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Abstract: Design: At the heart of time series forecasting, if nonlinear and nonstationary data are
analyzed using traditional time series, the results will be biased. At the same time, if just using
machine learning without any consideration given to input from traditional time series, not much
information can be obtained from the results because the machine learning model is a black box.
Purpose: In order to better study time series forecasting, we extend the combination of traditional
time series and machine learning and propose a hybrid cascade neural network considering a
metaheuristic optimization genetic algorithm in space–time forecasting. Finding: To further show
the utility of the cascade neural network genetic algorithm, we use various scenarios for training and
testing while also extending simulations by considering the activation functions SoftMax, radbas,
logsig, and tribas on space–time forecasting of pollution data. During the simulation, we perform
numerical metric evaluations using the root-mean-square error (RMSE), mean absolute error (MAE),
and symmetric mean absolute percentage error (sMAPE) to demonstrate that our models provide
high accuracy and speed up time-lapse computing.

Keywords: cascade neural network; space–time; forecasting; genetic algorithm; particulate matter

1. Introduction

Pollution describes the appearance and retention of the regular circulation of material,
fine particles, biomaterial, and energy, or a deterioration technique or atmospheric change,
which also has or may have significantly negative effects on human beings or the natural
environment. Air pollutants are exhaust gases, particulate matter compounds, solid
particulate matter, and other substances that emanate into the air, threatening the health of
the community and damaging the environment. Air pollutants can be classified into smog
and soot, pollution from contaminated air, greenhouse gas emissions, pollen, and mold.

PM refers to particulate matter, also known as particulate emissions. PM comprises
aggregated rigid particles and atmospheric fluid droplets. Some are large enough or visible
enough to be seen with the naked eye, and others are so small that they can only be
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seen with electron microscopes. PM10 and PM2.5 are some classes of these particulate
pollutants [1–4]. Let us consider a hair: the mean diameter of a single human hair is
approximately 70 micrometers. This is roughly 28 times the diameter of PM2.5. The
diameter of particulate matter in PM10 is 10 micrometers or below. Similarly, PM2.5 is
normally particles of diameter 2.5 micrometers or below. Both PM10 and PM2.5 are inhalable.
We can thus imagine how tiny 2.5 and 10 micrometers are.

PM can be made up of various chemicals, including sulfur dioxide (SO2) and nitrogen
oxides, originating in PM (NOx) [5–7]. All this can be found as a product of building
materials, farms, explosions, power stations, industry, and vehicles. PM is seriously
damaging, as described above, as it may be opaque and small enough to be inhaled into the
lungs or even into the circulation. Therefore, PM contamination affects the cardiovascular
system and can cause fatal illnesses such as cardiovascular diseases, erratic heartbeat, and
worsening asthma [8–10].

The estimation of future air pollution is an important task because it can be used to
manage risk. The Artificial Neural Network (ANN) is the most frequently used among
many data-driven applications and is a modern method and an effective paradigm for
predicting and forecasting variables in the management of contamination risk due to
intrinsic contaminant source uncertainties using quality data [11,12]. ANNs were inspired
by the human brain’s biochemical neural networks. McCulloch and Pitts in (1943) [13]
initially developed a mathematically dependent model and referred to it as a threshold
logic computing model for neural networks [14–19].

The neurons are important in the neural network’s operating condition, they are very
connected and share signals with one another, whether it is a neuron or node. Every layer
consists of one or more simple elements called neurons. As the input data are transferred to
the input layer, they bind with the weight and are nonlinearized by the activation function;
the process of being sent to the next neuron is replicated before the final outcome is
achieved. Each new neuron consists of one weight and one activation function [20,21]. The
connectivity of neurons is handled by utilizing established inputs and outputs and is seen in
an organized way in the ANN. The training phase is represented as a trial-and-error process
to select the number of neurons [22,23]. The intensity of these interconnections is adapted
to the known pattern using an error convergence technique. In this article, a cascade neural
network procedure based on the genetic algorithm is developed for space–time forecasting
data. This article is organized as follows: In Section 2, we review the training using the
cascade neural network and employ a genetic algorithm. The performance is examined
in Section 3 via simulation studies and analysis of four benchmark real datasets of air
pollution data. Finally, Section 4 presents our conclusions.

2. Methods
2.1. Cascade Neural Network

The neural network’s environment is uncertain. It is presumed that the teacher and
the neural network are linked to an environmental testing vector, as an example. Because of
the integrated experience, the teacher is capable of responding to this training vector in the
algorithm. In fact, the appropriate outcome is the optimal response of the neural network.
The key property of a neural network is the network’s capacity to improve performance
by learning from its experience [24]. Based on how well the neural networks operate,
the networks are divided into supervised learning networks and unsupervised learning
networks, otherwise termed teacher learning and teacher-free learning. Structurally, we
may think of the teacher as having information about the environment, portrayed by a
variety of samples of input and output [25,26].
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The network parameters are managed according to the cumulative effect of the training
vector, mostly with error signals. Meanwhile, each error signal should be specified as the
gap between the requested response and the network’s actual response. This modification
is made step by step in order to rapidly mimic the teacher in the neural network, with the
emulation in any mathematical context assumed to be ideal. This transfers awareness of the
teacher’s setting to the neural network as thoroughly as possible by preparation [27]. If this
is achieved, then we can dispense with the teacher and encourage the neural network to
deal entirely with the environment. Throughout the supervised NN model, input vectors
and suitable target vectors are used to update the parameters; before a function can be
approximated, input features should be tied to specific output vectors and the information
that can be processed should be properly identified [28,29].

The most famous and typical algorithm for neural network training is the context of
an error, the main principle of which is that an error in the hidden neurons is calculated
by propagation of the error in the output layer neurons. The traditional backpropagation
algorithm uses two input and learning processes. Vectors or patterns are displayed in the
input layer in feedforward operation, and each neuron throughout the hidden layer is
measured in the activation with one neuron netj. The input vector dot product including
neuron weight in the hidden layer is represented in Equation (1):

netj =
Ni

∑
i=1

xiwI−H
ij + bij =

Ni

∑
i=0

xiwI−H
ij (1)

where Ni is the input vector dimension, and i and j are neuron indices in the layer input
and in the hidden layer, respectively. The weight value between the input vectors and
neurons in the hidden layer is wI−H

ij . The weight value of bias in the hidden layer is bij and

is usually assumed to be bij = wI−0
0j , x0 = 1. By substituting netj into activation function

ϕ1, θj is calculated. In the activation of a single neuron, each neuron in the output layer
computes netk, which is the dot product of θj and the neuron weight in the output layer,
represented in Equations (2) and (3).

θj = ϕ1
(
netj

)
(2)

netk =
NH

∑
j=1

θjwH−0
jk (3)

In line with this, NH is the number of neurons in the hidden layer and k is the index
of a neuron in the output layer. The weight value of neurons between the hidden layer
and output layer is described as wH−0

jk . We can substitute netk into activation function ϕ2

to output yk, represented in Equation (4).

yk = ϕ2(netk) (4)

yk = ϕ2

(
NH

∑
j=1

θjwH−0
jk

)
(5)

yk = ϕ2

(
NH

∑
j=0

wH−0
jk

(
Ni

∑
i=0

xjwI−H
ij

))
(6)
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Regarding Equations (4) and (5), the entire collection of weights is updated to ensure
that yk is near the target output value of tk by propagating the Er error of the output
layer neurons throughout the learning phase. Although a variety of output functions
are available to evaluate the error, the squared error is commonly used, represented in
Equation (7).

Er =
N0

∑
k=1

(tk − yk)
2 (7)

2.2. Genetic Algorithm

Biological variation and its basic processes were clarified by Darwin’s (2002) evolu-
tionary theory [30]. Natural selection is fundamental to what is often referred to as the
macroscopic understanding of evolution. In an environment where only a finite number
of humans will survive, and given the basic tendency of people to multiply, selection is
necessary if people do not have an accelerated population [31,32]. This evolution favors
people who bid more successfully for the given resources. In other words, they are better
suited or adapted to the climate, recognized as global best survival [33].

Selection on the basis of competition is one of the two pillars of the mechanism of
evolution. The other main influence comes as a function of phenotypical differences in
the populations. The phenotype is an individual’s physical and behavioral characteristics
that assess their fitness in terms of their exposure to the surrounding environment. That
individual represents a specific combination of environmental assessment phenotypic
characteristics. These characteristics are inherited by the offspring of the individual if
evaluated with favor; otherwise, the offspring is discarded. Charles Darwin’s insight was
that slight, spontaneous phenotype changes occur across ages [34–36].

New combinations of phenotype arise and are assessed by these mutations. That is the
fundamental basis of the genetic algorithm: With a population of individuals, constraints
on the environment lead to natural selection and survival of the population via roulette
wheel selection, which results in an increase in the fitness of the population. A random
collection of candidates can be generated [37]. Depending on this fitness, many of the best
candidates are selected for the next generation using conjugation to seed the performance
as an abstract fitness metric [38]. Cross-over and mutation give rise to a number of new
offspring that fight for a position in the next generation on the basis of their fitness with
old members of the population, before an organism of adequate efficiency is identified and
until a previously determined computational threshold is exceeded [39,40]. In line with
this, Algorithm 1 shows the scheme of the genetic algorithm. The scheme coincides with
the generate-and-test algorithm type. The fitness function constitutes a heuristic estimate
of an optimal solution, and the cross-over, mutation, and selection operators guide the
search algorithm. The genetic algorithm has many characteristics that can support in the
generating and testing of parents.

Algorithm 1. Scheme of the GA

1: INITIALIZE population and EVALUATE
2: while termination condition is not satisfied do
3: SELECT parents
4: CROSSOVER pairs of parents
5: MUTATE the resulting offspring
6: EVALUATE new candidates
7: REPLACE individuals for the next generation
8: end while
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2.3. Cascade Neural Network Genetic Algorithm

Backpropagation training algorithms based on other traditional optimization methods,
such as the conjugating gradient and Newton process, have different variants. This same
gradient descent approximation, the easiest and among the slowest, usually speeds up
the conjugate gradient algorithm, as well as Newton’s method [41,42]. We used genetic
algorithms through this study. Each neuron weight between the hidden layer and the
output layer should be updated, and the weight of the neurons here between the input and
the hidden layer was adjusted [43]. The weight change between some of the hidden and
output layers of the neuron is specified in Equation (8) with activation function ϕ(x) = 1

x .

∂Er

∂wH−0
jk

=
∂Er

∂netk
· ∂netk

∂wH−0
jk

∂Er

∂wH−0
jk

= −(tk − yk)·ϕ2(netk)·θj (8)

The weight value of neurons was updated between the input and hidden layer as
represented in Equation (9).

∂Er

∂wI−H
jk

=
∂Er

∂θj
·

∂θj

∂netk
· ∂netk

∂wI−H
jk

∂Er

∂wI−H
jk

=

[
1
2

N0

∑
k=1

(tk − yk)
2

]
·

∂θj

∂netk
· ∂netk

∂wI−H
jk

∂Er

∂wI−H
jk

=

[
(tk − yk)

2·∂yk
∂θj

]
·

∂θj

∂netk
· ∂netk

∂wI−H
jk

∂Er

∂wI−H
jk

=

[
(tk − yk)

2· ∂yk
∂netk

∂netk
∂θj

]
·

∂θj

∂netj
·

∂netj

∂wI−H
ij

∂Er

∂wI−H
jk

= −
N0

∑
k=1

[
(tk − yk)·ϕ2(netk)·wH−0

jk

]
·ϕ1
(
netj

)
·xi (9)

With backpropagation, the input data are repeatedly presented to the neural network.
With each presentation, the output of the neural network is compared to the desired
output, and the error is computed. This error is then backpropagated through the neural
network and used to adjust the weights such that the error decreases with each iteration;
the neural network thus gets closer and closer to producing the desired output, represented
in Equation (10).

w(h + 1) = w(h) + ∆w(h) (10)

Algorithm 2 shows the function cascade neural network. However, the context
backpropagation of each input datum is continuously shown to the neural network, with
every representation comparing the output of the neural network to the requested output
and computing the error; these errors provide context to the neural network and are used
to update the weights to reduce its error for each iteration, as well as the genetic algorithm,
allowing new generation of the neural network.
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Algorithm 2. Function Cascade Neural Network

1: input nh, m, o
2: set k = 0
3: calculate Cascade Weighted

4:

k = 0;
for i = 1:nh
for j = 1:m
k = k + 1;
Wi1(i,j) = W(k);
end
end

5: calculate weighted input and output

6:

for i = 1:o
for j = 1:m
k = k + 1;
Wi2(i,j) = W(k);
end
end

7: calculate weighted Bias Input

8:

for i = 1:nh
k = k + 1;
Wbi(i,1) = W(k);
end

9: calculate weighted output

10:

for i = 1:o
for j = 1:nh
k = k + 1;
Wo(i,j) = W(k);
end
end

11: calculate weighted Bias Output

12:

for i = 1:o
k = k + 1;
Wbo(i,1) = W(k);
end

3. Simulation and Results
3.1. Construction of VAR-Cascade

There exist few guidelines for building a neural network model for time series. One of
them considers time series as a nonlinear function of several past observations and random
errors. Since air pollution data are known to be nonlinear time series data, we selected this
method as a benchmark for forecasting. Equation (11) represents the time series models:

yt = f [(zt−1, zt−2, . . . , zt−m), (et−1, et−2, . . . , et−n)] (11)

where f is a nonlinear function determined by the neural network, zt = (1− B)d yt, and d
represents the order difference. Also, the residuals at time t are defined as et, and m and n
are integers. Equation (12) shows that, initially, the VAR model is fitted in order to generate
the residuals et. A neural network is then used to model the nonlinear and linear relations
in excess and the original results [22,44,45].

zt = w0 +
Q

∑
j=1

wj·g
(

w0j +
p

∑
i=1

wij·zt−i +
p+q

∑
i=p+1

wij·et+p−i

)
+ εt (12)
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Here, wij(i = 0, 1, 2, . . . , p + q, j = 1, 2, . . . , Q) and wj(j = 0, 1, 2, 3, . . . , Q) are connection
weights and p, q, Q are integers that should be determined in the design process of the
cascade neural network. The values of p and q are determined by the underlying properties
of the data. If the data are just nonlinear, they only consist of nonlinear structures; then, q
can be 0 since the Box–Jenkins method is a linear model that cannot simulate nonlinear
interaction. Suboptimal methods may be used in a hybrid model, but suboptimality does
not change the functional characteristics of the hybrid approach [17,46–48].

The interpretation of time series requires quantification of the vector dynamic response
with time shifts. The main feature of this method is to forecast potential values using recent
qualities of a variable, often referred to as lagged values [49]. Commonly, the latest values
influence the estimation of a potential value most strongly [50,51]. A single scalar variable
is frequently expressed in series data evaluation of a self-regression where future values
are estimated based on the weighted total of pre-set lagged values. This variable relies
on its own previous values as well as the previous values for many other variables in the
much more specific multivariate case [52–54].

3.2. Study Area

The study areas were Taipei, Hsinchu, Taichung, and Kaohsiung city, with pollution
data consisting of nitrogen oxide (NOx), atmospheric PM2.5, atmospheric PM10, and sulfur
dioxide (SO2) levels. Furthermore, the locations of these areas were as established by
the Taiwan Environmental Protection Administration Executive Yuan. Table 1 shows
statistical summaries of the amounts of air pollution at the four studied locations. The
findings typically demonstrate that Taichung has higher concentrations of PM10, PM2.5,
and NOX, but in Kaohsiung, SO2 is the greatest pollutant. Figure 1 shows an overview of
the genetic algorithm’s training and evaluation phases. Because each type of air pollutant
has a different distribution, we trained the same models for each dataset using the same
model architecture.

Table 1. Descriptive statistics.

Pollution Location N Mean SE
Mean StDev Variance Minimum Q1 Median Q3 Maximum Range

PM10

TAICHUNG 3632 50.642 0.419 24.949 622.476 5 32 45.5 65 173 168

TAIPEI 3632 21.244 0.208 12.412 154.052 1 12 19 27 100 99

HSINCHU 3632 22.46 0.219 13.135 172.521 1 13 19 29 103 102

KAOHSIUNG 3632 31.719 0.31 18.477 341.414 1 17 29 44 123 122

SO2

TAICHUNG 3632 2.8706 0.017 1.0208 1.042 0 2.2 2.7 3.4 9.3 9.3

TAIPEI 3632 2.9835 0.0263 1.5742 2.4781 0.4 1.9 2.6 3.7 16.2 15.8

HSINCHU 3632 2.6778 0.0186 1.1125 1.2377 0.1 1.9 2.5 3.2 13.2 13.1

KAOHSIUNG 3632 5.3129 0.0515 3.0833 9.5066 0 3.3 4.5 6.4 33.8 33.8

PM2.5

TAICHUNG 3632 26.623 0.264 15.66 245.244 1 15 23 35 106 105

TAIPEI 3632 23.635 0.203 12.161 147.892 3.97 15.107 20.84 29.023 109.83 105.86

HSINCHU 3632 18.179 0.13 7.763 60.265 0.63 13.04 16.34 21.102 76.72 76.09

KAOHSIUNG 3632 23.854 0.163 9.747 95.014 5.27 16.49 21.495 29.697 68.96 63.69

NOX

TAICHUNG 3632 22.944 0.171 10.26 105.269 4.35 15.23 20.57 28.63 81.43 77.08

TAIPEI 3632 6.196 0.106 6.315 39.874 0.09 1.85 4.15 8.28 65.14 65.05

HSINCHU 3632 3.2786 0.0546 3.2643 10.6559 0 1.52 2.3 3.79 45.65 45.65
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Figure 1. An overview of the genetic algorithm training and evaluation phases.

Samples for training were split in two, and alternating training and assessment were
done in the first half of the samples. After this part was complete, the other half was used
for forest training. Again, the first half was divided into smaller sections called stages. We
perform simulations for ratios of 90:10, 80:20, 70:30, 60:40, and 50:50. In the training process,
the training samples from the stepper were conditioned for all chromosomes, including
new chromosomes of the previous level. Before the formation of the new chromosomes,
all forests were educated in parallel. After all forests were qualified in the training part,
genetic operators were used in the assessment part to calculate fitness values to operate
in the genetic pool. This algorithm altered the substitute operator location to first and
functioned only when a new chromosome was generated at the previous point.

3.3. Air Pollution Forecasting Using VAR-Cascade-GA

Poor air quality in Taiwan has mostly been identified as being a result of house-
hold burning, largely the source of greenhouse gas emissions. Taiwan’s geography was
observed to be a primary contributor towards its environmental problems, resulting in
poor absorption and pollutant locking. Taipei, Taiwan’s capital and most populous city,
is surrounded by mountains, and advanced manufacturing offices all along the western
and northern coastlines of Taiwan were also built near mountain ranges. In Section 3, we
already discussed the construction step and simulation studies. Furthermore, during the
construction stage of input, we employed the VAR pollution space–time dataset including
Taichung (Y1), Taipei (Y2), Hsinchu (Y3), and Kaohsiung (Y4) in Taiwan.

Figure 2 shows that five hidden layers were used to create the model, and the ratio
used was calculated by assessing the error values of the testing results shown in Table 2.
During training and testing, PM2.5 is represented in Figure 3, PM10 is represented in
Figure 4, NOX is represented in Figure 5, and SO2 is represented in Figure 6. In this context,
the cascade neural network genetic algorithm model can be used to study nonlinear and
nonstationary data on air pollution. The metrics used to evaluate the test set’s result were
the root-mean-squared error (RMSE), mean absolute error (MAE), and symmetry mean
absolute percentage (sMAPE) between the actual air pollution values and the predicted
values. These are metrics that are commonly used in regression problems like our air
pollution prediction. If all the metric values are smaller, then the model’s performance is
better [25].
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Figure 2. Space–time Cascade Neural Network with genetic algorithm, adopted by [22,36].

Table 2. Model comparison based on pollution.

Pollution Portion
Training Testing Average

Elapsed
TimeRMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE

PM2.5

50:50

9.84 6.89 3.91 7.89 5.70 3.83 8.87 6.30 3.87 76.42

PM10 13.53 9.57 3.84 11.37 8.05 3.86 12.45 8.81 3.85 71.86

NOX 5.53 3.55 6.94 4.37 2.73 6.95 4.95 3.14 6.95 74.23

SO2 1.72 1.18 3.60 1.15 0.80 3.61 1.44 0.99 3.61 75.51

PM2.5

60:40

9.86 6.88 3.89 7.41 5.42 3.57 8.63 6.15 3.73 76.56

PM10 13.49 9.54 3.76 10.67 7.57 3.56 12.08 8.55 3.66 75.24

NOX 6.48 3.48 6.93 4.10 2.65 6.24 5.29 3.06 6.59 73.15

SO2 1.65 1.13 3.48 1.07 0.80 3.43 1.36 0.97 3.46 76.13

PM2.5

70:30

9.43 6.62 3.83 7.13 5.27 3.50 8.28 5.95 3.67 71.13

PM10 13.30 9.29 3.74 10.09 7.13 3.74 11.70 8.21 3.74 77.87

NOX 5.31 3.36 6.98 4.01 2.54 7.12 4.66 2.95 7.05 74.41

SO2 1.60 1.09 3.36 1.00 0.77 3.41 1.30 0.93 3.38 80.90

PM2.5

80:20

9.25 6.46 3.81 6.83 4.99 3.50 8.04 5.73 3.65 74.25

PM10 13.10 9.07 3.74 9.19 6.56 4.13 11.14 7.82 3.93 74.25

NOX 5.25 3.29 7.11 3.79 2.49 6.68 4.52 2.89 6.90 72.37

SO2 1.54 1.05 3.42 0.92 0.70 3.36 1.23 0.88 3.39 80.24

PM2.5

90:10 *

9.03 6.34 3.77 6.78 4.94 3.47 7.90 5.64 3.62 83.83

PM10 12.77 8.85 3.77 8.02 5.93 4.09 10.40 7.39 3.93 75.00

NOX 5.11 3.20 6.90 3.70 2.43 6.53 4.40 2.81 6.72 80.47

SO2 1.48 1.10 3.37 0.80 0.62 2.77 1.14 0.86 3.07 71.71

Noted: Best simulation with low error (*) and yellow highlight represent the lowest value of each information pollution, accuracy
measurement, and elapsed time.
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Figure 3. PM2.5 data training of the CFNN using a genetic algorithm and backpropagation.

In the results, the cascade neural network genetic algorithm with ratio 90:10 provided
lower RMSE, MAE, and sMAPE values for all variables. The optimum number of hidden
neurons showing good performance in the test and validation results could then be selected.
Using this model, a prediction of future air pollution was performed. In this study area,
the air pollution levels in these four cities in Taiwan influence each other. However, the
accuracy of prediction was not improved when we set the training and testing ratio to
80:20, 70:30, 60:40, or 50:50 in the same section. There are several training algorithms, such
as backpropagation, Conjugate Gradient Powell–Beale (CGB), Broyden–Fletcher–Goldfarb
(BFG), Levenberg–Marquardt (LM), and Scaled Conjugate Gradient (SCG). The rate of
change in the error with respect to the connection weight including the error gradient is
used as a path for training.
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Figure 4. PM10 data training of the CFNN using a genetic algorithm and backpropagation.

In order to measure the stage size to optimize performance, we used backpropagation
and conducted a search along the conjugate or orthogonal path. Appropriately, we proved
that this was the easiest way to train moderate feedback networks. That being said, some
matrix multiplication is included in the processing for such issues as air pollution over
time. The network is very wide in this research, so using backpropagation is a good way.
When overfitting occurs, the transferability of the potential is significantly decreased. To
suppress overfitting, methods such as so-called regularization are often used. L1 (L2)
regularization adds the sum of the absolute (square) values of weights to the loss function,
as in Equations (13) and (14), where Γ is the loss function and wi

jk indicates the weights in
the network. In addition, α is the scaling factor for the summation. NH denotes the number
of layers and Ni denotes the number of nodes in the ith layer.

ΓL1 = Γ + α
NH−1

∑
i=1

Ni

∑
j=1

Ni+1

∑
k=1

∣∣∣wi
jk

∣∣∣ (13)
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ΓL2 = Γ + α
NH−1

∑
i=1

Ni

∑
j=1

Ni+1

∑
k=1

(wi
jk)

2
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Figure 5. NOx data training of the CFNN using a genetic algorithm and backpropagation.

3.4. Does the Activation Function Provide High Accuracy and Speed Up the Time Lapse?

Linear regression models work well throughout short-term predictions based on daily
or weekly measurements in time series forecasting, but they cannot tackle nonlinearity in
showing variables properly, not even for long-term predictions from seasonal or annual
data series. Various machine learning methodologies have been introduced and used to
simulate problems and provide predictions in environmental research, as machine efficiency
has been evolving rapidly in the last decade. Despite its prominence and outstanding
data accuracy, critical issues in the Artificial Neural Network are its propensity to overfit
training data and inconsistency for short histories of training data. Several strategies for
more effective and efficient preparation of NNs have been recommended. However, these
are not simple and also have markedly poor accuracy.
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Figure 6. SO2 data training of the CFNN using a genetic algorithm and backpropagation.

After the training and testing comparisons already discussed in Section 3.3, we con-
sidered proving the performance of the hybrid cascade neural network genetic algorithm
when using other activation functions. Computational capabilities are increasing in the era
of big data, high-performance computing, parallel processing, and cloud computing. In
line with this, we address whether the activation function can improve accuracy and speed
up the time lapse. Throughout the last decades, the machine learning domain, a branch
of artificial intelligence, has gained popularity, and researchers in the area have led it to
expand through various areas of human life. Machine learning is a part of research that
employs statistics and computer science concepts to develop mathematical models used to
execute large tasks such as estimation and inference [55]. These frameworks are collections
of mathematical interactions between the system’s inputs and outputs. A learning process
entails predicting the model parameters so that the task can be executed effectively. To
improve accuracy, researchers have conducted simulated comparisons using various acti-
vation functions. The most popular activation functions are SoftMax, tanh, ReLU, Leaky
ReLU, sigmoid, and logsig [56–59].



Symmetry 2021, 13, 1158 14 of 20

As asserted, the activation function can be defined and applied to an ANN to assist
the network in understanding various systems in data. Although contrasted to a neuron-
based design seen in human brains, an activation function is essentially responsible for
determining what neuron to trigger immediately [60]. Inside an ANN, the activation
function is doing the same thing. All of this receives a prior nerve cell output signal
and transforms it into a format which can be used as feedback to yet another cell. In
this simulation, we used logsig in Equation (15), radbas in Equation (16), SoftMax in
Equation (17), and tribas in Equation (18).

zj =
1

1 + exp
(
−Xj

) (15)

z(x) =
N

∑
i=1

wi ϕ(‖x− xi‖) (16)

σ(
→
z )i =

ezi

∑K
j=1 ezj

(17)

tri(x) = Λ(x) def
= max(1− |x|, 0) (18)

Table 3 shows that the best activation function for PM10 was logsig, that for PM2.5 was
SoftMax, that for NOx was radbas, and that for SO2 was tribas. The SoftMax activation
function provided a shorter time lapse than other activation functions.

Table 3. Combining activation functions with the Cascade Neural Network.

Pollution Activation
Function

Training Testing Average
Elapsed

TimeRMSE MAE SMAPE RMSE MAE SMAPE RMSE MAE SMAPE

PM2.5

logsig

9.02 6.30 3.77 6.77 4.94 3.54 7.90 5.62 3.66 78.03

PM10 12.79 8.86 3.71 8.12 6.02 4.05 10.46 7.44 3.88 75.48

NOX 5.04 3.15 6.84 3.79 2.43 6.62 4.42 2.79 6.73 72.43

SO2 1.48 1.01 3.35 0.82 0.63 3.00 1.15 0.82 3.18 76.59

PM2.5

radbas

9.06 6.37 3.80 6.80 5.00 3.51 7.93 5.69 3.66 80.97

PM10 12.79 8.85 3.79 8.11 6.03 4.19 10.45 7.44 3.99 74.77

NOX 5.09 3.16 6.83 3.75 2.40 6.19 4.42 2.78 6.51 82.35

SO2 1.49 1.01 3.36 0.83 0.64 2.93 1.16 0.83 3.15 73.33

PM2.5

SoftMax

9.07 6.35 3.78 6.70 4.91 3.46 7.89 5.63 3.62 75.47

PM10 12.81 8.90 3.75 8.13 6.04 4.24 10.47 7.47 3.99 74.70

NOX 5.11 3.19 7.12 3.64 2.35 6.23 4.38 2.77 6.67 72.11

SO2 1.48 1.01 3.42 0.84 0.66 3.12 1.16 0.84 3.27 77.53

PM2.5

tribas

9.03 6.34 3.80 6.81 4.97 3.52 7.92 5.66 3.66 93.20

PM10 12.81 8.90 3.75 8.13 6.04 4.24 10.47 7.47 3.99 74.70

NOX 5.13 3.21 6.98 3.68 2.37 6.53 4.41 2.79 6.75 72.29

SO2 1.49 1.01 3.36 0.84 0.65 2.94 1.16 0.83 3.15 80.35

Noted: Yellow highlight represent the lowest value of each information pollution, accuracy measurement, and elapsed time.

The cascade feed forward neural network model differs only when determining the
input variables. During the simulation, we constructed the input by vector autoregression.
Then, we considered the input as the lag variable of each predicted variable, in this case,
the air pollution data at the four locations of Taichung, Taipei, Hsinchu, and Kaohsiung.
Then, in the CFNN model for the four locations, neurons were compiled in the layer and
the signal from the input to the first input layer, then to the second layer (hidden layer), and
finally to the output layer. The general equation for forecasting pollution data in the four
locations, represented in Equation (19), was used for prediction purposes in these study
areas. Meanwhile, Equation (20) shows four input neurons Yt−1 (lag 1) and five neurons
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in hidden layer of Zt. To perform the forecasting, we used Equation (21) for NOx with
the radial basis activation function, Equation (22) for PM2.5 with the SoftMax activation
function, Equation (20) for PM10 with the logsig activation function, and Equation (23) for
SO2 with the tribas activation function. We provide the results of forecasting in Figure 7 for
the next 30 steps. The results show Taichung constantly leading with the highest pollutant
score compared to other cities in Taiwan.

Ŷt = ψ2

[wb0 w0 wi2]

 1
Zt

Yt−1


Zt = ψ2

([
wbi wi1

] [ 1
Yt−1

]) (19)
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Figure 7. Forecasting all pollution datasets using the CFNN with a genetic algorithm and backpropagation.

Cascade Neural Network Genetic Algorithm for NOx using the radial basis activation
function:

Ŷt =


−0.1244 −0.0992 0.01054 −7.4544 0.2238 −6.9588 0.5603 0.0444 −0.0689 0.0770
−0.2483 0.0359 −0.0665 −6.6298 1.0709 −1.7180 0.0655 0.2562 0.3422 0.0572
−0.4328 0.0253 −0.0226 4.9796 0.8715 5.0640 0.1253 0.0189 0.3570 0.0742
−0.2772 0.0015 0.1201 −4.45319 −0.1428 4.9089 0.1066 0.0465 −0.0148 0.5544





1
Z1
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,
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Zt = radbas


5.0776 6.4191 0.0893 0.7930 −0.2450
0.8287 4.8674 −2.4160 −3.1740 −0.7644
−6.9722 −4.2852 9.1216 −3.0205 8.5264
−9.6954 −12.9182 5.3748 18.2621 −5.5156
7.7948 2.5076 2.6535 −9.1934 −9.4768




1
Y1,t−1
Y2,t−1
Y3,t−1
Y4,t−1

 (20)

Cascade Neural Network Genetic Algorithm for PM2.5 using the SoftMax activation
function:


0.9653 −1.0657 3.2999 −2.4456 −0.7936 −1.1990 0.7359 0.0491 −0.0690 0.1124
1.2965 −1.5045 2.3489 2.0493 −1.9046 −1.6001 0.0225 0.2826 0.3253 0.0500
6.0285 −6.1880 0.3716 2.3998 −6.8009 −6.3181 0.1929 −0.0279 0.4639 0.1170
0.9319 −0.9456 10.3730 3.4200 −1.1032 −0.9099 0.0890 0.0227 0.0463 0.7191





1
Z1
Z2
Z3
Z4
Z5

Y1,t−1
Y2,t−1
Y3,t−1
Y4,t−1


,

Zt = so f tmax


6.2714 −7.3511 −7.8139 −1.9507 4.3787
−5.6864 −7.7599 −8.3507 −2.9367 −2.3266
−6.4463 −6.6875 5.0926 1.5264 −1.1062
−5.0961 −3.3109 5.3424 6.5753 −3.4388
3.6740 −2.6485 −6.2284 −6.7208 4.4362




1
Y1,t−1
Y2,t−1
Y3,t−1
Y4,t−1

 (21)

Cascade Neural Network Genetic Algorithm for PM10 using the logsig activation
function:

Ŷt =


4.7332 −0.0171 −4.7892 −0.0294 −0.0499 −0.0380 0.5673 0.0698 0.0402 0.0720
−4.7021 0.0480 4.5307 −0.0609 0.0313 −0.1244 0.1252 0.3677 0.1878 0.0614
2.2770 0.0263 −2.4010 −0.0006 −0.0102 0.0014 0.2351 −0.0648 0.5960 0.0696
1.5241 −0.0534 −1.4885 0.0533 −0.1240 0.1097 0.1118 0.1017 0.1786 0.5507





1
Z1
Z2
Z3
Z4
Z5

Y1,t−1
Y2,t−1
Y3,t−1
Y4,t−1


,

Zt = logsig


−7.6484 −5.6012 5.5769 0.2050 −7.1292
9.0472 −2.0909 −7.4709 4.9145 −5.3312
−4.1385 −9.9840 −3.4291 6.0077 2.4277
−1.5068 −4.0147 3.5676 5.6306 −9.0051
−5.6488 5.5027 6.1290 7.2003 6.3822




1
Y1,t−1
Y2,t−1
Y3,t−1
Y4,t−1

 (22)

Cascade Neural Network Genetic Algorithm for SO10 using the tribas activation
function:



Symmetry 2021, 13, 1158 17 of 20

Ŷt =


−0.1116 5.1674 −0.0036 −0.0166 −3.4727 −0.2061 0.4570 0.0222 0.0743 0.0524
−0.2789 −1.0341 −0.0087 −0.0114 7.8267 0.1241 0.0817 0.3550 0.1215 0.0309
−0.8104 −7.8058 −0.0085 0.0234 5.2240 0.0292 0.1364 0.0647 0.4179 0.1027
−0.1772 6.5887 −0.0242 −0.0490 6.7444 0.0271 0.0246 0.0067 0.0693 0.6512





1
Z1
Z2
Z3
Z4
Z5

Y1,t−1
Y2,t−1
Y3,t−1
Y4,t−1


,

Zt = tribas


7.3483 −2.1911 −8.1641 0.4300 −3.6214
−1.5728 −2.5029 −10.1020 0.5066 7.0828
−5.3810 −9.9016 7.7806 −2.1473 5.0866
−1.1201 10.2142 6.6401 6.7203 4.0480
−2.9485 8.1185 7.2550 8.2102 −8.3387




1
Y1,t−1
Y2,t−1
Y3,t−1
Y4,t−1

 (23)

4. Conclusions

In this paper, we first presented a full review of a cascade neural network with a genetic
algorithm as applied to space–time forecasting. Experimental results on an air pollution
dataset showed that our hybrid methods provide high accuracy as proved by the RMSE,
MAE, and sMAPE values. Attributable to its rapid urbanization and industrialization over
the last decades, Taiwan faces serious environmental issues, including air pollution. In
order to resolve air quality issues, the government has taken several countermeasures. The
attempt to eliminate SO2 and overall suspended particulate matter was very effective when
ever-increasing cars threatened city atmospheres with NOx and particulates. A space–time
air pollution analysis over the last 10 years using the monitoring data clearly showed
that with urban planning and countermeasure policies, air quality has improved. The
analysis should be used to make future policy decisions. Air pollution temporal features
were examined herein for Taiwan. The pattern from pollutants to particulates differs in
air quality for each location. In a nutshell, the PM, SO2, and NOx levels have drastically
increased. Future research should examine using VAR-SARIMA, VAR-ARCH, and other
traditional time series as input.
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VAR: vector autoregression, GA: genetic algorithm, FFNN: feedforward neural net-
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