way of taking the limit p — 1
involves the introduction of unramified finite extensions of the p-adic field Q. In [9]
the limit p — 1 was discussed for tree-level string amplitudes, by using the topological
zeta functions introduced by Denef and Loeser [35,66]. We found that the limit p — 1 of
p-adic string amplitudes leads to certain string amplitudes (which are rational functions)
that we termed the Denef-Loeser open string amplitudes. These Denef-Loeser amplitudes for
N = 4, 5 points were computed in Sections 5.5 and 5.6, for more details see [9]. On the
other hand for N = 4, 5, in [9], we computed the limit p — 1 of the effective field theory
of p-adic amplitudes, i.e., the Gerasimov and Shatashvili Lagrangian (61) involving a
logarithmic potential. By computing the interacting generating functional at the tree level,
we verified that the corresponding amplitudes coincide exactly with the Denef-Loeser
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amplitudes. Based on this fact we have formulated a conjecture, which was already stated
in the introduction of this survey.

In what follows we review the evidence of the mentioned conjecture in the cases
N = 4, 5 following [9]. First, we review some basic results from [29] starting with the
effective action which is a field theory whose perturbative analysis leads to the p-adic
scattering amplitudes [14], it can be written as

1 p? D T _ia 1
= — — = 2 _ p+1

S9) = 557 [ a0 ( = g toes e, (58)

where A is the Laplacian on M and g is the coupling constant. The corresponding Euler-
Lagrange equation is

_1

Pt =¢r. (59)

In the source space (and consequently in the amplitudes) p is a prime number; how-

ever, in the target space (and consequently in the Lagrangian and in the equation of motion)

p is a real parameter. Thus, one can formally proceed to approach p to one and perform a

Taylor expansion at (p — 1) of the expression exp(—1Alog p) and exp(plog¢). Then the
resulting equation of motion is given by

Ap = —2¢log ¢. (60)

This is the motion equation of the Gerasimov—Shatashvili action

s@)= | de(<8¢>2 - V(¢)>, (61)
where (3¢)? = 1#9,¢ - d,¢ and V(¢) is the potential
V(¢) = ¢*log %2-

We consider that action (61) is the limit p tends to one of the effective action (58).
The action corresponding to the free theory with a source is written as

S0(9) = [ d7x[(29)* +¢7(x) + J(x)(x)].

Now, the action (61) can be conveniently rewritten as

S(9) = [ dPx[(29)* + m? ~ U(@)], ©2)

where U(¢) = 2¢? log ¢. Then the potential U(¢) can be expanded in Taylor series around
the origin in the form

U(¢p) = Ap* + B¢ + Cop* + D§° + - - -, (63)

where A, B, C and D are constants and they are real numbers.

Now, we briefly review the form of obtaining the four-point and five-point amplitudes
from the Lagrangian (61) [29]. In quantum field theory N-point correlation functions of N
local operators ([A) in N different points x1, x, ..., xn of M, can be written as

(—in)N 0" Z[]]
Z[]] 0](x1)0] (x2) - -+ 6] (xn) =g’

~ o~

(T(P(x1)p(x2) - - p(xn))) =
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where Z[]] is the generating functional constructed using interacting Lagrangian (62).
The functional can be computed as

Z[HZexP{ig/de(ithx)f

‘ir?/de<_ih5]((sx)>4_iil‘?/de<_ih5]((5x))5+'”}Zom’

where the generating functional of the correlation function for the free theory with sources
is given by

Zo[J] = Ndet(A — 1)] 2 exp { - é /de/de’](x)Gp(x - x’)](x')}.

Moreover, Gp(x — x’) is the Green-Feynman function of the differential operator (A —1).
For the computation of the interacting 4-point amplitudes can be obtained through
the generating functional

Z[]] = ~~-—iCh3/de(5]‘(5x)>4ZoU] SEERE

In terms of Z[]], 4-point amplitudes implies the computation of

5*Z]]]
OJ(x1)0] (x2)0](x3)0] (x4) J=0

= —4!iCh3/de { - %GF(X - n)} {— %GP(X - xz)}

(64)

X {— éGp(x - x3)} {— ﬁGP(X - x4)}

= —% / dPx Gp(x — x1) Gr(x — x2) Gp(x — x3) Gp(x — x4).

Here Gr(x — y) is the Green-Feynman propagator. This amplitude corresponds to
the Feynman diagram with only one vertex and four external legs. following the notation
of [14], we write for it the symbol Kj.

The contribution to the 4-point amplitudes of B¢® in (63) has a contribution at the
second order of the expansion. The corresponding Feynman diagrams have two vertices
at points x and y with two external legs, which are connected by a propagator Gr(x — y).
Thus, we have

20 =+ B [avx [ 4oy <(5]fx)>3(§]((5y)>330[f]+“'~ (65)

Moreover, the contribution to the 4-point amplitudes from the term C¢?> arises to
second order. Thus, it yields

Al
OJ(x1)0](x2)0](x3)0] (x4)

= 18B*1* /.de/dDy { zthp(xy)}
=0 . .

<[ gporte )] [ - gr6rtx—x0) [ - g6t — 2] | - ety -]
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1 .
+ _EGF(x_le) —EGF(]/—X:;)- _EGF(x_XZ) _EGF(}/_X])
- LGrr— x| | - Gry— )| [~ ey — )| | - £ Gr(r—m)
ﬁpx x4_ ﬁpy x3_ ﬁpy X2 ﬁpx X1

i ] i 1 1
+ —ZHGF(V—M)_ _EGP(]/_XIS) _EGF(x_xZ) EGF(X—M)
[ i 1T i 1T i 1T i T
+__EGF(}/_X4)_ __EGF(X_J%)_ _EGF(]/_JCZ)_ _—EGF(x—xl)_

+ | - éGF(y - x4)} [— %GF(X - x3)} {— %GF(X - xz)} {— %GFW - xl)} } (66)

The sum of expressions (64) and (66) constitutes the total amplitude which contains
the sum of the three channels s, ¢t and u. They are expected to be the p-adic 4-point
amplitudes arising in the limit p — 1. Thus, in the Fourier space it is expected to be written
schematically as

4 GS GS
A(GS) =Ky +inj /
i<j

. : 4 .
where x{Z° is the propagator x° = ﬁ in momentum space. Then Aég agrees with

A®

op(k) = =1+ L xl.?s up to the constant K§, see (54).

In the case of amplitudes of 5-points, the contribution of the term D¢’ in the La-
grangian is written as

Z[]]="--- —Dh‘*/d’?x(ﬂ(gx))Szo[]] T

Thus, the corresponding 5-point amplitude is

FZ[]]
0] (x1)0] (x2)0] (x3)0] (x4)0] (x5)

= —5!Dh4/de [ - iGp(x - xl)]
=0 2h
i i i i
x| — ﬁGF(x — xz)] [ — %Gp(x — x3)} {— ﬁGp(x — x4)} {— ﬁGp(x — x5)} . (67)

The contribution will be encoded in the symbol K$°.

Another contribution come from the term B¢?® x C¢*. In the Fourier space the corre-
sponding diagrams have precisely 2-vertices, 5 external legs attached to these vertices and
one internal leg between the two vertices (see, Section 3 of [14]).

This latter contribution to generating functional is written as

2] :---—iBCh5/de/dDy ((5;2”>S<5I‘Ey)>4zo[]]+~--. (68)

The 5-point amplitude yields

& Z|]]
6] (x1)0] (x2)6] (x3)0] (x4)6] (x5)

J=0

= —iBC(12)2h5/de/dDy {f éGp(xfy)} {{f %GF(X*X5):| {f éGP(X*X4):|

X [— %GPW - x3)} [— %GF(y_ xz)} {— %GF(y_ Xl)} +o
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+[— ZiFlGF(y_XS):| {— zihGF(x_xél)} { 2'hGp(x—X3)}

i
x [ ZhGF(}/ 2)] [—%GF(}/—M)} +} (69)
Moreover, in the computation of the 5-point amplitudes, the last contribution comes
from the term
Z[]=---+ dP dD( >< )( )Z e 70
g [P (5) (o) (o) 20 70

The diagrams associated with this expansion are diagrams with three vertices. Two
of them have two external legs and the other leg is internal. The remaining leg has one
external line and two internal lines attached.

Then the total contribution is
S Z[]] B3h a / Dy [ 4D D,
d /d /d {——pr—y)}

6] (x1)8] (x2)0] (x3)0] (x4)d] (x5) |

X {— %Gp(y—z)} { {— éGF(y—x&s)} {— éGF(Z - x4)} { 2hGF( 3)}

X [— ZihGp(x—xz)] [ Z'Fle(x—xl)] +- -~}, (71)

where a is a constant.
Summarizing, the 5-point amplitudes A5 obtained from Lagrangian (61) can be written
schematically (in notation from [14]) by

5
A=K+ ¥ xS+ Y xS
K§Si<j {ijkl}c{1,234,5}
i<j, k<l

where the three terms in the sum corresponds to the contributions of Equations (67), (69)
and (71) respectively. Notice that Agg; agrees with

©) _ GS GS..GS
Apy (k) =2 — Lxf* + ) o xg
<] {i,jk1}C{1,2345}
i<j, k<l

up to the constants KSGS, Kfs, see (55).
We now give a precise formulation of Conjecture 2 announced in the Introduction.
By using the Feynman rules for the effective Lagrangian given in [14],

—kigk, —

ki —1
AN _ — K4y N3k, |4 )
Q Loy Kiy iy <u§b§l p 1_p*k1‘akib*l

where the constants K, K;, ;, are rational functions in p with rational coefficients. Further-
more, if N < p + 1, the constant term K is not zero. Formally, we have

1
AN >_11mA< ) Ktop .y N3gIor ( )
fop @ Fizo K 1<az<;b§l ki ki, +1

We denote by Ag\é) the Feynman amplitude of Lagrangian (61). We conjecture that

N
AEES) — KGS 4 ZN 3K11 P> xgis,
1<a<b<l P
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GS _ 1 _
where X = Bk T Gr(k

relation between the constants K7, Kltfp i and the constants K©5, KSSQ

i» — ki, ). Notice that we are not asserting the existence of any

7. p-Adic Open String Amplitudes Coupled to a B-Field with Chan-Paton Factors

Strings propagating in a background with gauge fields was discussed many years
ago [57]. In particular, incorporating a Neveu-Schwarz B field in the target space leads to
a noncommutative effective gauge theory on the world-volume of D-branes [58]. In [7],
the N-point p-adic string amplitudes, with Chan—Paton rules and a constant B-field (the
Ghoshal-Kawano amplitudes) were studied, these amplitudes were introduced in [60].
The study was done by attaching twisted local multivariate zeta functions to the Ghoshal-
Kawano amplitudes. In this section we discuss the meromorphic continuation of the
Ghoshal-Kawano amplitudes, we also compute the 4 and 5 points amplitudes. Due to the
need for a particular symmetry, in this section, we take p = 3 mod 4.

7.1. The p-Adic Sign Function
A p-adic sign function is a multiplicative character of Q, that takes values in {+1}.

2
We set [(@; } as the multiplicative subgroup of squares in Q;, i.e.

2
[Qﬂ = {a € Qp;a = b* for some b € Q).

Lete € {1,...,p — 1} such that (%) = —1, where (-) is the Legendre symbol (see for
instance the Appendix of [7]). For p # 2 we have

2
Q,/ [Q;} ={Llepep},
this means that any nonzero p-adic number can be written uniquely as
2
) ;
x=7ta°, witha € Q; and 7 € Q;/[Qﬂ .

For a fixed T € {¢,p,ep}, and x € Q;, we define the p-adic sign function

1 ifx:az—'rbzfora,be@p

. (72)
—1 otherwise.

sgn_(x) := {

The following is the list of all the possible p-adic sign functions:

p=1mod 4 p =3mod 4
sgn, (x) = (=)™ sgn, (x) = (=1)"
sgn, (x) = (%) sgn, (x) = (~1)""0) (%)
sgn,, (¥) = (-1 (32)  sgn,,(x) = (%),

see [68]. The function sgn_ is a multiplicative character, which means that

(73)

sgn. (xy) = sgn.(x)sgn(y)-
Additionally sgn._. is a locally constant function in Q, which means that sgn_ (x —y) =
sgn(x) if [y, < [x][p.
We need the symmetry sgn_(—y) = —sgn_(y) (i.e. sgn (—1) = —1), this requires
p=3mod4and T € {p,ep}. Finally, for any x € Q,/, we define the p-adic Heaviside step
function as
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1 ifsgne(x) =1

He(x) = S (1+sgn.(x)) =

I\JM—‘

0 ifsgn.(x)=—1

7.2. A Class of Twisted Multivariate Local Zeta Functions

Let
=01 fm) X=X Xm)

be vectors of non-constant polynomials and multiplicative characters, respectively. And s :=
(s1,...,5m) € C™. The twisted multivariate local zeta functions have the form:

Zosxf)= [ @[ Tateet)LACoIT T 74)
QU £1(0) =

with Re(s;) > 0 for all i, ac stands for the angular component and ©(x) is a test function.
Integrals of type (74) are holomorphic functions in s, which admit meromorphic continua-
tions as rational functions in the variables p~1, ..., p~*" to the whole C", Théoréeme 1.1.4.
of [36], see also [26]. The case when y; is the trivial character has been studied previously,
see e.g., Lemma 8.2.1 of [26]. The case when x; = sgn_ is new.

Using Hironaka’s resolution of singularities theorem [50], in [7] we show that
Zo(s,x, f) admits a meromorphic continuation as a rational function in the variables
p~°,...,p~°m. More precisely,

L@),x( )

T1 (1 — p_zi 1NIJSJ_UJ)
jeT

Zo(s,x, f) =

(75)

where Lg »(s) is a polynomial in the variables p~1,..., p~*", and the real parts of its poles
belong to the finite union of hyperplanes

ZN iRe(s;) +vj=0, forjeT.

This result is a variation of Théoréeme 1.1.4. in [36].

7.3. The Ghoshal-Kawano Local Zeta Function

In [60] Ghoshal and Kawano proposed the following amplitude (for the N-point
tree-level, p-adic open string amplitude, with Chan—Paton rules in a constant B-field):

N-2

AN (0, xn-1) = [ [Tl = xR He(x) He(1 - )
Qy73\A i=2
kik;
< T Jxi= %l He(xi = x)
2<i<j<N-2
V=1
X exp{— ( Z (kifkj)sgn. (x; ) } del, (76)
2 \i<idi=n-1

where N > 4, k = (ky,...,kn), ki = (ko ..., ki1;),i =1,...,N, is the momentum vector
of the i-th tachyon (with Minkowski product k;k; = —ko ko + ky,ik1; + -+ ki ik; ), 0 is a
fixed antisymmetric bilinear form that is built with the inverse of the B-field; Hlﬁ Ezdxl- is
the normalized Haar measure of QPN -3,
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N—
A= {(XZ,...,XNQ) € Qy_3} ljfxi(l_xi) H (xi_xf) =0}’

2<i<j<N-2

and the momentum vectors obey
N
Y ki=0, kiki=2fori=1,...,N. (77)

To preserve the symmetry under the exchange of external momentum vectors, we
require that sgn_(x; — x;) = —sgn_(x; — x;), or equivalently sgn_(—1) = —1. Then for the
rest of this section we assume that T € {p,ep}.

To simplify the notation, we introduce the variables s;; € C, and §; € R for
1 <i<j<N-—1. Wealso set

N-2
. S(N_ i
F(x,s,7):= H |xi|;,1’\1 — xi|p(N R Hz(x;)Hz (1 — x;)
i=2
Sii
x T |xi—xjl,)/ He(xi — xj),

2<i<j<N-2

and

- —v—1 _
E(x,5,T;x1,xN_1) = exp{ 5 < 2 sijsgnT(xl — x]-)> } (78)
1<i<j<N-1

Now, we define the Ghoshal-Kawano local zeta function as

N-2
ZWN) (5,3, T;x1,xN_1) = / F(x,s,T)E(x,3,T;x1,xn-1) | [ dx;. (79)
N i=2

For the sake of simplicity, we use QII)’ ~3 as domain of integration in (79) from now on. We
now consider the convergence of the amplitudes (76). By using that |E(x,s, T; x1, xny-1)| =1,
|He(x;)] <1, |He(1—x;)| <1, for any i, and that ’HT(xi - xj)‘ < 1, for any i, j, we have

‘Z(N) (s,5,T;x1, xN—l)‘

N=2 N-2
. Re(s(n_1)i Re(s;;
/ [T il 11— xily Coc) 7 |xi—xj|pe(s”)l—[dxi
N-3 =2 2<i<j<N-2 i=2

<
Q

= ZWN)(Re(s)),

where Z(N)(s) is the Koba-Nielsen string amplitude studied in [6,8]. By applying the
results of [6,8], integral Z(N) (Re(s)) is holomorphic in an open set X C CP, therefore

zN) (s,8,7) is holomorphicin s € K forany s, T, x1, XN_1.

It is important to notice that if any of the integration variables is in Q \ Zj,, then due to
the local constancy of sgn_, the factor H;(x) H(—x) appearsin F(x, s, T), and H(x)H¢(—x) =
0. For this reason, we redefine the Ghoshal-Kawano local zeta function as

. N-2
Z(N) (SIEI T, xl/xN—l) = / F(x/ s, T)E(x/gr T,X1, xN—l) dei' (80)

N-3 =2
ZP
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7.4. Ghoshal-Kawano Amplitude as a Local Zeta Function

For § € R we have

exp{_z\/jlgsgnT(x)} = cosG) —V/—1sgn_(x) sinG). (81)

Using this identity and the convention x; = 0, xy_; = 1, we have

(x51) =Y Ei k(3 Hsgnr(x]') ] Isgn. (1 - x;) [ 1 sgn.(xi — Xj)- (82)

I,J,K jel j€] i,jeK

In a similar way, we obtain that

N-2

[THc(xi)H:(1=x;)  [[  Helxi—xj)

i=2 2<i<j<N-2

= Z e”,KHsgn Hsgn (1—x; H sgn.( (83)
IJ,K jel jeJ i,jekK

Using Formulae (82) and (83), and assuming x1 = 0, xy_1 = 1, xy = 0, we can write
the Ghoshal-Kawano zeta function as a finite sum of integrals of type

N-2

o S(N=1)i Sii
C(s) f H |x; ‘S“|1 _xi‘p(N g H |x; — j|p]H?CT( xi) [Tx-(1 —x)
zZy-3 i=2 2<i<j<N-2 Jjel j€J
x T xe(x del,
i,jeK

where C(5) is an R-analytic function and x. is a trivial character or sgn_.. This expression
is a local zeta functions of the type (74), which implies that amplitudes (76) are equal to a
finite sum of local zeta functions and consequently they admit a meromorphic continuation
in the kinematic parameters. Finally, we point out that the meromorphic continuation of
the Ghoshal-Kawano local zeta function (80) is also valid without taking the normalization
x1 =0,xy_1 =1, xy = o0, see Section V-C of [7].

7.5. Explicit Computation of Z*) (s,3, T)

We first notice that the exponential factor E (4) (8, T) can be taken outside the integral,
i.e., the four-point Ghoshal-Kawano zeta function is

_ i, ~ ~
zW(s,5,7) = eXP{z(SB + 312 + 523)}
X f |.‘)C2|512|1 — X2|532HT(JC2)HT(1 — xz)dxz.

The computation of this integral is based on the calculation of the following integrals:
assume that S C Z, ~ {0} satisfies —S = S, then

f|x2|slzsgnT(x2)dx2 =0, fort € {p,ep},
S
and

= J 1 =l Hee (1 = o)

_ p _ 3 + p717512 (1 _ P*l) + P717532 (1 _ pfl)
4p 2(1—pton) 2(1—ptms=)
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For further details, the reader may consult [7]. The explicit expression for the 4-point
amplitude, also reported in [60], is

ZW(s,35,7) = eXp{;GlB + 512 +§23)}

x (P -3 pie(-ph) pm-ph )

-y 2 p )

which is holomorphic in
Re(s1p) > —1and Re(sz) > —1.

7.6. Explicit Computation of Z®) (s, 3, T)

After some simple considerations involving sign functions,

70)(s,3,7) = E® 3)L(s, 7) := EO)(3) /Z FO)(x, 3,5, T)dxpds.
P

where
FO) (x2,x3,5,T) = [x2]52|x3[33(1 — %232 |1 — 2358 |2 — x3[32
X HT(Xz)HT(X3)HT(1 — XZ)HT(l — X3)HT(X2 — JC3).
and

E®)(3) = eXP{ 7(514 + 512 + 513 + 524 + 534 + 532) },

see [7] for further details. To compute the integral L(s, T), we subdivide the domain of
integration as

p—1
23 = | (i+pZp) x (j+pZp),
i,j=0
then L(s, T) becomes
p—1 p—1 .
L(s,T) = Y Lij(s,T) =: ) / FO) (xy, x3, 5, T)dxpdxs3.
i,j=0 ij=0" i+pZyXj+pZLy

The computation of the integrals L;;(s, T) is a simple but technical calculation, see [7]
for further details. The explicit expression for the 5-point Ghoshal-Kawano zeta function is

70)(s,3) = E® (;){ (P=3)(p=7) (P - 3) {p“”(l -r )

32p? 8p (1—p-1l-n)
+P‘1‘Sl3(1 - i ple(1—p )], (1-p 1)’ p 2B
(1—pl=sn) (1-pi-se) 4 (1—-p~l=s6)(1—p-l-se)

2 2p 1 _ P717523 1 _ p717513

+ZL 1— p*512*513*523*2

1 p7$427543752372 (1 _ pfl) ll 3 + p717523 (1 _ pfl) p717542 (1 _ pl)‘| }

1 78127513752372 1_ -1 1 3 717523 1_ -1 7175]3 1_ -1
p (P)l_ﬁ (-p ), » (P)]

+Z 1— p*542*543*523*2

2 2 1—p-1l-s + 1—p1-se
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This function is holomorphic in

Re(slg) > —1; Re(523) > —1; Re(542) > —1;
Re(slz + S13 +Sz3) > —2; Re(542 + S43 +523) > —2.

8. Resolution of Singularities and Multivariate Igusa Zeta Functions
8.1. Local Fields

We take K to be a non-discrete locally compact field of characteristic zero. Then K is
R, C, or a finite extension of Q;, the field of p-adic numbers. If K is R or C, we say that K
is an R-field, otherwise we say that K is a p-field.

For a € K, we define the modulus |a|g of a by

the rate of change of the Haar measure in (K, 4+) under x — ax
fora #0,
|k =
0 fora =0.
is well-known that if K is an R-field, then |a|p = || and |a|c = |a|?, where |-| denotes the
usual absolute value in R or C, and, if K is a p-field, then |- | is the normalized absolute
value in K.

8.2. K-Analytic Manifolds and Resolution of Singularities

We review the basic definitions of K-analytic manifolds following Igusa’s book [26].

Let K be a local field of characteristic zero, and let V be a nonempty open subset of
K" and let f : V — K be a function. We say that f is a K-analytic function on V, if for
every pointa = (ay,...,a,) € V, there exists an element f,(x) of K((x —a)) = K({x; —
ai,...,Xn —an)) (the ring of convergent power series around a) such that f(x) = f,(x) for
any point x near a. Amap § = (g1,...,89m) : V — K" is called K- analytic mapping on
V if each g; is an analytic function on V. Let X Hausdorff space and let n be a fixed non-
negative. Let U be a nonempty open subset of X, if ¢y; : U — ¢y (U) is a homeomorphism,
where ¢ (U) is a nonempty open subset of K", then we say that the pair (U, ¢y;(U)) is a
chart. For a variable point x € U, ¢(x) = (xy,...,x,) are called the local coordinates of x.
A collection of charts {U, ¢y;} is called an atlas of X if the union of all open sets V is X and
for every U, U’ such that U N U’ # & the map

puwody puUNU) = ppUNU)

is K- analytic. There is an equivalence relation over the set of atlases on X. Two atlases
are equivalent if their union is also an atlas. Thus, any equivalence class is called an
n-dimensional K-analytic structure on X. Hence, we say that X is a K-analytic manifold and
we write dim(X) = n.

Suppose that X and Y are two K- analytical manifolds defined by the atlases { (U, ¢y (U)) }
and {(V,¢y(V))}, respectively, and f : X — Y a map. If for every U, V such that
un f~1(v) # o, the map

Yyofopyg':pu(UNfH(V)) — Kim¥)

is K- analytic, then f is called a K-analytic map. If Y = K we say that f is a K-analytic
function on X. This definition does not depend on the choice of atlases into the equiva-
lence class.

Let X be a K-analytic manifold defined by an atlas { (U, ¢;) } and let Y be a nonempty
opensetof X. If U' = UNY # @ we put ¢y = ¢y = ¢u|w- Then { (U, )} is an atlas
for Y. Hence, Y is an open K- analytic submanifold of X. Furthermore, dim(Y) = dim(X).
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Now let Y be a nonempty closed subset of a K-analytic manifold X of dimension 7.
Suppose that X is defined by an atlas { (U, ¢y;) } with the following property: If ¢;(x) =
(x1,...,x5) and U’ = YNU # @, there exist Fy, ..., F, K-analytic functions on U with
0 < m < n such that U’ becomes the set of all x in U such that F;(x) = ... = F,(x) = 0 and

JF;
det| —* a) #0,
EACE

1<j<m

for every a € U'. By the implicit function theorem, the mapping

x = (F1(x),. ., Fn(X), Xpa1, -, Xn)

gives a K-bianalytic map from a neighborhood of a in U to its image in K". If we denote
by V the intersection of such neighborhood and Y, and put ¢y (x) = (Xp41,...,xn) for
every x € V. Then (V,yy) for all V and for each U as above, gives an atlas on Y. Thus, Y
becomes a K-analytic closed submanifold of X of dimension n — m.

Assume that U and V are nonempty open sets that contain a point 2 of X, and let
f, g be two K- analytic functions respectively on U, V such that f|y = g|w for some
nonempty open set W such thata € W C U N V. Then we say that f and g are equivalent.
An equivalence class is called a germ of analytic function at a. The set of such equivalence
classes becomes a local ring Ox , with maximal ideal myx, = {f € Ox, : f(a) = 0}.
In addition, K C Oy ,.

9. Multivariate Igusa Zeta Functions

Let K be a local field. If K is a p-field, resp. an R-field, we denote by D(K") the
C-vector space consisting of all C-valued locally constant functions, resp. all smooth
functions, on K", with compact support. An element of D(K") is called a test function.

Let fi(x) € K[xi,...,x,] be a non-constant polynomial for i = 1,...,m. We set
f=(,--, fm)ands = (s1,...,5m) € C™. Let ® be a test function. The multivariate local
zeta function attached to (f, ®) is defined as

m n
Zo(f,s) = / O [IH (] [dv,  when Re(s;) > 0foralli.  (84)
K< Dy i=1 i=1

where Dy := U" | ffl (0) is the divisor attached to f;(x),i = 1,...,m. In the multivariate
case i.e., for m > 1, the local zeta functions over local fields of zero characteristic were
studied by Loeser [36]. In the case of zero characteristic, the main tool to show the existence
of a meromorphic continuation of the multivariate local function is the Hironaka'’s resolu-
tion of singularities theorem. By applying this theorem to the divisor D, the mutivariate
local zeta function is reduced to the case of monomial integrals [25,26,36]. Currently,
the methods used by Igusa are not available in positive characteristic, so the problem of
the meromorphic continuations in this setting it is still an open problem.

Theorem 2 (Hironaka, [50]). Let K be a local field of characteristic zero. There exists an embedded
resolution o : X — K" of Dk, i.e.,

(i) X is an n-dimensional K-analytic manifold, o is a proper K-analytic map which is a composition
of a finite number of blow-ups at closed submanifolds, and which is an isomorphism outside
of o~ (D);

(i) 0~ (Dx) is a normal crossings divisor, meaning that c~'(Dg) = U;crE;, where the E; are
closed submanifolds of X of codimension one, each equipped with an m-tuple of non-negative
integers (Nfl,i/ ey me,i) and a positive integer v;, satisfying the following. At every point b of X
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there exist local coordinates (y1, . .., Yn) on X around b such that if Eq, . . ., E, are the E; containing
b, we have on some open neighborhood V of b that E; is given by y; = 0 fori € {1,...,r},

c*(dxy AL Adxy) = 7(y <Hy )dyl/\...Adyn, (85)
and .
o) = (foa)w) =e, Ty, ", forj=1,...,m, (86)
i=1

where 1 (y) and the er(y (y) belong to O |, the group of units of the local ring of X at b.

The Hironaka resolution theorem allows expressing a multivariate local zeta function
as a linear combination of monomial integrals, through a finite sequence of changes of
variables. We have the following theorem on multivariate local zeta functions over local
fields of zero characteristic.

Theorem 3. (Lemma 6.4, Remark 2 of [6]) Let f1(x),..., fu(x) € K[xq,...,x,] be non-
constant polynomials and ® : K" — C a smooth function with compact support, to which we
associate the multivariate local zeta function Zg(f,s). Fix an embedded resolution o : X — K of
Dy = U, - 1(0) as in Theorem 2 . Then

(i) Zo(f, s) is convergent and defines a holomorphic function in the region
m
ZNf].,iRe(Sj)—FUi >0, fOT’i eT;
=1

(ii) Zo (f, s) admits a meromorphic continuation to the whole C™, with poles belonging to

U U{iNﬁ,isj+vi+t:0}

icT teN {j=1
witht e Nif K=Randt = %N if K = C, and with poles belonging to
m
U (L ajsi+bi=0,
1<i<r Uj=1

in the p-field case. In addition, in the p-adic case the multivariate local zeta function has a
meromorphic continuation as a rational function

Py (s)

— (E Nf],,is]'-&-v,-)
[I{1-q V7

ieT

Zcp(f, S) =

ing=°1,...,q %", where Py (s) is a polynomial in the variables q—°
10. Meromorphic Continuation of Koba-Nielsen Amplitudes Defined on Local Fields
of Characteristic Zero

The Koba-Nielsen open string amplitudes for N-points over a local field K of charac-
teristic zero are defined as

2 N=2
A0 [ T -5 T s T )
1=

-3 i=2 2<i<j<N-2
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where k = (ki,..., kn), ki = (koj, ..., ki) € CH*1 fori=1,...,N, is the momentum vector
of the i-th tachyon (with Minkowski product k;k; = —ko ko ; + ki,k1,j + - - - + ki ik; j), obeying

N
Y k=0, kikj=2fori=1,...,N. (88)

The parameter [ is typically taken to be 25. However, we do not require using the critical
dimension, thus [ can be any positive number. These amplitudes were introduced by
Brekke, Freund, Olson and Witten, among others in their works about string amplitudes,
see e.g., Section 8 of [4]. In the case N = 4 and K = R, the amplitude (87) is the Veneziano
amplitude, see [10]. In Section 2 of [48] and [49], it was established that the N-point closed

string amplitude at the tree level is the product of A(%N) (k) times a polynomial function
in the momenta k. Hence, the results established in [6] are still valid for closed string
amplitudes at tree level.

If we take the Minkowski products of the kinematic parameters as follows k;k; = s;; € C,
the string amplitude (87) becomes to the following integral which is a type of multivariate
local zeta function

. N—
2= [ Tr-sh T |-l deu (59)

KN*é\DN =2 2<i<j<N-2

where [TV ,2dx; is the normalized Haar measure on KN 3, s = (si) € CP,withD = N (1\53)
denotes the total number of indices 7j, and

N-2
DN—{xEKN3Hle1—xi) 11 (xi—xj)—O}.
i=2 =2 2<i<j<N-2

We have called integrals of type (89) Koba—Nielsen local zeta functions. For simplicity of
notation, we put KN=3 instead of KN=3 < Dy in (89).

In [6], we establish, in a rigorous mathematical way that the Koba—Nielsen string
amplitudes defined on any local field of characteristic zero are bona fide integrals and that
they can be extended to meromorphic functions in the kinematic parameters. In order to
prove the meromorphic continuation of (89), we express it as linear combinations of local
zeta functions. These computations were first made in the case of K = R, but they can be
easily extended to other local fields of characteristic zero. Thus, we only review the real
case. We consider RN=3 as an R-analytic manifold, with N > 4, and use {x,,...,xny_2} as
a coordinate system. In order to regularize the integral (89), we use a partition of RN~3
constructed using a smooth function x : R — R satisfying

1 if x € [-2,2]
x(x) =
0 if xe(—oo,—2—€|]U[2+¢€,+00),

for some fixed positive € sufficiently small. This function is well-known, see e.g., Section 1.4
of [69], Section 5.2 of [26]. The number 2 was chosen in an arbitrary form, the key point is
that the interval [0, 1] is included in the locus where x = 1.

Now, we can write

N(s) = ;z?“(s) (90)

with

) : N-2 N2 o o N2
zM6) = [ @ T T =xP™ TT |w—x[" [Tdx, oD
; ' i=2

RN-3 j=2 j=2 2<i<j<N-2
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where the functions {¢;} are defined as

o1 : RV 5 Ry v [Tx(a)[ 101 = x(x:), (92)
i€l i¢l
for I C {2,...,N —2}, including the empty set, with the convention that [[;co- = 1.
Notice that ¢; € C®°(RN73) and Y; ¢;(x) =1, for x € RN73, i.e,, the functions {¢;} form
a partition of the unity.

In the case I = {2,...,N —2}, Z§N) (s) is a classical multivariate Igusa local zeta
function (since ¢;(x) has compact support). It is well known that these integrals are holo-
morphic functions in a region including Re (si]-) > 0 for all ij, and they admit meromorphic
continuations to the whole CP, see ([6], Theorem 3.2).

In the case I # {2,...,N — 2}, by changing variables in (91) as x; — L fori ¢ I,

and x; — x; fori € I, we have HN zdxl — HZ¢I y Hl 22dxl, and by settmg xX(x;) =
1-— (Z) fori ¢ 1,ie.,

we have that supp ¥ C [f%,ﬂ and ¥ € C*(R). Now setting ¢7(x) := [Tz X(x)
[Tier x(xi), and

N-2
Fi(x,s) = I—yxj!s“ [I- x| AT s x|
€ = <i<j<N-—
! ! i,]jel
< IT le—x"  TI [-xyl™ T [1-xxl,
2<i<j<N-2 2<i<j<N-2 2<i<j<N-2
i, j¢l1 i¢l, jel iel, j¢l1
we have
(N), .y _ p1(x)Fi(x,s)
Zi(s) = / Stts(n-1)iTlo<j<N—2 512 dexl’ ©3)
RN-3\Dy I1]xil j#i

il
where Dj is the divisor defined by the polynomial

ll_[xzzhzlxz [T (i-x) JI (x-x)

i=2 2<i<j<N-2 2<i<j<N-2
i, jel i, jgl
< I (Q=xxg) [T (1)
2<i<jEN-2 2<i<jEN-2
i¢l, jel icl, j¢l

The integrals Z}N) (s), with I # {2,...,N — 2}, are not classical multivariate local
zeta functions thus we do not apply the theory of local zeta functions. Thus, in [6] we
show that they define holomorphic functions on some nonempty open in CP, and admit
meromorphic continuations to the whole CP.

Lemma 1. (Lemma 4.1 of [6]) Forany I C {2,...,N — 2}, the function Z}N) (s) is holomorphic
in s on the solution set H(I) of a system of inequalities of the form

H(I) = {si]- e CP; Z Nijx(I)Re(sij) + i (I) > 0, fork € T(I)} #+ @, (94)

ijeM(I)
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where Njj (1), vk(I) € Z, and M(I), T(I) are finite sets. More precisely, for each k, either all
numbers Njj i (1) are equal to 0 or 1 and (1) > 0, or all numbers Njj i (I) are equal to 0 or —1
and v (I) < 0.

In addition, Z}N) (s) admits an analytic continuation to the whole CP,asa meromorphic
function with poles belonging to

P(I) = U U {Sij € (CD; Z Nij,k(l)sij -|—’)/k(1) +t= 0}. (95)

teNkeT(I) jjeM(I)

To show the existence of the meromorphic continuation of Z(N) (s) it is necessary that all
the integrals Z}N) (s) be holomorphic in a common domain, and then Formula (90) allows

us to construct a meromorphic continuation of Z(N)(s). We show that N;H(I) contains a
nonempty open subset of CP by studying the possible poles of integrals

N N
ZM(s) = Z{M(s) Jsys
for any I, and proving that Z(N)(s) := Z(N) (s) |s;j=s is @ holomorphic function in the region

2
N/

N3 < Re(s) < —

This fact was proved in Theorem 4.1 in [6].

Furthermore, the Koba-Nielsen local zeta function Z(N) (s) is convergent and holo-
morphic in the region determined by the following inequalities:

Re(si]-) > —1

for all w variables s;;,

ZRG(SU) + Z Re(S,’j) > —#]
jer ije]
i<j

for all subsets | C {2,...,N — 2} with #] > 2,

Y Re(s(y_1);) + ) Re(sij) > —#]
j€l ije]
1<j

for all subsets | C {2,...,N — 2} with #] > 2,

Z Re(sij) > —#]+1
ije]
i<j

for all subsets ] C {2,...,N — 2} with #] > 3,

ZRe(slj) + ZRG(S(NA)]’) + Z Re(sij) + Z Re(sij) < —#]
J€T j€J ie{Z,...',l\fz}\] ije]
j€ i<j

for all subsets | C {2, ..., N— 2} with §] > 1. This region contains the open subset defined by

2
NI

N_2 < Re(si]-) < —

for all indices ij.
As in the p-adic case, we use the meromorphic continuation of (89) to the whole CP,

which is denoted by Z]%N) (s), as regularizations of the amplitudes A]%N) (k) by redefining
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AR () = 27 (5) 15 =i

see Theorem 6.1 of [6]. It is important to mention here that in the regularization of A%N) (k),
we do not use the kinematic restrictions (88).

Furthermore, in [6] we show that AI(KN) (k) converges on some open subset of C(N~1(/+1)
by showing that this open is mapped into the domain of convergency of Z]g\])(s) by

k — sij = kikj. In addition, we prove that A]%N)(k) extends to a meromorphic func-
tion to the whole C(N=D(+1) and that its polar set is contained in the inverse image of the

polar set of Z%N) (s) under that mapping, where the possible poles are described in terms of
numerical data of suitable resolutions of singularities:

Theorem 4. (Theorem 7.1 of [6]) Let K be a local field of characteristic zero. The integral A]%N) (k)

converges and is holomorphic in the open set U < CIN=VUFD) [t extends to a meromorphic
function in k on the whole CIN=1U+1),

If K is an R-field, then the possible poles of A]%N) (k) belong to

1C{2,...,N=2} teNreT(I) 1]€M()

U U U {kG(CNl Z'H Z N,]r kk + (1) + @—0}1 (96)

where Nj; (1), v+(I) € Z,and M(I), T(I) are finite sets,and [K : R] = 1ifK =R, and [K : R] =

2ifK = C. IfK is a p-adic field, then A]%N) (k) is a rational function in the variables q_k"ki , and its
possible poles belong to

U U {keCN DD, 3™ Ny, (1) Re( kk)+%(1):0}.
1C{2,.,N-2} reT(I) ZJGM(I)

More precisely, for each r, either all numbers Nj; (1) are equal to 0 or 1 and y,(I) > 0, or all
numbers Nj;,(I) are equal to 0 or —1 and ,(I) < 0.

We now show explicitly the existence of a meromorphic continuation for Z]g\]) (s)in
the cases N = 4, 5, by using Hironaka'’s resolution of singularities theorem.

10.1. Example: 4-Point Koba—Nielsen String Amplitude
The 4-point Koba-Nielsen open string amplitude is defined as

7@ (s) = /|x2|512|1 — [ dx,.

Using the function

(97)

1 if X € [-2,2]
X(x2) = {

0 if xp€(—o00,—2—¢€]U[2+€, +0),
where € > 0 is sufficiently small, we construct the following partition of the unity:

Py R = R xe x(x)
pz: R = R, xp—=1—x(x)

Notice that ¢g, ¢(53 € C*(R) and ¢ 5 (x) + ¢z (x) =1, for x € R. Hence,
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zW(s) = 2350 (s) + 25 (s),
with .
Zg)} (s) = /X(x2)|x2|slz|1 — x[%2dxy (98)
R
and
() = [(1= xe) xal2[1 - ol d. %9)

R
The integral (98) is a multivariate local zeta function since x(x;) has compact support.
(4)

By a classical result of local zeta functions Z {2}(5) converges when Re(s;p) > —1 and

Re(s3p) > —1. Furthermore, it admits a meromorphic continuation to the whole C?, see
Theorem 3.2 of [6].

The second integral (99) is not a multivariate local zeta function but it can be trans-
formed in one by changing of variables as x, — xl—z, then dx; — le dxy, and by setting

|x2
X (x )—1—;(( )wehavethat

B 1 if |x2| < 2+€
X(x2) = .

0 if x| >3,

becomes
Z(s) = [ Rlxa) ol #2521 = ety
which is analytic when — Re(s12) — Re(s3) —1 > 0 and Re(s32) +1 > 0. We concluded

that Z()(s) is analytic in the region

Re(s1p) > —1, Re(sz2) > —1, Re(s12) + Re(sz) < —1.

Which contains the open set —1 < Re(s12) < —3 and —1 < Re(s3) < —1.

10.2. Example: 5-Point Koba—Nielsen String Amplitude

Fix N = 5. By using the function x(x), see (97), we define the following partition of
the unity:

Pray: R* = R (x2,x3) = x(x2)x(x3),
Py R = R (x2,x3) = x(x2)(1—x(x3)),
o R = R (xo,x3) = x(x3)(1 - x(x2)),
gz R* = R (x2,x3) = (1—x(x2))(1— x(x3))
Then Z)(s) = Zgg}(s) + Zg)}( )+ Zg)}(s) + Zg) (s). We consider the first integral
83} /;( x2) x (x3) 22512 |x3]°13|1 — 252 |1 — x3]°8|xp — x3|°Bdxpdxs. (100)

R2

Since ¢y, 3) has compact support, then integral (100) is a local zeta function. Thus, we
use resolution of singularities of the divisor D5 defined by x2x3(1 —x2) (1 — x3) (x2 — x3) = 0.
This arrangement is not locally monomial only at the points (0,0) and (1,1). Hence, we
pick a partition of the unity, Y:7_, Q;(x2, x3) = 1, and we write

]

2
(5)
{2 5 (5 ZO Zg, (s
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where

z5)(s) = /Rz 0 (x2, 23) 32 2 |38 |1 — 22521 — 23 x5 — x3[*B dxadxcs.

We assume that ()g and () are smooth functions with support in a small neighborhood
of (0,0) and (1,1), respectively. So, we only compute the integrals Z(()SO) (s) and Zg]) (s).

In terms of convergence and holomorphy, around (0, 0), the factor |1 — xp[*2|1 — x3|°8
can be neglected, hence we only need an embedded resolution of x;x3(xy — x3) = 0, which

is obtained by a blow-up at the origin. It means to make the changes of variables

JO:RZ%RZ,‘LIQ}—)JCQZMZ

Uz — X3 = UUs.

(5)

Hence integral Z(, (s) becomes

/(Qo 0 00) (g, u3)[ua| 2P BT ug 931 — 15| g (u, 5)dundus,
R2

where g(u,s) is invertible on the support of (g o 0y and can thus be neglected from the
point of view of convergence and holomorphy. Hence, by ([6], Lemma 3.1), we obtain the
convergence conditions:

Re(Su) + Re(513) + Re(s23) +2>0, Re(Szg) +1>0, Re(sl3) +1>0. (101)

We can take other chart of the blow-up, i.e., the change of variables

0’6 : Rz —>R2; Up —r X3 = U U3

Uz — X3 = us,
with this change yields the same first and second condition and
Re(Slz) +1>0. (102)

By symmetry we can consider any of these changes of variables. Completely similarly,

for the convergence of Zgl) (s), we need also the new conditions

Re(542) + Re(543) + Re(s23) +2>0, Re(542) +1>0, Re(543) +1>0. (103)

The conditions coming from the locally monomial integral Zgz) (s) are already included.

The integral Z g)} (s) is not a multivariate local zeta function, so we take the following
change of variables x, — xlz, then we have dx, — ﬁ dxp, and by setting X(xp) :=1—x (Xl—z) ,
2
we have that

Then
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ZE)(s) = [, Rr)x(a) ral 707 2 1 — 1 —

X |1 — x2x3\523dx2dx3.

Since xx3(1 — x2) (1 — x3) (1 — x2x3) is locally monomial in the support of x(x2)x(x3),
the only new condition is

—Re(s12) — Re(sgn) — Re(sz) — 1 > 0. (104)
(5)

Completely analogously, Z ) (s) induces the extra condition
— Re(s13) — Re(sy3) — Re(sp3) —1 > 0. (105)

For the last integral, we are setting x(xz) := 1 — X(%) and x(x3) :=1— )((xl—s)
Thus,

2)(s) = [, Rea)R(xa) ol ~52se 2| onmsismn 21— |1 — g
X |XQ - X3‘SZ3dJC2dX3.

In this case, we have the same divisor as for Z (i)3} (s); the differences are the powers of

|x2| and |x3| and the function x(x2)x(x3) that does not contain (1, 1) in its support. Hence,
the only new condition will arise from the blow-up at the origin, namely

—Re(s12) — Re(s2) — Re(sz3) — Re(s13) — Re(sa3) —2 > 0. (106)

Hence Z©) (s) is analytic in the region defined by conditions (101)-(106), i.e.,

Re(s;j) > —1, for all ij
Re(s12) +Re(s13) + Re(sz3) > =2, Re(ssz) + Re(ss3) + Re(sz3) > -2,
Re(s12) + Re(sg) +Re(sy3) < —1, Re(s13) + Re(ss3) + Re(sys) < —1,
ZRG(S,‘]') < =2.
ij

This region of convergence contains the open subset defined by

2 2
3 < Re(S,']‘) < 5

Then, in particular, Z() (s) is analytic in the interval —% < Re(s) < —

for all 7j.

[$11 8]
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