An Efficient Mechanism to Solve Fractional Differential Equations Using Fractional Decomposition Method
Abstract
:1. Introduction
2. Related Materials
3. Natural Caputo Fractional Derivatives
- (b)
- The natural transform of the Caputo derivative for with , and is
Applications of FDM for Fractional ODEs and PDEs
4. Fractional Systems of Ordinary Differential Equations
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roberts, M. Signals and Systems: Analysis Using Transform Methods and Matlab, 2nd ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Ortigueira, M.D.; Valério, D. Fractional Signals and Systems; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2020. [Google Scholar]
- Nigmatullin, R.R. To the theoretical explanation of the “universal response”. Phys. Status Solidi B 1984, 123, 739–745. [Google Scholar] [CrossRef]
- Coussot, C.; Kalyanam, S.; Yapp, R.; Insana, M.F. Fractional derivative models for ultrasonic characterization of polymer and breast tissue viscoelasticity. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 715–726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noeiaghdam, S.; Sidorov, D. Caputo-Fabrizio fractional derivative to solve the fractional model of energy supply-demand system. Math. Model. Eng. Probl. 2020, 7, 359–367. [Google Scholar] [CrossRef]
- Djordjević, V.D.; Jarić, J.; Fabry, B.; Fredberg, J.J.; Stamenović, D. Fractional derivatives embody essential features of cell rheological behavior. Ann. Biomed. Eng. 2003, 31, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Noeiaghdam, S.; Sidorov, D.; Wazwaz, A.M.; Sidorov, N.; Sizikov, V. The Numerical Validation of the Adomian Decomposition Method for Solving Volterra Integral Equation with Discontinuous Kernels Using the CESTAC Method. Mathematics 2021, 9, 260. [Google Scholar] [CrossRef]
- Adomian, G. A new approach to nonlinear partial differential equations. J. Math. Anal. Appl. 1984, 102, 420–434. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, U.; Sarkar, S.; Das, S. Solution of system of linear fractional differential equations with modified derivative of Jumarie type. arXiv 2015, arXiv:1510.00385. [Google Scholar]
- Guo, S.; Mei, L.; Li, Y.; Sun, Y. The improved fractional sub-equation method and its applications to the space–time fractional differential equations in fluid mechanics. Phys. Lett. A 2012, 376, 407–411. [Google Scholar] [CrossRef]
- Argyros, I.K. Iterative Methods and Their Dynamics with Applications: A Contemporary Study; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Anastassiou, G.A.; Argyros, I.K. Intelligent Numerical Methods: Applications to Fractional Calculus; Springer International Publishing: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Translated from the 1987 Russian Original; Gordon and Breach Science Publishers: New York, NY, USA, 1987. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Jian, S.; Zhang, J.; Zhang, Q.; Zhang, Z. Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 2017, 21, 650–678. [Google Scholar] [CrossRef]
- Gu, X.-M.; Wu, S.-L. A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with the weakly singular kernel. J. Comput. Phys. 2020, 13, 109576. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional calculus. In Fractals and Fractional Calculus in Continuum Mechanics; Springer: Vienna, Austria, 1997. [Google Scholar]
- Sevimlican, A. An approximation to solution of space and time fractional telegraph equations by He’s variational iteration method. Math. Probl. Eng. 2010, 2010, 290631. [Google Scholar] [CrossRef]
- Hu, Y.; Luo, Y.; Lu, Z. Analytical solution of the linear fractional differential equation by Adomian decomposition method. J. Comput. Appl. Math. 2008, 215, 220–229. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Du, Y.; Li, H.; He, S.; Gao, W. Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction–diffusion problem. Comput. Math. Appl. 2015, 70, 573–591. [Google Scholar] [CrossRef]
- Rybakov, K.; Yushchenko, A. Spectral method for solving linear Caputo fractional stochastic differential equations. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 1, p. 012077. [Google Scholar]
- Li, Z.B.; He, J.H. Fractional complex transform for fractional differential equations. Math. Comput. Appl. 2010, 15, 970–973. [Google Scholar] [CrossRef] [Green Version]
- Ortigueira, M.D.; Machado, J.T. Revisiting the 1D and 2D Laplace transforms. Mathematics 2020, 8, 1330. [Google Scholar] [CrossRef]
- Momani, S.; Shawagfeh, N. Decomposition method for solving fractional Riccati differential equations. Appl. Math. Comput. 2006, 182, 1083–1092. [Google Scholar] [CrossRef]
- Eltayeb, H.; Abdalla, Y.T.; Bachar, I.; Khabir, M.H. Fractional telegraph equation and its solution by natural transform decomposition method. Symmetry 2019, 11, 334. [Google Scholar] [CrossRef] [Green Version]
- Belgacem, F.B.; Silambarasan, R. Maxwell’s equations by means of the natural transform. Math. Eng. Sci. Aerosp. 2012, 3, 313–323. [Google Scholar]
- Mittag–Leffler, G.M. Sur la Nouvelle Fonction Sur la Nouvelle Fonction; Eα (x), Comptes Rendus de l Académie des Sciences: Paris, France, 1903; pp. 554–558. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S.V. Mittag–Leffler Functions, Related Topics and Applications; Springer: Berlin, Germeny, 2014. [Google Scholar]
t | = 1 | ||||
---|---|---|---|---|---|
Numerical | Exact | ||||
0.4 | |||||
0.6 | |||||
0.8 | |||||
1 |
x | t | = 1 | ||||
---|---|---|---|---|---|---|
Numerical | Exact | |||||
0 | 0.02 | 0.20104552 | 0.36691625 | 0.61998793 | 0.83745132 0.83745132 | |
0.04 | 0.17414299 | 0.28187077 | 0.46534302 | 0.70132479 0.70132479 | ||
0.06 | 0.15978832 | 0.23813296 | 0.37076063 | 0.58732540 0.58732540 | ||
0.08 | 0.1502041 | 0.21016121 | 0.30658126 | 0.49185646 0.49185646 | ||
0.1 | 0.14310464 | 0.19025412 | 0.26034611 | 0.41190586 0.41190586 | ||
1/4 | 0.02 | 0.14216065 | 0.25944897 | 0.43839767 | 0.59216754 0.59216754 | |
0.04 | 0.12313769 | 0.19931273 | 0.32904721 | 0.49591151 0.49591151 | ||
0.06 | 0.11298741 | 0.16838543 | 0.26216736 | 0.41530177 0.41530177 | ||
0.08 | 0.10621033 | 0.14860641 | 0.21678569 | 0.34779504 0.34779504 | ||
0.1 | 0.10119026 | 0.13452998 | 0.1840925 | 0.29126143 0.29126143 | ||
1/3 | 0.02 | 0.10052276 | 0.18345812 | 0.30999396 | 0.41872568 0.41872568 | |
0.04 | 0.087071497 | 0.14093539 | 0.23267151 | 0.35066239 0.35066239 | ||
0.06 | 0.079894162 | 0.11906648 | 0.18538032 | 0.29366270 0.29366270 | ||
0.08 | 0.075102048 | 0.1050806 | 0.15329063 | 0.24592823 0.24592823 | ||
0.1 | 0.071552321 | 0.09512706 | 0.13017306 | 0.20595293 0.20595293 |
t | = 1 | ||||
---|---|---|---|---|---|
Numerical | Exact | ||||
0.4 | |||||
0.6 | |||||
0.8 | |||||
1 |
t | = 1 | ||||
---|---|---|---|---|---|
Numerical | Exact | ||||
0.4 | |||||
0.6 | |||||
0.8 | |||||
1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrawashdeh, M.S.; Migdady, S.A.; Argyros, I.K. An Efficient Mechanism to Solve Fractional Differential Equations Using Fractional Decomposition Method. Symmetry 2021, 13, 984. https://doi.org/10.3390/sym13060984
Alrawashdeh MS, Migdady SA, Argyros IK. An Efficient Mechanism to Solve Fractional Differential Equations Using Fractional Decomposition Method. Symmetry. 2021; 13(6):984. https://doi.org/10.3390/sym13060984
Chicago/Turabian StyleAlrawashdeh, Mahmoud S., Seba A. Migdady, and Ioannis K. Argyros. 2021. "An Efficient Mechanism to Solve Fractional Differential Equations Using Fractional Decomposition Method" Symmetry 13, no. 6: 984. https://doi.org/10.3390/sym13060984
APA StyleAlrawashdeh, M. S., Migdady, S. A., & Argyros, I. K. (2021). An Efficient Mechanism to Solve Fractional Differential Equations Using Fractional Decomposition Method. Symmetry, 13(6), 984. https://doi.org/10.3390/sym13060984