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James N. Grima-Cornish 1 , Liana Vella-Żarb 2 , Krzysztof W. Wojciechowski 3,4 and Joseph N. Grima 1,2,*

����������
�������

Citation: Grima-Cornish, J.N.;
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Abstract: Boron arsenate, BAsO4, is crystalline material (I4 group) that was recently shown to be
auxetic in its (001) plane for loading in any direction in this plane, and, which exhibits negative linear
compressibility at elevated pressured in its [001] direction. This work presents and discusses the
results of extensive density functional theory (DFT) based simulations aimed at studying deforma-
tions that such crystals undergo when subjected to shear loading in an attempt to obtain a better
insight into the manner in which this material responds to mechanical loads. The deformations for
shearing in the (001) plane are described in terms of the ‘rotating squares’ model, which was used to
explain the auxeticity in the same plane where it was shown that shear loading results primarily in
deformations which make the ‘squares’ become ‘parallelogram-like’ rather than rotate. This lack of
rigidity in projected ‘squares’ was discussed by looking at changes in bond lengths and bond angles.
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1. Introduction

Boron arsenate, BAsO4, see Figure 1, is a spectacular material having both a history
and a prehistory, particularly in terms of its synthesis and crystal properties. Prior to being
characterised and noted as a material with its own importance by Schulze in the early
1930s [1–3], it was first mentioned by Berger in a note published a century ago which
presented a number of novel reactions [4]. In one of Berger’s new reactions, arsenic was
obtained by evaporation of the resultant compound formed of the mixture of arsenic acids
and boric acids. Here, boron arsenate was not characterized and no particulars were
given for the synthesis of the compound, as it was not the scope of their study, in which
it was used as a reducible compound to form arsenic vapours. This crystal was then first
characterized using X-Ray diffraction by Schulze in 1933 [1], when it was described as
consisting of connected tetrahedra of BO4 and AsO4, which is the structural model being
used in this work.

Schulze’s method for the synthesis of the crystal, was described in a later publication
the following year as a solid state reaction between arsenic oxide (As2O5) and boron
trioxide (B2O3) at high temperature [2]. This method produced fine single crystals with
edges of approximately 0.1 mm in length. Within the same publication, Schulze reported
that the crystal was tetragonal, a result which was inferred from the tetragonal growth
of the crystals. This 1934 publication also made the first comparison of BAsO4 to the
structure of cristobalite, a report which led to a number of important advances throughout
the years. According to Gruner [5], another article published at around this time was by
Levi and Ghiron [6], where it was determined that the boron arsenate that grows from such
crystallizations is in one crystalline form, i.e., it is isomorphic.
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Figure 1. (a) The crystal structure of BAsO4 shown in (a-i) the (001) plane, (a-ii) the (100) and (a-iii) the (010) plane where 
the atoms are represented by spheres and the bonds by rods. The alignment shown here is in accordance with the IRE 
convention and is the one used in present work. (b) The representation of BAsO4 in terms of tetrahedra as projected in the 
(001) plane, which representation emphasises the ‘rotating squares’ motif. (c) The Poisson’s ratio in the (001) plane for 
loading in the plane, calculated using standard axis transformation technique. Note that the Poisson’s ratio is always 
negative in this plane where 0° corresponds to νxy = −0.33 (loading in the x-direction, defined by νxy = −εlateral/εaxial = −εy/εx = 
−s21/s11) whilst 90° corresponds to νyx (loading in the y-direction, defined by −εx/εy = −s12/s22). 

Schulze’s method for the synthesis of the crystal, was described in a later publication 
the following year as a solid state reaction between arsenic oxide (As2O5) and boron triox-
ide (B2O3) at high temperature [2]. This method produced fine single crystals with edges 
of approximately 0.1 mm in length. Within the same publication, Schulze reported that 
the crystal was tetragonal, a result which was inferred from the tetragonal growth of the 
crystals. This 1934 publication also made the first comparison of BAsO4 to the structure of 
cristobalite, a report which led to a number of important advances throughout the years. 
According to Gruner [5], another article published at around this time was by Levi and 
Ghiron [6], where it was determined that the boron arsenate that grows from such crys-
tallizations is in one crystalline form, i.e., it is isomorphic. 

Another two methods for preparing boron arsenate were described within the same 
year (1934), one by Schumb and Hartford [7] and the other by Gruner [5]. In the former, 
100 g of arsenic acid (H3AsO4) were dissolved in the minimum amount of water before 
any solid suspended matter was filtered off. The filtered solution was then heated to its 
boiling point and 20 g of boric acid (B(OH)3) were added. The solution was kept at boiling 
point until a white precipitate formed. This white precipitate contained small crystals 
which were examined and characterized in a conglomerate form. The specifics on the size 
of the crystals and the characterization carried out were actually reported by Schulze in 
1935 [3], citing a private communication he had with Schumb and Hartford. The method 
for the preparation of BAsO4 described by Schumb and Hartford appears to be the same 

Figure 1. (a) The crystal structure of BAsO4 shown in (a-i) the (001) plane, (a-ii) the (100) and (a-iii) the (010) plane where
the atoms are represented by spheres and the bonds by rods. The alignment shown here is in accordance with the IRE
convention and is the one used in present work. (b) The representation of BAsO4 in terms of tetrahedra as projected in
the (001) plane, which representation emphasises the ‘rotating squares’ motif. (c) The Poisson’s ratio in the (001) plane
for loading in the plane, calculated using standard axis transformation technique. Note that the Poisson’s ratio is always
negative in this plane where 0◦ corresponds to νxy = −0.33 (loading in the x-direction, defined by νxy = −εlateral/εaxial =
−εy/εx = −s21/s11) whilst 90◦ corresponds to νyx (loading in the y-direction, defined by −εx/εy = −s12/s22).

Another two methods for preparing boron arsenate were described within the same
year (1934), one by Schumb and Hartford [7] and the other by Gruner [5]. In the former,
100 g of arsenic acid (H3AsO4) were dissolved in the minimum amount of water before any
solid suspended matter was filtered off. The filtered solution was then heated to its boiling
point and 20 g of boric acid (B(OH)3) were added. The solution was kept at boiling point
until a white precipitate formed. This white precipitate contained small crystals which
were examined and characterized in a conglomerate form. The specifics on the size of the
crystals and the characterization carried out were actually reported by Schulze in 1935 [3],
citing a private communication he had with Schumb and Hartford. The method for the
preparation of BAsO4 described by Schumb and Hartford appears to be the same method
which was only briefly described by Berger back in 1920 [4], and it gives important details
which were not previously disclosed, thus making this synthesis reproducible.

The second method for the preparation of boron arsenate was reported by Gruner,
and it involved the reaction between arsenic pentoxide and boronic acid [5]. The resulting
arsenic salt product was placed in water and studied further. It was found that the boron
arsenate produced, once placed in water, forms two different hydrate complexes depending
on the temperature: the trihydrate (BAsO4·3 H2O) and the hexahydrate (BAsO4·6 H2O)
forms. The solid forms of these two complexes have different X-ray diffraction patterns
(obtained in Debye–Scherrer geometry). Both also differ from the X-ray diffraction pattern
of the anhydrous form of boron arsenate [2]. Comparison with the diffraction data for
corresponding boron phosphates showed a very high similarity between the powder
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patterns (both hydrates and anhydrates) [5]. An analysis of the literature of time, also
reveals that in some of the early publications, BAsO4 was referred to as having a low-
cristobalite-like structure by Schulze and later by Nieuwenkamp and also by Shafer, which
is now known to not be the case; however, they correctly noted the similarity between this
structure and the structure of cristobalite in general [2,8,9].

Much more recently, a microwave synthesis version of the method by Schulze was
carried out successfully by Baykal et al. (2006), which decreased both the energy and the
time required to carry out such a synthesis [10].

This paper will look at a different aspect in BAsO4 namely, from the perspective of its
mechanical properties and will focus on the atomic level deformations that occur when
this material, as a single crystal, is subjected to mechanical loads. Such a perspective is
important in view of the anomalous negative Poisson’s ratio (auxetic) [11,12] and negative
linear compressibility characteristics [12,13], properties it shares with a number of other
anomalous materials, models and structures. In this respect it is important to highlight that
both fields of auxetics and that of negative linear compressibility has grown substantially
in the past few years, as discussed elsewhere [14–16]. For example, in the case of auxetics,
apart from the very early and fundamental modelling of cellular solids [17,18], studies
include production and/or experimental characterisation of polymeric auxetics [19,20]
foams or other cellular systems [21–23], biomaterials [24], modelling and/or experimental
characterisation of crystalline materials such as hydrophthalates [25] silicates [26] and other
oxides [11,12,27], the developments include deign and optimisation of molecular-level auxet-
ics [28–33], studying of various auxetic model structures and macromodels [34–46] including
smart tuneable auxetics [47,48]. Reported applications of auxetics include sport [49], fil-
tration [50,51], textiles [44] and medicine [52,53]. Similar advances have also been made
in the field of negative compressibility [16,32,54–60], including a fundamental study that
looks into stability aspects of such negative systems [61]. Crystal symmetry plays an
important role on the manifestation or otherwise of auxetic behaviour and a number of
key studies have focused on looking at crystalline materials with specific symmetries [62].
Worth highlighting are the studies on crystals with cubic symmetry [63–66] and tetragonal
symmetry [67,68], to where BAsO4 belongs. The theoretical framework required to study
crystals in this manner is well established and explained in detail elsewhere [69].

2. Rationale

BAsO4, see Figure 1, has a particularly interesting crystalline structure with the
‘rotating squares’ motif, well known for its auxetic characteristics [37], being projected in its
(001) plane (see Figure 1b). It is hence not surprising that a number of recent studies have
looked at this material to study its mechanical properties. In particular, one should mention
a seminal study by Haines et al. [13] that has looked at this material as this is subjected
to hydrostatic pressure. This work was able to identify, for the first time, that BAsO4
exhibits negative linear compressibility (NLC) in its [001] direction at elevated pressures.
This anomalous NLC property has been explained this effect in terms of deformation of
the tetrahedra which appear to be the main cause of this effect [12] (the ‘demi wine-rack
mechanism’), rather than the more conspicuous tetrahedral tilting about a local axis parallel
to the [001] direction. A more recent study, which looked at uniaxial loading with a focus
on the [001] direction, has further confirmed this amenable mode of deformation thus
re-enforcing this explanation [27].

In addition to the experimentally measured NLC, BAsO4 has also been shown to
exhibit a negative Poisson’s ratio in the (001) plane [11,12], see Figure 1c, a property which
was explained in terms of tetrahedral rotations about a local axis parallel to the orthogonal
[001] direction. More specifically, as shown in Figure 1, the tetrahedra project in the
auxetic (001) plane with a ‘rotating squares’ motif [37], a geometry which is amenable to
auxeticity. More importantly, a DFT based study was able to confirm that uniaxial loading
in the [100] or [010] direction is predicted to result in molecular-level deformations where
these 2D projected squares appear to rotate relative to each other, i.e., deform with an
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auxeticity inducing deformation mechanism. Here, it should be noted that as discussed
by Lisovenko et al. [67,68], in general, a tetragonal crystal such as BAsO4 having a seven-
constant tetragonal anisotropy (i.e., s16 = −s26 6= 0, see Table 1) is expected to manifest
some asymmetric aspects in the dependence of the Poisson’s ratio with the direction of
loading compared to its six-constant tetragonal anisotropy counterpart (i.e., s16 = −s26 = 0).
This is hardly visible in Figure 1c due to the fact that the magnitude of the coefficient
s16 = −s26 is too small relative to the other coefficients to induce appreciable asymmetry in
the xy-plane. Obviously, asymmetry is not precluded in the other planes.

Table 1. The elements of the compliance matrix of BAsO4 as reported by Grima-Cornish et al.
(2020) [12], which correspond to shear modulus Gxy = s66

−1 = 40.5GPa. Note that these elements
fulfil symmetry requirements for a tetragonal crystal [69]. After the application of standard axis
transformations [69], the elements of this matrix may be used to compute the mechanical properties
of the crystal in any direction/plane.

sij (x10−12 Pa−1) j = 1 2 3 4 5 6

i = 1 10.4 3.4 −5.1 0.0 0.0 0.3

2 3.4 10.4 −5.1 0.0 0.0 −0.3

3 −5.1 −5.1 12.6 0.0 0.0 0.0

4 0.0 0.0 0.0 18.9 0.0 0.0

5 0.0 0.0 0.0 0.0 18.9 0.0

6 0.3 −0.3 0.0 0.0 0.0 24.7

However, despite these important discoveries, there are various aspects in the me-
chanical behaviour BAsO4 that deserve further studies. For example, the idealised ‘rotating
squares’ model, where the squares are perfectly rigid and simply rotate relative to each
other [37], assumes that the system cannot shear in plane. This is the equivalent of having
the compliance term s66 = 0, which would correspond to an infinite shear modulus Gxy.
(Prima facie, one might ask if zero value of s66 is not in conflict with the stability of the
system, which is typically granted by positive definiteness of the (Gibbs free) energy. The
latter, inter alia, implies s66 > 0. The rotating square model, however, is so internally con-
strained that it is only a ‘one degree of freedom’ model. Thus, since shear cannot be realised
in the idealised ‘rotating squares’ model, the positivity of s66 is not implementable—nor
necessary.) However, as evident from Table 1, which lists the simulated compliances of
BAsO4, this is not the case with s66 being predicted as 24.7 × 10−12 Pa−1, corresponding
to a finite Gxy = s66

−1 = 40.5GPa. Furthermore, although the idealised ‘rotating squares’
model predicts a constant in-plane Poisson’s ratio of −1 irrespective of the direction of
loading, the negative Poisson’s ratio in the (001) plane of BAsO4 is anisotropic and much
lower in magnitude. In fact, although the DFT simulations suggest that single crystalline
BAsO4 is predicted to exhibit negative Poisson’s ratio in its (100) plane for loading in any
direction (see Figure 1c), the Poisson’s ratio reached a maximum negative value of just
c. −0.33 on-axis with auxeticity being at a minimum at 45◦ off-axis.

To explain such profile of mechanical properties, it is important to not only look at
the behaviour of the material when it is subjected to uniaxial loading, but also when it
is subjected to shear, something which so far has never been considered in detail in the
case of BAsO4. In view of this, the present paper, with the help of results from simulation,
will analyse the shear properties of boron arsenate with a special focus on the nanoscale
molecular-level deformations in an attempt to explain better the trends in the anomalous
Poisson’s ratio of this material.

3. Simulations and Analysis

The procedure used for the simulation is based on density functional theory (DFT)
approach performed using the CASTEP code [70] as implemented within the Materials
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Studio V6.1 modelling environment (Accelrys, now Biova, 2019). Details of the simulations
are provided elsewhere [12,27]. In particular, since this study will focus on shear deforma-
tions, meaning that the unit cell will not retain its 90◦ unit cell angles, due importance is to
be given to the manner how the crystal is aligned in the 3D global space. For this work, the
single crystal of boron arsenate with its standard I4 symmetry reduced to P1 was aligned
within the global coordinate system according to the convention adopted by the Institute
of Radio Engineers (IRE) [71], i.e., in a manner that the [001] crystal direction is parallel to
the global z-axis and the [010] crystal direction is aligned in the global yz-plane with no
constraints being placed on the [100] direction. For this type of orientation, the unit cell has
its shape defined by the triangular matrix H such that:

H =

 a
b
c

 =

 ax ay az
0 by bz
0 0 cz


where a, b, c are the unit cell vectors which, for this type of orientation, are of the form [72]:

a =
[
ax, ay, az

]
= [a sin(β) sin(γ),−a sin(β) cos(γ), a cos(β)]

b =
[
0, by, bz

]
= [0, b sin(α), b cos(α)]

c = [0, 0, cz] = [0, 0, c]

where a, b, c are the unit cell lengths whilst α, β, γ are the unit cell angles. Here, it should
be noted that the reduction of symmetry from the standard I4 symmetry (which can be
described in terms of just three independent atoms, as reported by Schulze in 1934 [2])
reduced to P1 results in a system with twelve independent atoms: two boron atoms, labelled
B1 and B2; two arsenic atoms, labelled A1 and A2; and eight oxygen atoms, labelled O1,
O2, . . . , O8) as detailed in Figure 2 and Table 2.

Symmetry 2021, 13, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 2. The atom labelling system used in this work were the two independent boron atoms, 
located at the centre of the faces being labels as B1 and B2, the arsenic atoms, located at the corners 
and the centre of the unit cell labelled A1 and A2 with the eight oxygen atoms labelled as O1–O8. 

Table 2. (a) Boron arsenate as reported by Schulze [2]. (b) Relationship between the original fractional coordinates with 
symmetry applied and the fractional coordinates of the P1 system, together with the unique labelling system used to 
identify each atom within the unit cell. 

(a) The crystal structure of boron arsenate as reported by Schulze. 
Unit Cell Properties 

Space Group 4I  
a = b 4.4580 

c 6.7960 
α β γ= =  90° 

Fractional Atomic Coordinates 
B 0.00000 0.50000 0.25000 

As 0.00000 0.00000 0.00000 
O 0.16000 0.26000 0.14000 

(b) The atom labelling system used in this work, see Figure 2. 
Element 4I  Fract. Coordinates Transformation Applied P1 Fract. Coordinates Label 

As 0 0 0 

x y z 0 0 0 

A1 
−x −y z 0 0 0 
y −x −z 0 0 0 
−y x −z 0 0 0 

x + ½ y + ½ z + ½ 0.5 0.5 0.5 

A2 
−x + ½ −y + ½ −z + ½ 0.5 0.5 0.5 
y + ½ −x + ½ −z + ½ 0.5 0.5 0.5 
−y + ½ x + ½ −z + ½ 0.5 0.5 0.5 

B 0 0.5 0.25 

x y z 0 0.5 0.25 
B1 

−x −y z 0 0.5 0.25 
y −x −z 0.5 0 0.75 

B2 
−y x −z 0.5 0 0.75 

x + ½ y + ½ z + ½ 0.5 0 0.75 
−x + ½ −y + ½ −z + ½ 0.5 0 0.75 

Figure 2. The atom labelling system used in this work were the two independent boron atoms,
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Table 2. (a) Boron arsenate as reported by Schulze [2]. (b) Relationship between the original fractional coordinates with
symmetry applied and the fractional coordinates of the P1 system, together with the unique labelling system used to identify
each atom within the unit cell.

(a) The crystal structure of boron arsenate as reported by Schulze.
Unit Cell Properties

Space Group I4
a = b 4.4580

c 6.7960
α = β = γ 90◦

Fractional Atomic Coordinates
B 0.00000 0.50000 0.25000

As 0.00000 0.00000 0.00000
O 0.16000 0.26000 0.14000

(b) The atom labelling system used in this work, see Figure 2.

Element I4 Fract. Coordinates Transformation Applied P1 Fract. Coordinates Label

As 0 0 0

x y z 0 0 0

A1
−x −y z 0 0 0

y −x −z 0 0 0

−y x −z 0 0 0

x + 1
2 y + 1

2 z + 1
2 0.5 0.5 0.5

A2
−x + 1

2 −y + 1
2 −z + 1

2 0.5 0.5 0.5

y + 1
2 −x + 1

2 −z + 1
2 0.5 0.5 0.5

−y + 1
2 x + 1

2 −z + 1
2 0.5 0.5 0.5

B 0 0.5 0.25

x y z 0 0.5 0.25
B1

−x −y z 0 0.5 0.25

y −x −z 0.5 0 0.75

B2

−y x −z 0.5 0 0.75

x + 1
2 y + 1

2 z + 1
2 0.5 0 0.75

−x + 1
2 −y + 1

2 −z + 1
2 0.5 0 0.75

y + 1
2 −x + 1

2 −z + 1
2 0.5 0 0.75

−y + 1
2 x + 1

2 −z + 1
2 0.5 0 0.75

O 0.16 0.26 0.14

x y z 0.16 0.26 0.14 O1

−x −y z 0.84 0.74 0.14 O3

y -x −z 0.26 0.84 0.86 O2

−y x −z 0.74 0.16 0.86 O4

x + 1
2 y + 1

2 z + 1
2 0.66 0.76 0.64 O5

−x + 1
2 −y + 1

2 −z + 1
2 0.34 0.24 0.64 O7

y + 1
2 −x + 1

2 −z + 1
2 0.76 0.34 0.36 O6

−y + 1
2 x + 1

2 −z + 1
2 0.24 0.66 0.36 O8

All density functional theory (DFT) simulations were carried out with full periodic
boundary conditions being applied using the Generalised Gradient Approximation with
the Perdew–Burke–Ernzerhof exchange-correlation functional (GGA–PBE) [73,74] utilising
a Monkhorst–Pack Grid of 6 × 6 × 4 (k-point separation was set to approximately 0.04
Å−1). The overall charge and initial spin were set to zero. An energy cut-off value of 1200
eV was used. A geometry optimization was first carried out using the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) minimiser with no external pressure p being applied where the
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convergence criteria utilised included an energy cut off per atom of 5 × 10−6 eV atom−1

and a maximum stress on the crystal of 0.01 GPa. During the geometry optimisation
process, the unit cell was being periodically realigned to the IRE default alignment [71]
with no constraints on the atoms or crystal lattice being imposed, apart from those enforced
through the periodic boundary conditions. Additional simulations were then performed
with the system being subjected to shear stresses in the range of −10 GPa to +10 GPa using
the same settings. These simulations were performed with the load being applied in an
incremental manner in steps of 2GPa. These simulations compliment other simulations
meant to study the behaviour of the system when subjected to uniaxial on-axis loading and
a hydrostatic pressure p reported elsewhere [12,27]. Note that throughout the simulations,
particularly at larger strains, care was taken to monitor the symmetry of the system, so as
to ascertain, for example, that the system did not undergo a phase transition.

For all systems subjected to an external stress σ =
(
σij
)
, the Lagrangian strains were

calculated from the unit cell matrix Hσ at a stress σ relative to H0, the unit cell matrix
system prior to any application of external stresses, using the procedure outlined by
Schlenker et al. [72]. More specifically, the Lagrangian strain tensor ε =

(
εij
)

for an applied
stress σwas obtained through:

ε =
(
εij
)
=

1
2

[(
H−1

0 Hσ

)T
+
(

H−1
0 Hσ

)]
− I3

where I3 is a 3 × 3 identity matrix and ε =
(
εij
)

is the strain tensor. The on-axis uniaxial
strains εi in the x, y and z directions and the shear strains γij in the ij plane were then
calculated as:

εx = ε11 εy = ε22 εz = ε33

γyz = ε23 + ε32 γxz = ε13 + ε31 γxy = ε12 + ε21

Furthermore, in order to understand the way the crystal structure changes upon the
application of a mechanical loads, a number of lengths and angles between atoms in both
the three-dimensional space (i.e., bond lengths, length of sides of tetrahedra, bond angles,
tetrahedral angles, angles between tetrahedra, torsion angles) and the two-dimensional
projection in the xy-plane (i.e., lengths of ‘projected squares’, inter- and intra-square angles)
were determined using vector algebra (see Figure 3).
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Figure 3. The manner how distances and angles were computed.

More specifically, the length l between arbitrary atoms A and B, and the angle θ
in 3D between arbitrary atoms A, B, and C, having Cartesian coordinates

(
Ax, Ay, Az

)
,(

Bx, By, Bz
)

and
(
Cx, Cy, Cz

)
respectively, are given by:

l =
∣∣∣∣ →AB

∣∣∣∣ = ∣∣∣∣ →OB−
→

OA
∣∣∣∣
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θ = cos−1


→

BA ·
→
BC∣∣∣∣ →BA
∣∣∣∣∣∣∣∣ →BC

∣∣∣∣
 = cos−1


( →

OA−
→

OB
)
·
( →

OC−
→

OB
)

∣∣∣∣ →OA−
→

OB
∣∣∣∣∣∣∣∣ →OC−

→
OB
∣∣∣∣


where:

→
OA =

 Ax
Ay
Az

 →
OB =

 Bx
By
Bz

 →
OC =

 Cx
Cy
Cz


Thus since, for example:

→
AB =

→
OB−

→
OA =

 Bx − Ax
By − Ay
Bz − Az

,

the distance between A and B is given by:

l =
√
(Bx − Ax)

2 +
(

By − Ay
)2

+ (Bz − Az)
2.

whilst the angle between AB and BC around the common atom B is given by:

θ = cos−1

 (Ax − Bx)(Cx − Bx) +
(

Ay − By
)(

Cy − By
)
+ (Az − Bz)(Cz − Bz)√

(Ax − Bx)
2 +

(
Ay − By

)2
+ (Az − Bz)

2
√
(Cx − Bx)

2 +
(
Cy − By

)2
+ (Cz − Bz)

2

.

Similarly, the projected length l* between A and B in the xy-plane is given by:

l∗ =
√
(Bx − Ax)

2 +
(

By − Ay
)2

whilst the projected angle θ∗ between AB and AC, in the xy-plane are given by:

θ∗ = cos−1

 (Ax − Bx)(Cx − Bx) +
(

Ay − By
)(

Cy − By
)√

(Ax − Bx)
2 +

(
Ay − By

)2
√
(Cx − Bx)

2 +
(
Cy − By

)2


Furthermore, various torsion angles ϕ related to connected atoms A–B–C–D, were

also measured. The magnitudes of these angles were taken as the magnitude of the angles
between the normal of the planes A–B–C and B–C–D, i.e., referring to Figure 3c:

|φ| = cos−1


( →

BA×
→
BC
)
·
( →

CB×
→

CD
)

∣∣∣∣ →BA×
→
BC
∣∣∣∣∣∣∣∣ →CB×

→
CD
∣∣∣∣


The sign of these torsion angles was taken as the sign of the vector triple prod-

uct
( →

BA×
→
BC
)
×
( →

CB×
→

CD
)
· k where k is the unit vector in the z-direction so that

a clockwise angle is assigned a positive sign and an anticlockwise angle is assigned a
negative sign.

4. Results and Discussion

Images of the system when subjected to a shear load of +10GPa in the xy and xz
planes are shown in Figure 4. To facilitate the discussion, these images of the sheared
system, see Figure 4b,c, are shown alongside images of the equivalent unloaded system,
see Figure 4a, and images of the system when subjected to uniaxial loads in the x and z
direction, see Figure 4d,e. A quantification of the deformation is provided in the various
plots shown in Figures 5–9, where Figure 5 reports the cell parameters; Figure 6 reports
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the Lagrangian strains; Figure 7 reports deformations in terms of changes in bond lengths,
bond angles and torsion angles; Figure 8 reports deformations in terms of changes in to
the tetrahedral shapes; and Figure 9 reports deformations in terms of changes in terms of
the 2D ‘connected squares’ motif as projected by the 3D tetrahedra in the xy-plane. In all
cases, it should be noted that, due to symmetry, the behaviour in the xz and yz planes are
equivalent to each other (only the behaviour in the xz plane is reported here). Similarly,
uniaxial loading in the x has the same effect loading in the y direction and thus only the
behaviour for uniaxial loading in the x-direction is presented here. From these results, it is
evident that the systems are not resistant to shear and, the molecular level deformations,
which will be discussed in more detail below, are comparable in magnitude to those arising
from uniaxial loading.

Before looking at the effect of the different loads, it is important to recall that BAsO4,
like other crystalline systems, should not be considered as a purely mechanical system.
What is remarkable, nonetheless, is that although the simulation protocol looks at the
system through a rather complex quantum mechanical formulation, the interpretation of
the results can still, to quite a reasonable approximation, be performed through a rather
simple mechanical interpretation that looks at BAsO4 simply as a ‘mechanical structure’
obeying rather simple rules. General rules that seem to apply are that the deformations are
predominantly due to changes in the angles, i.e., changes in angles between the tetrahedra
(the B–O–As angles and in the O-B-O-As and O-As-O-B torsion angles) as well as changes in
the O–M–O (M = B, As) within he tetrahedra themselves. Bond lengths also change, but to a
lower extent where, in general, B-O bond lengths tend to change more than the As-O bonds.
In fact, a general trend is that the smaller BO4 tetrahedra have more pronounced bond
length changes whilst the larger AsO4 tetrahedra have more pronounced O–M–O angle
changes. This difference in the manner of deformation of the BO4 and AsO4 tetrahedra
can, at least in part, be due to actual differences in the size: from a purely mechanical
perspective, the longer O–As bond is expected to be a more effective lever than the shorter
O–B bond, thus facilitating changes in O–As–O angles compared to the O–B–O angles.
From a chemistry perspective, it is also known that arsenic can form slightly more covalent
and less polarised bonds with oxygen when compared to boron. Such a difference in the
covalent character is due to the difference of the electronegativities of boron and arsenic
(arsenic is slightly more electronegative than boron). In addition, the two atoms have a
different oxidation state in this crystal structure (boron: 3+, arsenic: 5+) which contributes
to make the BO4 tetrahedra being smaller than the AsO4 tetrahedra. All this results in
slightly more “deformation resistant” O–As bonds when compared to O–B bonds, and a
more deformable O–As–O bond angle as opposed to O–B–O.



Symmetry 2021, 13, 977 10 of 19Symmetry 2021, 13, x FOR PEER REVIEW 10 of 20 
 

 

 
Figure 4. (a) BAsO4 without applied loads, compared to BASO4 as this is subjected to (b) a shear stress of 10 GPa in the xy-
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direction. Panels (i), (ii) and (iii) show the xy, yx and xz planes, respectively. 

Figure 4. (a) BAsO4 without applied loads, compared to BASO4 as this is subjected to (b) a shear stress of 10 GPa in the
xy-plane, corresponding to the (001) plane and (c) a shear stress of 10 GPa in the xz-plane, corresponding to the (010) plane.
Additionally, shown for comparison are the equivalent systems for (d) uniaxial loading in the x direction by +10 GPa,
corresponding to the [100] direction, and (e) uniaxial loading in the z direction by +10 GPa, corresponding to the [001]
direction. Panels (i), (ii) and (iii) show the xy, yx and xz planes, respectively.
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Figure 5. The unit cell parameters as BAsO4 is subjected to (i) shear stresses in the xy-plane, corresponding to the (001)
plane and (ii) shear stresses in the xz-plane, corresponding to the (010) plane. Additionally, shown for comparison is the
equivalent data for (iii) uniaxial loading in the x direction, corresponding to the [100] direction, and (iv) uniaxial loading in
the z direction, corresponding to the [001] direction where (a) shows the unit cell angles and (b,c) show the unit cell lengths.
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Figure 6. The Lagrangian strains as BAsO4 is subjected to (i) shear stresses in the xy-plane, corresponding to the (001)
plane and (ii) shear stresses in the xz-plane, corresponding to the (010) plane. Additionally, shown for comparison is the
equivalent data for (iii) uniaxial loading in the x direction, corresponding to the [100] direction, and (iv) uniaxial loading in
the z direction, corresponding to the [001] direction where (a) shows the shear strains and (b) shows the axial strains.
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Figure 7. Various measurements of (a,c) bond lengths, (b,d,e) bond angles and (f,g) torsion angles as BAsO4 is subjected to
(i) shear stresses in the xy-plane, corresponding to the (001) plane and (ii) shear stresses in the xz-plane, corresponding
to the (010) plane. Additionally, shown for comparison is the equivalent data for (iii) uniaxial loading in the x direction,
corresponding to the [100] direction, and (iv) uniaxial loading in the z direction, corresponding to the [001] direction.
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Figure 8. Various measurements of (a,c) tetrahedral side lengths and (b,d) tetrahedral bond angles as BAsO4 is subjected to
(i) shear stresses in the xy-plane, corresponding to the (001) plane and (ii) shear stresses in the xz-plane, corresponding
to the (010) plane. Additionally, shown for comparison is the equivalent data for (iii) uniaxial loading in the x direction,
corresponding to the [100] direction, and (iv) uniaxial loading in the z direction, corresponding to the [001] direction.

Looking in more detail at the shear deformations in the x–y plane and attempting to
interpret these both in terms of the 2D projections in the (001) x–y plane, one may note that
shear loading in the plane of the squares does not result any appreciable relative rotation
of the squares. Instead, shear loading in the x-y plane results in extensive deformations
of the squares themselves which tend to adopt a parallelogram-like shape of the Type IIα
form [75]. Such a shape may be considered as a sheared variation of the Type II connected
rectangles [76], a motif which is known to be present in the (100) and (010) planes of
α-cristobalite [77,78]. All this is very clearly evident from images of the deformed system
in Figure 4 and from Figure 9i which quantifies the deformation in terms of the 2D model,
from a ‘rotating squares’ perspective and from the quantification in terms of percentages
changes in length shown in Figure 10i. These deformations may be even more visible if
one had to look at the deformed structures where the BO4 and AsO4 are depicted as actual
tetrahedra (see Figure 11). From a quantitative perspective, we note that the change in
the side lengths of the projected ‘squares’ is so excessive that these change by as much as
25% from τxy = −10 GPa to τxy = +10 GPa. The ‘squares’ that deform the most are those
which relate to the AsO4 tetrahedra where the deformations and are caused primarily
by changes in the O-M-O bond angles (which change by as much as c. 20◦ for a change
from τxy = −10 GPa to τxy = +10 GPa) rather than the bond lengths, which change by
less than 1%. Interestingly, the bond lengths do not follow a linear relation with applied
shear stress and tend to increase in length for both a positive and a negative shear. In
terms of angles, one may note that the 90◦ square angles also change in a non-insignificant
manner when subjected to a shear, and much more than the angle between the ‘squares’
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themselves, as evident to comparing Figure 9b-i and Figure 9d-i with Figure 9e-i. All
this suggests that, from the perspective of the 2D projected squares, shear loading results
primarily (and almost exclusively) in deformations of the ‘squares’ (which tend to become
more like the ‘Type IIα parallelograms’ [75]) rather than their relative rotation. Thus, a
comprehensive look at the deformations in the x-y plane suggests that while uniaxial
loading in the [100] x-direction (and, by symmetry, uniaxial loading in the [010] y-direction)
favours a ‘rotating squares’ mode of deformation leading to auxetic behaviour, shear
loading in the xy-plane favours deformation of the squares themselves, a non-auxetic
inducing mechanism. This finding is rather important as it explains both the anisotropy in
the Poisson’s ratio and its deviation from the idealised value of −1 for rotating squares.
Although the structural requirements are present (0 GPa system projects in the (001) plane
as almost perfect squares, see Figure 1b, the mechanistic requirement to have perfectly rigid
units which simply rotate relative to each other is not there. Such deviations from the ideal
behaviour are to be expected, since the ‘squares’ in this system are mere 2D projections of
3D molecular tetrahedra which cannot be expected to behave as perfectly rigid units. In
fact, if one had to look at the tetrahedra and how they deform when a shear load in the
x-y plane is applied, see Figure 8i, one would notice that the four tetrahedra in the system
are becoming quite irregular upon shearing, hence explaining the observation that their
projection in the x-y plane no longer results in squares.
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Figure 9. Various measurements which describe the deformations in terms of changes in terms of the 2D ‘connected squares’
motif as projected by the 3D tetrahedra in the xy-plane where (a,c) report the side-length of the ‘squares’, (b,d) report
the internal angles of the ‘squares’ and (e) reports the inter-‘square’ angles as BAsO4 is subjected to (i) shear stresses in
the xy-plane, corresponding to the (001) plane and (ii) shear stresses in the xz-plane, corresponding to the (010) plane.
Additionally, shown for comparison is the equivalent data for (iii) uniaxial loading in the x direction, corresponding to the
[100] direction, and (iv) uniaxial loading in the z direction, corresponding to the [001] direction.



Symmetry 2021, 13, 977 15 of 19
Symmetry 2021, 13, x FOR PEER REVIEW 16 of 20 
 

 

 
Figure 10. Percentage changes of various length measurements. (a) Bond Lengths; (b) Tetrahedral Side Lengths; (c) 2D 
Projected ‘Square’ Lengths; (d) Cell Parameters. 

-2

-1

0
1

2

3

-10 -6 -2 2 6 10

-2
-1
0
1
2
3

-10 -6 -2 2 6 10

-15
-10
-5
0
5

10
15

-10 -6 -2 2 6 10

-15
-10
-5
0
5

10
15

-10 -6 -2 2 6 10

-8

-4

0

4

8

12

-10 -6 -2 2 6 10

-8

-4

0

4

8

12

-10 -6 -2 2 6 10

-20

-10

0

10

20

-10 -6 -2 2 6 10

-20

-10

0

10

20

-10 -6 -2 2 6 10

-2

-1

0
1

2

3

-10 -6 -2 2 6 10

-2
-1
0
1
2
3

-10 -6 -2 2 6 10

-15
-10
-5
0
5

10
15

-10 -6 -2 2 6 10

-15
-10
-5
0
5

10
15

-10 -6 -2 2 6 10

-8

-4

0

4

8

12

-10 -6 -2 2 6 10

-8

-4

0

4

8

12

-10 -6 -2 2 6 10

-20

-10

0

10

20

-10 -6 -2 2 6 10

-20

-10

0

10

20

-10 -6 -2 2 6 10

-2

-1

0
1

2

3

-10 -6 -2 2 6 10

-2
-1
0
1
2
3

-10 -6 -2 2 6 10

-15
-10

-5
0
5

10
15

-10 -6 -2 2 6 10

-15
-10
-5
0
5

10
15

-10 -6 -2 2 6 10

-8

-4

0

4

8

12

-10 -6 -2 2 6 10

-8

-4

0

4

8

12

-10 -6 -2 2 6 10

-20

-10

0

10

20

-10 -6 -2 2 6 10

-20

-10

0

10

20

-10 -6 -2 2 6 10

-2

-1

0
1

2

3

-10 -6 -2 2 6 10

-2
-1
0
1
2
3

-10 -6 -2 2 6 10

-15
-10

-5
0
5

10
15

-10 -6 -2 2 6 10

-15
-10
-5
0
5

10
15

-10 -6 -2 2 6 10

-8

-4

0

4

8

12

-10 -6 -2 2 6 10

-8

-4

0

4

8

12

-10 -6 -2 2 6 10

-20

-10

0

10

20

-10 -6 -2 2 6 10

-20

-10

0

10

20

-10 -6 -2 2 6 10

% Changes in Bond Lengths, AsO4 tetrahedra

% Changes in Tetrahedral Side Lengths, AsO4 tetrahedra

% Changes in 2D Projected ‘Square’ Side Lengths, AsO4 tetrahedra

% Changes in Unit Cell Lengths (a, b)

% Changes in Bond Lengths, BO4 tetrahedra

% Changes in Tetrahedral Side Lengths, BO4 tetrahedra

% Changes in 2D Projected ‘Square’ Lengths, BO4 tetrahedra

% Change in Unit Cell Length (c)

Stress, σx (GPa) Stress, σz (GPa)(a-i) (a-ii) (a-iii)Shear Stress, τxy (GPa) Shear Stress, τxz (GPa) (a-iv)

Stress, σx (GPa) Stress, σz (GPa)(a-v) (a-vi) (a-vii)Shear Stress, τxy (GPa) Shear Stress, τxz (GPa) (a-viii)

Stress, σx (GPa) Stress, σz (GPa)(c-i) (c-ii) (c-iii)Shear Stress, τxy (GPa) Shear Stress, τxz (GPa) (c-iv)

Stress, σx (GPa) Stress, σz (GPa)(c-v) (c-vi) (c-vii)Shear Stress, τxy (GPa) Shear Stress, τxz (GPa) (c-viii)

Stress, σx (GPa) Stress, σz (GPa)(b-i) (b-ii) (b-iii)Shear Stress, τxy (GPa) Shear Stress, τxz (GPa) (b-iv)

Stress, σx (GPa) Stress, σz (GPa)(b-v) (b-vi) (b-vii)Shear Stress, τxy (GPa) Shear Stress, τxz (GPa) (b-viii)

Stress, σx (GPa) Stress, σz (GPa)(d-i) (d-ii) (d-iii)Shear Stress, τxy (GPa) Shear Stress, τxz (GPa) (d-iv)

Stress, σx (GPa) Stress, σz (GPa)(d-v) (d-vi) (d-vii)Shear Stress, τxy (GPa) Shear Stress, τxz (GPa) (d-viii)

%
 Δ

l (
%

)
%

 Δ
l (

%
)

%
 Δ

l (
%

)
%

 Δ
l (

%
)

%
 Δ

l (
%

)
%

 Δ
a

, %
 Δ

b 
(%

)
%

 Δ
l (

%
)

%
 Δ

l (
%

)

%
 Δ

l (
%

)
%

 Δ
l (

%
)

%
 Δ

l (
%

)
%

 Δ
l (

%
)

%
 Δ

l (
%

)
%

 Δ
a

, %
 Δ

b 
(%

)
%

 Δ
l (

%
)

%
 Δ

l (
%

)

%
 Δ

l (
%

)
%

 Δ
l (

%
)

%
 Δ

l (
%

)
%

 Δ
l (

%
)

%
 Δ

l (
%

)
%

 Δ
a

, %
 Δ

b 
(%

)
%

 Δ
l (

%
)

%
 Δ

l (
%

)

%
 Δ

l (
%

)
%

 Δ
l (

%
)

%
 Δ

l (
%

)
%

 Δ
l (

%
)

%
 Δ

l (
%

)
%

 Δ
a

, %
 Δ

b 
(%

)
%

 Δ
l (

%
)

%
 Δ

l (
%

)

A1-O1 A1-O2
A1-O3 A1-O4

A2-O5 A2-O6
A2-O7 A2-O8

O3-O8 O8-O1
O1-O6 O6-O3

O7-O4 O4-O5
O5-O2 O2-O7

O1-O3 O2-O4

O1-O2 O2-O3
O3-O4 O4-O1

O5-O7 O6-O8

O5-O6 O6-O7
O7-O8 O8-O5

a b

(a
) B

on
d 

Le
ng

th
s

(b
) T

et
ra

he
dr

al
 Si

de
 Le

ng
th

s
(c

) 2
D 

Pr
oj

ec
te

d 
‘S

qu
ar

e’
 Le

ng
th

s
(d

) C
el

l P
ar

am
et

er
s

c

Figure 10. Percentage changes of various length measurements. (a) Bond Lengths; (b) Tetrahedral Side Lengths; (c) 2D
Projected ‘Square’ Lengths; (d) Cell Parameters.
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stress and (c) shows the system under a +ve shear stress. The system in (b) is unloaded.

The magnitude of compliance term s66 (=Gxy
−1) is rather high compared to the other

sii signifying that the crystal is quite weak in shear in this plane. From an auxeticity
perspective, this is rather unfortunate as the low-shear modulus indicates deviation from
ideal behaviour for the maximisation of auxeticity. It is more than likely that, had the
material been more resistant to shear deformation, the extent of auxeticity would have
been more pronounced. This weakness in shear is also noticeable in the other (010) and
(100) planes where, for example, we may note that the angle changes that occur on shearing
in the x-z plane are some of the more pronounced angle changes for any form of loading.
The same can be said for the bond length changes. In this case we note that, once again,
there are non-negligible deformations of the tetrahedra, but this time, the most pronounced
changes occur in the angles between the tetrahedra through changes in the B–O–As bond
angles and the torsion angles. An interesting feature to note is that, although the shear load
is being applied in the x–z plane, there are still some observable deformations in the x–y
plane where, once again, the deformation projects primarily as deformations of ‘squares’
rather than their relative rotation. This once again emphasises the fact that the tetrahedra,
or their 2D projections as ‘squares’, cannot be considered as rigid units. It is also interesting
to note the rather large inter-tetrahedral bond angle changes do not project in the x-y plane
as relative rotations of squares, which further emphasises the fact that this material should
not be treated as a simple ‘unimode’ structure.

Before concluding it is important to note some of the strengths and limitations of
this work. First and foremost, a strength of this work is that one would not have a
comprehensive picture of how a material behaves under applied mechanical loads without
looking at the behaviour of materials when these are sheared. The availably of such
information and its analysis as presented here helps to complete this discussion on the
properties of BAsO4. In this respect, it is rather unfortunate that shear behaviour is very
often ignored in such studies, particularly given the wealth of information that can be
derived from it. In this particular case, this work has identified an important mechanistic
feature related to the ‘rotating squares’ description of BAsO4 in the auxetic (001) plane that
would come in useful for formulation of analytical models of such materials. In fact, it has
been shown that for a proper formulation of such a model, one would need to ensure that
the ‘squares’ need to have the capability to become ‘Type IIα parallelograms’ [75] upon
shearing. On the same note, this work provides further evidence that it is essential that any
model for BAsO4 would need to incorporate the possibility of the tetrahedral/square units
to deform rather than behave as simple ‘rotating rigid units’. A limitation of this work is
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that it was based entirely on results of simulations. In this case, this was mitigated through
the use of a DFT methodology, rather than a force-field based approach as used in the past,
which methods are known to be less prone to transferability errors.

5. Conclusions

This work has presented and discussed the behaviour of BAsO4 when subjected to
shear loading thus enabling a better understanding of this material, which is now known
be both auxetic and exhibiting NLC. From this work, further evidence was obtained that
deformation of the BO4 and AsO4 tetrahedra, which project as ‘squares’ in the auxetic (001)
plane, cannot be assumed to be negligible. In fact, it was now shown that such deformations
become the most prominent mode of deformation upon shearing. It was further discussed
that this can explain the particular values of Poisson’s ratio for this material, which are less
than the −1 predicted for idealised models. All this provides highly valuable information
should there be attempts to formulate analytical models for these types of materials.
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