
symmetryS S

Article

Research of Interaction between Ultra-Short Ultra-Intense Laser
Pulses and Multiple Plasma Layers

Fang Feng 1,2 and Gang Lei 3,*

����������
�������

Citation: Feng, F.; Lei, G. Research of

Interaction between Ultra-Short

Ultra-Intense Laser Pulses and

Multiple Plasma Layers. Symmetry

2021, 13, 1175. https://doi.org/

10.3390/sym13071175

Academic Editor:

Alexander Shapovalov

Received: 19 May 2021

Accepted: 21 June 2021

Published: 29 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, China; fengfang@neau.edu.cn
2 Key Laboratory of Icing and Anti/De-Icing, China Aerodynamics Research and Development Center,

Mianyang 621000, China
3 Rocket Force University of Engineering, Xi’an 710025, China
* Correspondence: Leig603@163.com

Abstract: In this research, we studied the interaction between the ultra-intense laser and multiple
copper layers covered with multiple hydrogen layers. The research conditions are based on the
symmetric and asymmetric structure of multilayer copper and hydrogen. It was found that the
acceleration obtained from the first copper and hydrogen layer plasma was higher and occurred
earlier than the second copper and hydrogen layer plasma. We investigated the spatial distribution
and phase-space distribution of copper electrons, copper ions, hydrogen electrons, and hydrogen
protons with different widths of the front hydrogen layer and the front copper layer, respectively.
Theoretical simulations show that when the ultra-intense laser was irradiated in multiple copper
layers coated with multiple hydrogen layers targets, some plasma phase-space distribution varied
clearly in the different thicknesses of the first hydrogen layer or first copper layer, while some plasma
were not influenced by the thickness of these two layers.

Keywords: acceleration effect; plasma; copper layers; hydrogen layer; ultra-intense laser

1. Introduction

Laser-driven plasma electron acceleration has obtained wide consideration due to
the potential for fabricating small-scale accelerators [1]. In 2002, A. Pukhov observed the
laser wake with the shape of a solitary plasma cavity by observing ultra-short electron
bunches that emerged from laser wake fields driven over the wave-breaking threshold
via few-cycle laser pulses shorter than the plasma wavelength by simulation [2]. Then,
two experiments were reported in 2004. One was to drive a plasma bubble that traps and
accelerates plasma electrons within 3 mm length by laser [3]. Another was the application
of a preformed plasma density channel to guide a relativistically intense laser, resulting in
longer propagation distance in this research [4]. The research of the interaction of an intense
femtosecond laser with over-dense foil by particle-in-cell simulations was performed in
2004 [5]. High-energy laser pulses and different density gradient plasma interactions
were researched by J. Wolowski in 2005, investigating the properties of laser-created ion
streams performed under the presence of pre-pulses of various parameters [6]. In addition,
the self-focusing phenomenon with extremely high-intensity ps or ns laser pulses and
plasma interactions were investigated by H. Hora et al. [7]. In 2012, ultra-short, ultra-
intense laser interaction with the uniform and parabolic plasma density profiles were
simulated and analyzed, which showed that a parabolic plasma density profile can provide
better guidance for the ultra-short and ultra-intense pulse. They also found self-guiding
can be realized by relativistic self-focusing in uniform plasma at higher densities. This
can simplify the experiment to produce more accelerated electrons [8]. The interactions
between lasers and different plasma are carried out in different groups. The L-shell X-ray
emission measurement of Au plasma produced by an intense femtosecond laser experiment
was conducted by Yang Zhaorui et al. in 2012 [9]. The ion acceleration that occurred
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during the interaction of ultra-short laser pulses with under-dense helium plasma was
researched by A. Lifschitz’s group [10]. A study of ion heating in CD2-Al-CD2 sandwich
targets irradiated by an ultra-short laser was reported in 2013. They found that Al-CD2
interface pressure gradients pushed deuteron ions to the target outer regions [11]. In 2017,
Dragos Tatomirescu et al. studied the characteristics of an accelerated ion beam while
changing the target parameters with constant laser pulse parameters. They studied the
spatial distribution of particle beams, maximum particle energy, etc. They also studied
the impacts of the curvature target coupled with a cone laser focusing structure [12,13].
The experimental results of the generation of highly collimated electron beams with a
few degrees divergence angle, mega-electron-volt level non-thermal spectra peak by the
interaction of powerful sub-picosecond laser pulses, and solid target in grazing incidences
were reported by Yong Ma et al. in 2018 [14]. The theoretical results of the interaction of
short intense laser pulses and diluted plasma, the plasma wave formation, wave-breaking,
and slingshot effect were reported by the Gaetano Fiore group in 2018 [15]. In 2019, W.J. Ma
reported the interaction between ultra-intense femtosecond laser pulses and double-layer
targets composed with under-dense plasma and ultra-thin foils. The generation of highly
energetic carbon ions up to 48 MeV per nucleon was observed [16].

In this paper, we investigated theoretical simulations of the interaction between the
ultra-intense laser pulses and multiple copper layers coated with multiple hydrogen layers.
The research conditions are based on the symmetry and asymmetry structures of multilayer
copper and Hydrogen. Simulation results show that the first copper and hydrogen layer
plasma acceleration attained was higher and occurred earlier compared with the second
copper and hydrogen layer plasma. Besides, the spatial distribution and the phase-space
distribution of copper electrons, copper ions, hydrogen electrons, and hydrogen protons in
differing thicknesses of the respective first hydrogen and copper layers are presented and
discussed. We found that various thicknesses of the first hydrogen or copper layer played
an important role in the varying spatial distribution and phase-space distribution of some
plasma. Meanwhile, other plasma spatial distributions and phase-space distributions did
not change under the various thicknesses of the first hydrogen or copper layers.

2. Theory

The laser and plasma interaction is closely related to the laser parameters, the material
properties, and state parameters of the target plasma. Among them, the most decisive factor
is the laser intensity and the density of the plasma. The laser intensity is I0 = E0

Sτ , where
E0 is the laser power, S denotes the Laser irradiation area, and τ is the FWHM of the laser
pulse. Laser amplitude is a0 = eA0

mec2 , where A0 is the laser pulse peak value, me represents
the electron quality, c is the light speed, and e is the electron quantity. For linear polarization

lasers, A0 =

√
2I0λ2

0
πc and circular polarization lasers A0 =

√
I0λ2

0
πc , where λ0 is the laser

wavelength. The electromagnetic field cannot propagate in plasma with densities over a
certain threshold. This threshold density is: nc =

πmec2

e2λ2
0

. In this simulation, the electric field

spreading along the x-direction is E = A× pro f ile(y, z)× env(x, t)× sin(ωt− kt), where
profile and env represent the y-direction, z-direction, x-direction, and laser envelope shape
respectively. A is the laser pulse peak value, ω is the angular frequency of the laser wave,
and k is the wave number.

In the process of the interaction of ultra-short, ultra-intense laser pulses and plasma,
the laser field accelerates the ions. We use the Vsim PIC software program to simulate the
interaction of laser pulses and multiple plasma layers. We set the dimensionless quantity
laser amplitude to 1 × 1013, the laser wavelength to 1 × 10−6, Cu and H ion densities to
1 × 1027, and so on. Under the interaction of this strong laser field, the relativity effect
generates the ponderomotive force to push electrons and form a strong electrostatic field
on the back surface of the target. The force can be written as F = −m0c2∇γ, where γ is
the relativistic factor. From this function, it is notable that electrons get more acceleration
than protons because the proton’s quality is larger than the electron’s quality [17]. For the
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ion simulations, the first step is to initialize the ion’s position and velocity. The second
step is using the average approximate method to get the charge density and current
density distribution. Then, by using Maxwell functions: ∇.E = 4πρ, ∇.B = 0, ∇× E =

− ∂B
C×∂t , ∇×B = 1

c

(
∂E
∂t + 4πJ

)
to get the electric and magnetic fields, where E is the electric

field, B is the magnetic field, J is the current density, and ρ is the charge density. So, we
can calculate the electromagnetic force on every particle. The position and velocity of each
particle at the next moment can be calculated by the motion function: dP

dt = q
(
E + v×B

c
)
,

where P is the momentum, v is the velocity of the particle, q is the particle electric charge,
and c is the speed of light [18].

3. Simulation Results of The Spatial Distribution of Particles

We studied the interaction between ultra-short, ultra-intense lasers and multiple hy-
drogen layers covered on multiple copper layers. The hydrogen layer and the Copper
layer are symmetrically distributed. The simulation results under hydrogen layers with
1× 10−6 m width and copper layers with 5× 10−6 m width are shown in Figure 1. Small
pieces were hydrogen layers, the dark green was hydrogen protons, blue was hydrogen
electrons, light green was copper electrons, and red was copper ions. From Figure 1b,c, we
can observe that the electromagnetic field was reflected after hitting the target. The hydro-
gen electrons accelerated to spread in the copper. The hydrogen protons also accelerated to
move in copper. Figure 1d,e shows that the first hydrogen layer’s electrons were reflected
when they hit the second hydrogen layer, pushing the second hydrogen layer’s electrons to
spread into the second copper layer. The first hydrogen layer’s protons gained acceleration
to the right and left, while the second hydrogen layer’s protons did not gain acceleration.
It should be noted that electrons moved faster than the protons since electrons are lighter
than the protons. Figure 1d–g shows that the copper electrons spread widely after being
hit. Figure 1a–g time steps numbers are 9000, 13,000, 16,000, 19,000, 22,000, 29,000, and
39,000, respectively.
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Figure 1. The interaction of ultra-short, ultra-intense laser pulses with multiple hydrogen and copper layers. The light
green is copper electrons, the red is copper ions, the blue is hydrogen electrons, and the dark green is hydrogen protons.
(a–g) show the movement of particles over time with the time steps numbers being 9000, 13,000, 16,000, 19,000, 22,000,
29,000, and 39,000, respectively.

4. Numerical Simulation Results of Particle Phase-Space Distribution

We investigated the phase-space distribution of hydrogen protons following the time
as shown in Figure 2. Figure 2a–f time steps numbers are 0, 12,000, 16,000, 24,000, 32,000,
and 40,000, respectively. The simulation results showed that the acceleration of the first
layer of hydrogen protons was increased in the vertical direction at the beginning, which
then started to spread in both left and right horizontal directions. It was observed that
the second layer of hydrogen protons began to diffuse when the first layer of hydrogen
electrons hit the second hydrogen layer.
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Figure 2. Two layers of hydrogen proton phase-space distribution over time with the time step
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The phase-space distribution of two layers of hydrogen electrons changing with time
is displayed in Figure 3. The time steps numbers of Figure 3a–h are 0, 11,000, 15,000, 18,000,
20,000, 26,000, 34,000, and 40,000, respectively. From Figure 3a–h it can be noted that an
extremely high acceleration of the first layer of hydrogen electrons was obtained, diffusing
to the right and moving into copper. When the first layer of hydrogen electrons hit the
second hydrogen layer, the first layer passed over the second layer and pushed the second
layer to move left due to the high acceleration of the first layer. From Figure 3f–h, it is
notable that the left column is the second layer of hydrogen electrons and the right column
denotes the first layer of hydrogen electrons.

We also present a theoretical simulation investigation of the copper proton and electron
phase-space distribution. The phase-space distribution of copper ions changing with time
is shown in Figure 4. And from Figure 4a–f, the time steps numbers are 0, 8000, 16,000,
24,000, 32,000, and 40,000, respectively. It can be noted that the first layer of copper ions
obtained vertical acceleration in the beginning. After a while, copper ions achieved positive
velocity at the end of the first copper layer. Then, the beginning and end parts of the second
layer of copper also obtained vertical acceleration. In Figure 5, we illustrate the evolution
of the phase-space distribution of copper electrons. As shown in Figure 5, the first layer of
copper electrons obtained vertical acceleration first; subsequently, the vertical acceleration
of the second layer of copper electrons was achieved. From Figure 5a–f, the time steps
numbers are 0, 12,000, 16,000, 20,000, 27,000, and 39,000, respectively.
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Figure 5. Two layers of copper electron phase-space distribution over time with time steps numbers
are 0 (a), 12,000 (b), 16,000 (c), 20,000 (d), 27,000 (e) and 39,000 (f), respectively.

5. The Influence of the Different Thicknesses of the First Hydrogen Layer on
Phase-Space Distribution under Asymmetric Structure of the Hydrogen Layer
(Numerical Simulation)

The hydrogen layer has an asymmetric structure, and the copper layer has a symmet-
ric structure. We studied the phase-space distribution of copper electrons, copper ions,
hydrogen electrons, and hydrogen protons under various widths of the first hydrogen
layer. Figure 6 shows that the first hydrogen layer width was varied with 1, 3, and 5 nm,
respectively. In Figure 7, we compared protons of hydrogen phase-space distribution with
the time steps number being 40,000, with the first hydrogen layer being 1, 3, or 5 nm,
separately. The red color plot represents the hydrogen proton phase-space distribution of
the first hydrogen layer with 1 nm, the blue color plots represent the first hydrogen layer
with 3 nm, and the yellow color plots represent the first hydrogen layer with 5 nm. We note
that the phase-space distribution of the second layer of hydrogen protons did not change
with the different thicknesses of the first hydrogen layer.

Figure 8 shows the process of hydrogen electron phase-space distribution with the
time steps number being 40,000 and the first hydrogen layer being 1 (red plots), 3 (blue
plots), and 5 nm (yellow plots), respectively. It can be noted that most of the first layer of
hydrogen electrons moved to the right of the second hydrogen electron layer and spread
inside the second copper layer. It was noted that the second layer of hydrogen electrons
moved to the left and spread inside the first copper layer. From the numerical results for
the 5 nm hydrogen layer, most of the first layer of hydrogen electrons moved to the right
of the second hydrogen layer, while some remained on the left side. For the 3 nm layer,
fewer first layer hydrogen electrons remained on the left side. While for the 1 nm layer,
even fewer first layer hydrogen electrons remained on the left side of the second hydrogen
layer in comparison to the 3 nm layer.
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Figure 8. The comparison of hydrogen electron phase-space distribution with different first hydrogen
layer widths being 1 nm, 3 nm, and 5 nm respectively.

The copper ion phase-space distribution with a time step number of 40,000 in different
first hydrogen layer widths is shown in Figure 9. As we can see, different hydrogen layer
thickness had little influence on the acceleration of the first copper layer ions along the
vertical direction, which does not influence second copper layer ions.
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6. The Influence of the Different Thicknesses of the First Copper Layer on Phase-Space
Distribution under Asymmetric Structure of Copper Layer (Numerical Simulation)

The influence of varied first copper layer thicknesses on the phase-space distribution
of copper electrons, copper ions, hydrogen electrons, and hydrogen protons was also inves-
tigated. Fixing other layer thicknesses, the first copper layers with different thicknesses (1,
3, and 5 nm) are shown in Figure 11. The Copper layer has an asymmetric structure.
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In Figure 12, we compare the results of the hydrogen proton phase-space distribution
with a time step number of 40,000 with the first copper layer of respective 1, 3, and 5 nm.
The red color represents hydrogen proton phase-space distribution with the first copper
layer width of 1 nm, the blue color is the first copper layer with 3 nm, and the yellow color
is the first copper layer with 5 nm. We can observe that the phase-space distribution of the
first hydrogen proton nearly had no change among different first copper layer widths. It
can be concluded that the first copper layer’s thickness cannot influence the first hydrogen
layer’s proton acceleration in the horizontal and vertical directions. It can also be noted
that the acceleration of the second layer of hydrogen protons was greater with the first
copper layer being 5 nm than it with the first copper layer being 1 nm in the vertical
direction, while the acceleration of the second layer of hydrogen protons was greater with
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the first copper layer being 1 nm than it with the first copper layer being 5 nm in the
horizontal direction.
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We investigated the hydrogen electrons phase-space distribution with the time step
number of 40,000 among different first copper layer thicknesses in Figure 13. We found
that behaviors of the first hydrogen layer electrons were hardly influenced by the different
widths of the first copper layer; even most first hydrogen layer electrons were pushed to
the right side of the second hydrogen layer electrons. Nearly the same percentage of first
hydrogen layer electrons remained in the left part in differing widths of the first copper
layer. It is necessary to note that most first hydrogen layer electrons spread into the second
copper layer. However, the second hydrogen layer’s electrons were influenced remarkably
by the different thicknesses of the first copper layer. Most of the second hydrogen layer’s
electrons moved and spread inside the first copper layer. Therefore, it can be noted that
the width of the second hydrogen layer’s electrons was 1, 3, or 5 nm when the first copper
width was 1, 3, or 5 nm, respectively.

Figure 14 shows the copper ion phase-space distribution among different first copper
layer thicknesses. It can be noted that only the first copper layer ion phase-space distribu-
tion was different due to the differing first copper layer thickness, while the second copper
layer ions were not influenced by varying the first copper layer thickness.

The results are presented for the copper electron phase-space distribution following
the variation of the first copper layer width in Figure 15. Based on the simulation results,
we can see that the first copper layer electron phase-space distribution was different due to
the different first copper layer widths, while the second copper layer electron phase-space
distribution was constant when the first copper layer’s width was varied.
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Figure 15. The comparison of copper electron phase-space distribution with different first copper
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7. Conclusions

The super-strong and ultra-short laser pulses interacting with the multiple copper
layers covered with multiple hydrogen layers to accelerate the ion mechanism was studied
by simulation. We also theoretically investigated the plasma phase-space distribution by
varying the thickness of the first hydrogen layer and the first copper layer. The theoretical
simulation results showed that when the ultra-intense laser pulses irradiated the multiple
copper layers covered with multiple hydrogen layers, different plasma phase-space dis-
tributions showed different phenomena under the differing widths of the first hydrogen
layer or first copper layer. We compared the phase-space distribution of copper electrons,
copper ions, hydrogen electrons, and hydrogen protons when the first hydrogen layer was
1, 3, or 5 nm. Meanwhile, the phase-space distribution of four plasma was also observed
when the first copper layer was 1, 3, or 5 nm. The thickness of the first hydrogen layer ex-
erted a significant influence on some plasma velocity and acceleration distributions, while
other plasma velocity and acceleration distributions were not influenced. The thickness
of the first copper layer was the same. These simulation research results are important
supplements to the studies of the interaction between ultra-intense ultra-short pulses
and plasma.
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