

Jae-Hyeong Bae 1,[†](https://orcid.org/0000-0001-9513-3743) and Won-Gil Park 2,* ,†

- ² Department of Mathematics Education, College of Education, Mokwon University, Daejeon 35349, Korea
- ***** Correspondence: wgpark@mokwon.ac.kr
- These authors contributed equally to this work.

Abstract: Symmetry is repetitive self-similarity. We proved the stability problem by replicating the well-known Cauchy equation and the well-known Jensen equation into two variables. In this paper, we proved the Hyers-Ulam stability of the bi-additive functional equation $f(x + y, z + z)$ $w) = f(x,z) + f(y,w)$ and the bi-Jensen functional equation $4f\left(\frac{x+y}{2},\frac{z+w}{2}\right)$ $= f(x, z) + f(x, w) +$ $f(y, z) + f(y, w)$.

Keywords: stability; bi-additive mapping; bi-Jensen mapping

1. Introduction

A functional equation is stable if there is a function that exactly satisfies the given equation in the vicinity of a function that approximately satisfies it. Any approximate solution can actually be an exact solution. In Cauchy's equation $f(x + y) = f(x) + f(y)$ we can deal with a class of approximate solutions defined by the functional inequality introduced by Rassias.

$$
||f(x + y) - f(x) - f(y)|| \le \varepsilon (||x||^p + ||y||^p).
$$

It turns out that for $p \neq 1$ each solution of the above inequality can be approximated by an additive function A in such a way that the inequality

$$
||f(x) - A(x)|| \leq k\varepsilon ||x||^p.
$$

holds, with a suitable *k*, on the whole domain (for $p = 0$ it coincides with the classical Hyers–Ulam result).

Let us say $\mathcal X$ and $\mathcal Y$ are vector spaces. The mapping $h : \mathcal X \to \mathcal Y$ is called *an additional mapping* (respectively, *an affine mapping*) if *h* satisfies the Cauchy functional equation $h(x +$ y) = *h*(*x*) + *h*(*y*) (respectively, the Jensen functional equation $2h(\frac{x+y}{2}) = h(x) + h(y)$). T. Aoki [\[1\]](#page-11-0) and Th. M. Rassias [\[2](#page-11-1)[,3\]](#page-11-2) extended Hyers-Ulam stability taking into account the variables for the Cauchy equation. S.-M. Jung [\[4\]](#page-11-3) got the result of the Jensen equation. It was also generalized as a functional case by P. Găvruta [\[5\]](#page-11-4) and S.-M. Jung [\[6\]](#page-11-5) and Y.-H. Lee and K.-W. Jun [\[7\]](#page-11-6).

The following functional Equations (1) and (3) are functional equations those combine the existing well-known the Cauchy equation and the Jensen equation.

$$
f(x + y, z + w) = f(x, z) + f(y, w).
$$
 (1)

The authors [\[8\]](#page-11-7) introduce the system of equations

$$
2f(\frac{x+y}{2}, z) = f(x, z) + f(y, z),
$$

\n
$$
2f(x, \frac{y+z}{2}) = f(x, y) + f(x, z).
$$
\n(2)

Citation: Bae, J.-H.; Park, W.-G. Stability of Bi-Additive Mappings and Bi-Jensen Mappings. *Symmetry* **2021**, *13*, 1180. [https://doi.org/](https://doi.org/10.3390/sym13071180) [10.3390/sym13071180](https://doi.org/10.3390/sym13071180)

Academic Editors: Włodzimierz Fechner and Jacek Chudziak

Received: 21 May 2021 Accepted: 28 June 2021 Published: 30 June 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:/[/](https://creativecommons.org/licenses/by/4.0/) [creativecommons.org/licenses/by/](https://creativecommons.org/licenses/by/4.0/) $4.0/$).

and the bi-Jensen functional equation

$$
4f\left(\frac{x+y}{2},\frac{z+w}{2}\right) = f(x,z) + f(x,w) + f(y,z) + f(y,w).
$$
 (3)

We made the above functional equations with a symmetrical structure. Symmetry is repetitive self-similarity. The solution of (2) is coincide with the solution of (3). The solution of (1) is of the form $A_1(x) + A_2(y)$, where A_1 and A_2 are additive mappings. The solution of (2) is of the form $A_1(x) + A_2(y) + f(0,0)$, where A_1 and A_2 are additive mappings. The solution of (2) contains the solution of (1). The difference of the solutions (1) and (2) is merely a constant, that is, the solutions (1) and (2) are similar.

Jun, Jung, and Lee [\[9\]](#page-11-8) obtained the stability on a bi-Jensen functional equation in Banach spaces. Additionally, the authors [\[10\]](#page-11-9) proved the stability on a Cauchy-Jensen functional equation Banach spaces.

In this paper, we investigate the generalized Hyers-Ulam stability of [\(1\)](#page-0-0) in Banach spaces and 2-Banach spaces. We proved the Hyers-Ulam stability of [\(2\)](#page-0-1) and [\(3\)](#page-1-0) in quasi-Banach spaces.

2. Solution and Stability of a Bi-Additive Functional Equation

In the following theorem, we find out the general solution of the bi-additive functional Equation [\(1\)](#page-0-0).

Theorem [1](#page-0-0). A mapping $f : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ satisfies (1) if and only if there exist two additive *mappings* A_1 , A_2 : $\mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ *such that*

$$
f(x,y) = A_1(x) + A_2(y)
$$

for all $x, y \in \mathcal{X}$ *.*

Proof. We first assume that *f* is a solution of [\(1\)](#page-0-0). Define $A_1, A_2 : \mathcal{X} \to \mathcal{Y}$ by $A_1(x) :=$ *f*(*x*, 0) and *A*₂(*x*) := *f*(0, *x*) for all $x \in \mathcal{X}$. One can easily verify that *A*₁, *A*₂ are additive. Letting $y = z = 0$ in [\(1\)](#page-0-0), we get

$$
f(x, w) = f(x, 0) + f(0, w) = A_1(x) + A_2(w)
$$

for all $x, w \in \mathcal{X}$.

Conversely, we assume that there is two additive mappings $A_1, A_2 : \mathcal{X} \times \mathcal{X} \to \mathcal{Y}$, such that $f(x, y) = A_1(x) + A_2(y)$ for all $x, y \in \mathcal{X}$. Since A_1 , A_2 are additive, we gain

$$
f(x + y, z + w) = A_1(x + y) + A_2(z + w)
$$

= $A_1(x) + A_1(y) + A_2(z) + A_2(w)$
= $A_1(x) + A_2(z) + A_1(y) + A_2(w)$
= $f(x, z) + f(y, w)$

for all $x, y, z, w \in \mathcal{X}$. \square

From now on, let $\mathcal X$ and $\mathcal Y$ be a normed linear space and a Banach space, respectively.

Theorem 2. Let $0 < p < 1$, $\varepsilon > 0$, $\delta \ge 0$ and $f : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ be a mapping such that

$$
||f(x+y,z+w) - f(x,z) - f(y,w)|| \le \varepsilon + \delta(||x||^p + ||y||^p + ||z||^p + ||w||^p)
$$
 (4)

for all x, *y*, *z*, *w* \in *X*. *Then there is unique bi-additive mapping* $F : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$, such that

$$
||f(x,y) - F(x,y)|| \le \varepsilon + \frac{2\delta}{2 - 2^p} (||x||^p + ||y||^p)
$$
 (5)

for all x, $y \in \mathcal{X}$ *. The mapping F is given by F*(*x, y*) := lim_{j→∞} $\frac{1}{2}$ $\frac{1}{2^j} f(2^j x, 2^j y)$ for all $x, y \in \mathcal{X}$.

Proof. Putting $y = x$ and $w = z$ in [\(4\)](#page-1-1), we have

$$
\left\| f(x, z) - \frac{1}{2} f(2x, 2z) \right\| \leq \frac{\varepsilon}{2} + \delta (\|x\|^p + \|z\|^p)
$$

for all $x, z \in \mathcal{X}$. Thus, we obtain

$$
\left\| \frac{1}{2^{j}} f(2^{j} x, 2^{j} z) - \frac{1}{2^{j+1}} f(2^{j+1} x, 2^{j+1} z) \right\| \leq \frac{\varepsilon}{2^{j+1}} + 2^{j(p-1)} \delta(\|x\|^{p} + \|z\|^{p})
$$

for all $x, z \in \mathcal{X}$ and all *j*. Replacing *z* by *y* in the above inequality, we see that

$$
\left\|\frac{1}{2^{j}}f(2^{j}x,2^{j}y)-\frac{1}{2^{j+1}}f(2^{j+1}x,2^{j+1}y)\right\|\leq \frac{\varepsilon}{2^{j+1}}+2^{j(p-1)}\delta(\|x\|^{p}+\|y\|^{p})
$$

for all $x, y \in \mathcal{X}$ and all *j*. For given integers *l*, $m(0 \le l \le m)$, we get

$$
\left\| \frac{1}{2^l} f(2^l x, 2^l y) - \frac{1}{2^m} f(2^m x, 2^m y) \right\| \le \sum_{j=l}^{m-1} \left[\frac{\varepsilon}{2^{j+1}} + 2^{j(p-1)} \delta(\|x\|^p + \|y\|^p) \right] \tag{6}
$$

for all *x*, *y* $\in \mathcal{X}$. By [\(6\)](#page-2-0), the sequence $\{\frac{1}{2}\}$ $\frac{1}{2^j} f(2^j x, 2^j y) \}$ is a Cauchy sequence for all $x, y \in \mathcal{X}$. Since *y* is complete, the sequence $\{\frac{1}{2}\}$ $\frac{1}{2^{j}}f(2^{j}x, 2^{j}y)$ } converges for all $x, y \in \mathcal{X}$. Define $F: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ by

$$
F(x,y) := \lim_{j \to \infty} \frac{1}{2^j} f(2^j x, 2^j y)
$$

for all $x, y \in \mathcal{X}$. By [\(4\)](#page-1-1), we have

$$
\frac{1}{2^{j}}\left\|f(2^{j}(x+y),2^{j}(z+w)) - f(2^{j}x,2^{j}z) - f(2^{j}y,2^{j}w)\right\|
$$

$$
\leq \frac{\varepsilon}{2^{j}} + 2^{j(p-1)}\delta(\|x\|^{p} + \|y\|^{p} + \|z\|^{p} + \|w\|^{p})
$$

for all $x, y, z, w \in \mathcal{X}$ and all $j \in \mathbb{N}$. Letting $j \to \infty$ in the above inequality, we see that *F* satisfies [\(1\)](#page-0-0). Setting *l* = 0 and taking $m \to \infty$ in [\(6\)](#page-2-0), one can obtain the inequality [\(5\)](#page-1-2). If *G* : $X \times X \rightarrow Y$ is another 2-variable additive mapping satisfying [\(5\)](#page-1-2), we obtain

$$
||F(x,y) - G(x,y)||
$$

= $\frac{1}{2^n} ||F(2^n x, 2^n y) - G(2^n x, 2^n y)||$
 $\leq \frac{1}{2^n} ||F(2^n x, 2^n y) - f(2^n x, 2^n y)|| + \frac{1}{2^n} ||f(2^n x, 2^n y) - G(2^n x, 2^n y)||$
 $\leq \frac{1}{2^{n-1}} \bigg[\varepsilon + \frac{2^{n+1}}{2-2^n} \delta(||x||^p + ||y||^p) \bigg]$
 $\to 0 \text{ as } n \to \infty$

for all $x, y \in \mathcal{X}$. Hence the mapping *F* is the unique bi-additive mapping, as desired. \Box

Corollary 1. Let $f : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ be a mapping such that

$$
||f(x+y,z+w)-f(x,z)-f(y,w)|| \leq \varepsilon
$$

for all $x, y, z, w \in \mathcal{X}$. Then, there exists a unique mapping $F : \mathcal{X} \times \mathcal{X} \to \mathcal{Y}$ satisfying ([1](#page-0-0)), *such that*

$$
||f(x,y)-F(x,y)|| \leq \frac{\varepsilon}{2}
$$

for all $x, y \in \mathcal{X}$ *.*

Proof. If we insert $\delta = 0$ in Theorem 2, we obtain ε as an estimate of the difference between the exact and the approximate solution of the considered equation. \Box

In the case $p > 2$ in Theorem 2, one can also obtain the similar result. We explain some definitions [\[11](#page-11-10)[,12\]](#page-11-11) on 2-Banach spaces.

Definition 1. Let X be a vector space over $\mathbb R$ with dimension greater than 1 and $\|\cdot,\cdot\|: \mathcal X^2 \to \mathbb R$ *be a function. Then we say* $(\mathcal{X}, \|\cdot\|)$ *is a linear 2-normed space if*

(a) $\|x, y\| = 0$ *if and only if x and y are linearly dependent; (b)* $||x, y|| = ||y, x||;$ *(c)* $\|\alpha x, y\| = |\alpha| \|x, y\|;$ (d) $||x, y + z|| \leq ||x, y|| + ||x, z||$ *for all* $\alpha \in \mathbb{R}$ *and* $x, y, z \in \mathcal{X}$ *. In this case, the function* $\|\cdot, \cdot\|$ *is called a* 2-norm on \mathcal{X} *.*

Definition 2. Let X be linear 2-normed space and $\{x_n\}$ a sequence in X. The sequence $\{x_n\}$ is *said to convergent in* X *if there is an* $x \in \mathcal{X}$ *, such that*

$$
\lim_{n\to\infty}||x_n-x,y||=0
$$

for all $y \in \mathcal{X}$ *. In this case, we say that a sequence* $\{x_n\}$ *converges to x, simply denoted by* $\lim_{n\to\infty} x_n = x$.

Definition 3. Let X be linear 2-normed space and $\{x_n\}$ a sequence in X is called a Cauchy *sequence if for any* $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $m, n \ge N$, $||x_m - x_n, y|| < \varepsilon$ for *all y* ∈ *X*. For convenience, we will write $\lim_{m,n\to\infty}$ $||x_n - x_m, y|| = 0$ for a Cauchy sequence {*xn*}*. A* 2*-Banach space is defined to be a linear* 2*-normed space in which every Cauchy sequence is convergent.*

In the following lemma, we get some primitive properties in linear 2-normed spaces that will be used to prove our stability results.

Lemma 1 ([\[13\]](#page-11-12)). Let $(X, \|\cdot, \cdot\|)$ be a linear 2-normed space and $x \in \mathcal{X}$.

(a) If $||x, y|| = 0$ *for all* $y \in \mathcal{X}$ *, then* $x = 0$ *.*

 $\|f(x, y) - f(y, z)\| \leq \|x - y, z\|$ *for all x*, *y*, *z* ∈ X.

(c) If a sequence $\{x_n\}$ is convergent in X, then $\lim_{n\to\infty} ||x_n y|| = ||\lim_{n\to\infty} x_n y||$ for all $y \in \mathcal{X}$ *.*

In the rest of this section, let $\mathcal X$ be a normed space and $\mathcal Y$ a 2-Banach space.

Theorem 3. Let $p \in (0,1)$, $\varepsilon > 0$, $\delta, \eta \ge 0$ and let $f : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ be a surjective mapping *such that*

$$
||f(x + y, z + w) - f(x, z) - f(y, w), f(u, v)||
$$

\n
$$
\leq \varepsilon + \delta(||x||^p + ||y||^p + ||z||^p + ||w||^p) + \eta(||u|| + ||v||)
$$
\n(7)

for all $x, y, z, w, u, v \in \mathcal{X}$. Then there exists a unique mapping $F : \mathcal{X} \times \mathcal{X} \to \mathcal{Y}$ satisfying ([1](#page-0-0)), *such that*

$$
||f(x,y) - F(x,y), f(u,v)|| \leq \frac{\varepsilon}{2} + \frac{2\delta}{2 - 2^p} (||x||^p + ||y||^p) + \frac{\eta}{2} (||u|| + ||v||)
$$
 (8)

for all x, *y*, *u*, $v \in \mathcal{X}$.

Proof. Letting $y = x$ and $w = z$ in [\(7\)](#page-3-0), we have

$$
\left\|f(x,z) - \frac{1}{2}f(2x,2z), f(u,v)\right\| \leq \frac{\varepsilon}{2} + \delta(\|x\|^p + \|z\|^p) + \frac{\eta}{2}(\|u\| + \|v\|)
$$

for all $x, z, u, v \in \mathcal{X}$. Thus, we obtain

$$
\begin{aligned} &\left\|\frac{1}{2^j}f(2^jx,2^jz)-\frac{1}{2^{j+1}}f(2^{j+1}x,2^{j+1}z),f(u,v)\right\|\\ &\leq \frac{\varepsilon}{2^{j+1}}+2^{j(p-1)}\delta(\|x\|^p+\|z\|^p)+\frac{\eta}{2^{j+1}}(\|u\|+\|v\|)\end{aligned}
$$

for all $x, z, u, v \in \mathcal{X}$ and all *j*. Replacing *z* by *y* in the above inequality, we see that

$$
\left\| \frac{1}{2^{j}} f(2^{j}x, 2^{j}y) - \frac{1}{2^{j+1}} f(2^{j+1}x, 2^{j+1}y), f(u, v) \right\|
$$

\n
$$
\leq \frac{\varepsilon}{2^{j+1}} + 2^{j(p-1)} \delta(\|x\|^{p} + \|y\|^{p}) + \frac{\eta}{2^{j+1}}(\|u\| + \|v\|)
$$

for all $x, y, u, v \in \mathcal{X}$ and all *j*. For given integers *l*, $m(0 \le l < m)$, we get

$$
\left\| \frac{1}{2^l} f(2^l x, 2^l y) - \frac{1}{2^m} f(2^m x, 2^m y), f(u, v) \right\|
$$
\n
$$
\leq \sum_{j=l}^{m-1} \left[\frac{\varepsilon}{2^{j+1}} + 2^{j(p-1)} \delta(\|x\|^p + \|z\|^p) + \frac{\eta}{2^{j+1}} (\|u\| + \|v\|) \right]
$$
\n(9)

for all $x, y, u, v \in \mathcal{X}$. By [\(9\)](#page-4-0), the sequence $\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}$ $\frac{1}{2^{j}}f(2^{j}x, 2^{j}y)$ } is a Cauchy sequence for all $x, y \in \mathcal{X}$. Since \mathcal{Y} is complete, the sequence $\{\frac{1}{2}, \frac{1}{2}\}$ $\frac{1}{2^{j}}f(2^{j}x, 2^{j}y)\}$ converges for all $x, y \in \mathcal{X}$. Define $F: \mathcal{X} \times \mathcal{X} \to \mathcal{Y}$ by $F(x, y) := \lim_{j \to \infty} \frac{1}{2}$ $\frac{1}{2^{j}}f(2^{j}x, 2^{j}y)$ for all $x, y \in \mathcal{X}$. By [\(7\)](#page-3-0), we have

$$
\left\| \frac{1}{2^{j}} f(2^{j}(x+y), 2^{j}(z+w)) - \frac{1}{2^{j}} f(2^{j}x, 2^{j}z) - \frac{1}{2^{j}} f(2^{j}y, 2^{j}w), f(u, v) \right\|
$$

$$
\leq \frac{1}{2^{j}} \left[\varepsilon + 2^{jp}\delta(\|x\|^{p} + \|y\|^{p} + \|z\|^{p} + \|w\|^{p}) + \eta(\|u\| + \|v\|)\right]
$$

for all $x, y, z, w, u, v \in \mathcal{X}$ and all *j*. Letting $j \to \infty$, we see that *F* satisfies [\(1\)](#page-0-0). Setting $l = 0$ and taking $m \to \infty$ in [\(9\)](#page-4-0), one can obtain the inequality [\(8\)](#page-3-1). If $G : \mathcal{X} \times \mathcal{X} \to \mathcal{Y}$ is another mapping satisfying (1) and (8) , we obtain

$$
||F(x,y) - G(x,y), f(u,v)|| = \frac{1}{2^n} ||F(2^n x, 2^n y) - G(2^n x, 2^n y), f(u,v)||
$$

\n
$$
\leq \frac{1}{2^n} ||F(2^n x, 2^n y) - f(2^n x, 2^n y), f(u,v)|| + \frac{1}{2^n} ||f(2^n x, 2^n y) - G(2^n x, 2^n y), f(u,v)||
$$

\n
$$
\leq \frac{2}{2^n} \left[\frac{\varepsilon}{2} + \frac{2^{np+1}\delta}{2 - 2^p} (||x||^p + ||y||^p) + \frac{\eta(||u|| + ||v||)}{2} \right]
$$

\n
$$
\to 0 \text{ as } n \to \infty
$$

for all $x, y, u, v \in \mathcal{X}$. Hence the mapping *F* is the unique mapping satisfying [\(1\)](#page-0-0), as desired. \Box

Corollary 2. Let $f : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ be a mapping, such that

$$
||f(x+y,z+w)-f(x,z)-f(y,w),f(u,v)|| \leq \varepsilon
$$

for all $x, y, z, w, u, v \in \mathcal{X}$. Then there exists a unique mapping $F : \mathcal{X} \times \mathcal{X} \to \mathcal{Y}$ satisfying ([1](#page-0-0)) *such that*

$$
||f(x,y)-F(x,y),f(u,v)|| \leq \frac{\varepsilon}{2}
$$

for all $x, y, u, v \in \mathcal{X}$ *.*

Proof. Taking $\delta = \eta = 0$ in Theorem 3, we have the desired result. \Box

In the case $p > 2$ in Theorem 3, one can also obtain the similar result.

3. Solution and Stability of a Bi-Jensen Functional Equation

In [\[14](#page-11-13)[,15\]](#page-11-14), one can find the concept of quasi-Banach spaces.

Definition 4. Let X be a real linear space. A quasi-norm is real-valued function on X satisfying *the following:*

(i) $||x|| \ge 0$ *for all* $x \in \mathcal{X}$ *and* $||x|| = 0$ *if, and only if,* $x = 0$ *. (ii)* $\|\lambda x\| = |\lambda| \|x\|$ *for all* $\lambda \in \mathbb{R}$ *and all* $x \in \mathcal{X}$ *.*

(iii) There is a constant $K \geq 1$, such that $||x + y|| \leq K(||x|| + ||y||)$ for all $x, y \in \mathcal{X}$.

The pair $(\mathcal{X}, \|\cdot\|)$ is called a *quasi-normed space* if $\|\cdot\|$ is a quasi-norm on X. The smallest possible *K* is called the *modulus of concavity* of $\|\cdot\|$. A *quasi-Banach space* is a complete quasi-normed space. A quasi-norm $\|\cdot\|$ is called a *p-norm* ($0 < p \le 1$) if

$$
||x + y||^p \le ||x||^p + ||y||^p
$$

for all $x, y \in \mathcal{X}$. In this case, a quasi-Banach space is called a *p*-Banach space.

A quasi-norm gives rise to a linear topology on *X*, namely the least linear topology for which the unit ball $B = \{x \in \mathcal{X} : ||x|| \leq 1\}$ is a neighborhood of zero. This topology is locally bounded, that is, it has a bounded neighborhood of zero. Actually, every locally bounded topology arises in this way.

From now on, assume that X is a quasi-normed space with quasi-norm $\|\cdot\|_{\mathcal{X}}$ and that *Y* is a *p*-Banach space with *p*-norm $\|\cdot\|_{\mathcal{Y}}$. Let *K* be the modulus of concavity of $\|\cdot\|_{\mathcal{Y}}$. Let φ : $\mathcal{X} \times \mathcal{X} \times \mathcal{X} \to [0,\infty)$ and ψ : $\mathcal{X} \times \mathcal{X} \times \mathcal{X} \to [0,\infty)$ be two functions such that

$$
\lim_{n \to \infty} \frac{1}{3^n} \varphi(3^n x, 3^n y, z) = 0, \quad \lim_{n \to \infty} \frac{1}{3^n} \psi(3^n x, y, z) = 0
$$
\n(10)

and

$$
\lim_{n \to \infty} \frac{1}{3^n} \varphi(x, y, 3^n z) = 0, \quad \lim_{n \to \infty} \frac{1}{3^n} \psi(x, 3^n y, 3^n z) = 0 \tag{11}
$$

for all *x*, *y*, *z* \in *X*, and

$$
M(x, y, z) := \sum_{j=0}^{\infty} \frac{1}{3^{pj}} \varphi(3^j x, 3^j y, z)^p < \infty
$$
 (12)

and

$$
N(z, x, y) := \sum_{j=0}^{\infty} \frac{1}{3^{pj}} \psi(z, 3^{j}x, 3^{j}y)^{p} < \infty
$$
 (13)

for all *x*, *z* $\in \mathcal{X}$ and all $y \in \{-x, -3x\}$.

We will use the following lemma in order to prove Theorem 4.

Lemma 2 ([\[16\]](#page-11-15)). Let $0 \le p \le 1$ *and let* x_1, x_2, \cdots, x_n *be non-negative real numbers. Then*

$$
\left(\sum_{j=1}^n x_j\right)^p \le \sum_{j=1}^n x_j^p.
$$

Theorem 4. Let $0 < p \le 1$ and suppose that a mapping $f : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ satisfies the inequalities

$$
\left\|2f\left(\frac{x+y}{2},z\right)-f(x,z)-f(y,z)\right\|_{Y}\leq \varphi(x,y,z),
$$
 (14)

$$
\left\|2f\left(x, \frac{y+z}{2}\right) - f(x, y) - f(x, z)\right\|_{Y} \le \psi(x, y, z) \tag{15}
$$

for all x, $y, z \in \mathcal{X}$. Then there exists a unique additive-Jensen mapping $J_1 : \mathcal{X} \times \mathcal{X} \to \mathcal{Y}$ satisfying

$$
|| f(x, y) - f(0, y) - J_1(x, y)||_{\mathcal{Y}} \le \frac{K}{3} [M(x, -x, y) + M(-x, 3x, y)]^{\frac{1}{p}}
$$
(16)

for all x, y \in *X*. There exists a unique Jensen-additive mapping J_2 : $X \times X \rightarrow Y$ satisfying

$$
|| f(x, y) - f(x, 0) - J_2(x, y)||_{\mathcal{Y}} \le \frac{K}{3} [N(x, y, -y) + N(x, -y, 3y)]^{\frac{1}{p}}
$$
(17)

for all x, $y \in \mathcal{X}$ *.*

Proof. Let $g(x, y) := f(x, y) - f(0, y)$ for all $x, y \in \mathcal{X}$. Then $g(0, y) = 0$ for all $y \in \mathcal{X}$. Letting *y* by $-x$ in [\(14\)](#page-6-0), we get

$$
\|g(x, z) + g(-x, z)\|_{\mathcal{Y}} \leq \varphi(x, -x, z)
$$

for all *x*, *z* ∈ *X*. Replacing *x* by $-x$ and *y* by 3*x* in [\(14\)](#page-6-0), we have

$$
||2g(x, z) - g(-x, z) - g(3x, z)||_{\mathcal{Y}} \leq \varphi(-x, 3x, z)
$$

for all $x, z \in \mathcal{X}$. By two above inequalities and replacing *z* by *y*, we get

$$
||3g(x,y) - g(3x,y)||_{\mathcal{Y}} \leq K[\varphi(x,-x,y) + \varphi(-x,3x,y)]
$$

for all $x, y \in \mathcal{X}$. Thus we have

$$
\left\| \frac{1}{3^j} g(3^j x, y) - \frac{1}{3^{j+1}} g(3^{j+1} x, y) \right\|_{\mathcal{Y}} \le \frac{K}{3^{j+1}} [\varphi(3^j x, -3^j x, y) + \varphi(-3^j x, 3^{j+1} x, y)]
$$

for all $x, y \in \mathcal{X}$ and all *j*. For given integer *l*, m ($0 \le l < m$), by Lemma 2, we get

$$
\left\| \frac{1}{3^l} g(3^l x, y) - \frac{1}{3^m} g(3^m x, y) \right\|_{\mathcal{Y}}^p \le \left(\frac{K}{3} \right)^p \sum_{j=1}^{m-1} \frac{1}{3^{pj}} \left[\varphi(3^j x, -3^j x, y)^p + \varphi(-3^j x, 3^{j+1} x, y)^p \right] (18)
$$

for all $x, y \in \mathcal{X}$. By [\(12\)](#page-5-0), the sequence $\{\frac{1}{2}, \dots, \frac{1}{2}\}$ $\frac{1}{3}g(3^{j}x,y)$ } is a Cauchy sequence for all $x,y \in \mathcal{X}$. Since *Y* is complete, the sequence $\{\frac{1}{3}\}$ $\frac{1}{3}g(3^jx,y)$ } converges for all $x,y \in \mathcal{X}$. Define J_1 : $\mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ by

$$
J_1(x,y) := \lim_{j \to \infty} \frac{1}{3^j} g(3^j x, y)
$$

for all $x, y \in \mathcal{X}$. Putting $l = 0$ and taking $m \to \infty$ in [\(18\)](#page-6-1), one can obtain the inequality [\(16\)](#page-6-2). From the definition of J_1 , we get

$$
3^{j} J_{1}(x, y) = J_{1}(3^{j} x, y) \text{ and } J_{1}(0, y) = 0
$$
\n(19)

for all $x, y \in \mathcal{X}$ and all *j*. By [\(14\)](#page-6-0), [\(16\)](#page-6-2) and [\(19\)](#page-6-3), we gain

$$
||2J_{1}(2x,y) - 4J_{1}(x,y)||Y
$$

\n
$$
= ||2J_{1}(2x,y) - J_{1}(3x,y) - J_{1}(x,y)||Y
$$

\n
$$
\leq 3^{-j} ||2J_{1}(3^{j} \cdot 2x,y) - J_{1}(3^{j} \cdot 3x,y) - J_{1}(3^{j}x,y)||Y
$$

\n
$$
\leq 3^{-j} \Big[||2J_{1}(3^{j} \cdot 2x,y) - 2f(3^{j} \cdot 2x,y)||_{y} + ||J_{1}(3^{j} \cdot 3x,y) - f(3^{j} \cdot 3x,y)||_{y}\Big]
$$

\n
$$
+ 3^{-j} ||J_{1}(3^{j}x,y) - f(3^{j}x,y)||_{y} + 3^{-j} ||2f(\frac{3^{j}(3x+x)}{2},y) - f(3^{j} \cdot 3x,y) - f(3^{j}x,y)||_{Y}
$$

\n
$$
\leq 2 \cdot 3^{-j-1} K[M(3^{j} \cdot 2x, 3^{j}(-2x), y) + M(3^{j} \cdot (-2x), 3^{j+1} \cdot 2x, y)]^{\frac{1}{p}}
$$

\n
$$
+ 3^{-j-1} K[M(3^{j} \cdot 3x, 3^{j}(-3x), y) + M(3^{j} \cdot (-3x), 3^{j+1} \cdot 3x, y)]^{\frac{1}{p}}
$$

\n
$$
+ 3^{-j-1} K[M(3^{j}x, 3^{j}(-x), y) + M(3^{j} \cdot (-x), 3^{j+1}x, y)]^{\frac{1}{p}}
$$

\n
$$
+ 3^{-j} \varphi(3^{j}x, 3^{j+1}x, y)
$$

for all *x*, *y* \in *X* and all *j*. From this and [\(19\)](#page-6-3), we obtain

$$
2J_1(x,y) = J_1(2x,y)
$$
 (20)

for all $x, y \in \mathcal{X}$. From [\(12\)](#page-5-0) and [\(14\)](#page-6-0),

$$
\left\|2J_1\left(\frac{x+y}{2}, z\right) - J_1(x, z) - J_1(y, z)\right\| Y
$$

=
$$
\lim_{j\to\infty} 3^{-j} \left\|2J_1\left(\frac{3^j x + 3^j y}{2}, z\right) - J_1(3^j x, z) - J_1(3^j y, z)\right\| Y
$$

$$
\leq \lim_{j\to\infty} 3^{-j} \varphi(3^j x, 3^j y, z) = 0
$$

for all $x, y, z \in \mathcal{X}$. From [\(20\)](#page-7-0) and the above inequality,

$$
J_1(x + y, z) = 2J_1\left(\frac{x + y}{2}, z\right) = J_1(x, z) + J_1(y, z)
$$

for all $x, y, z \in \mathcal{X}$. Hence

$$
J_1(x + y, z) = J_1(x, z) + J_1(y, z)
$$

for all $x, y, z \in \mathcal{X}$. That is, J_1 is an additive mapping with respect to the first variable. By (15) , we get

$$
\left\|\frac{2}{3^j}g\left(3^jx,\frac{y+z}{2}\right)+\frac{1}{3^j}g(3^jx,y)-\frac{1}{3^j}g(3^jx,z)\right\|_{\mathcal{Y}}\leq \frac{1}{3^j}\psi(3^jx,y,z)
$$

for all *x*, *y*, *z* \in *X* and all *j*. Letting *j* $\rightarrow \infty$ in the above inequality and using [\(10\)](#page-5-1), *J*₁ is a Jensen mapping with respect to the second variable. To prove the uniqueness of *J*1, let *S*¹ be another additive-Jensen mapping satisfying [\(16\)](#page-6-2). Then we obtain

$$
\|2S_1(2x,y) - 4S_1(x,y)\|_y^p
$$

= $||2S_1(2x,y) - S_1(3x,y) - S_1(x,y)||_y^p$
= $3^{-jp}||2S_1(2 \cdot 3^j x, y) - S_1(3 \cdot 3^j x, y) - S_1(3^j x, y)||_Y^p$
 $\leq 3^{-jp}||2S_1(2 \cdot 3^j x, y) - 2g(2 \cdot 3^j x, y)||_y^p$
+ $3^{-jp}||S_1(3 \cdot 3^j x, y) - g(3 \cdot 3^j x, y)||_Y^p + 3^{-jp}||S_1(3^j x, y) - g(3^j x, y)||_y^p$
+ $3^{-jp}||2g(3^j \cdot \frac{3x + x}{2}, y) - g(3 \cdot 3^j x, y) - g(3^j x, y)||_y^p$

for all *x*, *y* \in *X* and all *j*. It follows from [\(16\)](#page-6-2), we have

$$
\begin{aligned}\n||J_1(x,y) - S_1(x,y)||_y^p \\
&= \left\|\frac{1}{3^j} J_1(3^j x, y) - \frac{1}{3^j} S_1(3^j x, y)\right\|_y^p \\
&\le \left\|\frac{1}{3^j} J_1(3^j x, y) - \frac{1}{3^j} f(3^j x, y) + \frac{1}{3^j} f(0, y)\right\|_y^p + \left\|\frac{1}{3^j} f(3^j x, y) - \frac{1}{3^j} f(0, y) - \frac{1}{3^j} S_1(3^j x, y)\right\|_y^p \\
&\le \frac{2K^p}{3^{p(j+1)}} [M(3^j x, -3^j x, y) + M(-3^j x, 3^{j+1} x, y)]\n\end{aligned}
$$

for all $x, y \in \mathcal{X}$ and all *j*. Taking $j \to \infty$ in the above inequality and using [\(12\)](#page-5-0), we get $J_1 = S_1$. Define $J_2 : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ by

$$
J_2(x,y) := \lim_{j \to \infty} \frac{1}{3^j} f(x,3^j y)
$$

for all $x, y \in \mathcal{X}$. By the same method in the above arguments, J_2 is a unique Jensen-additive mapping satisfying (17) . \square

Corollary 3. Let $0 < p \le 1$ and ε , $\delta > 0$ be fixed. Suppose that a mapping $f : \mathcal{X} \times \mathcal{X} \to \mathcal{Y}$ *satisfies the inequalities*

$$
\left\|2f\left(\frac{x+y}{2}, z\right) - f(x, z) - f(y, z)\right\|_{\mathcal{Y}} \le \varepsilon,
$$

$$
\left\|2f\left(x, \frac{y+z}{2}\right) - f(x, y) - f(x, z)\right\|_{\mathcal{Y}} \le \delta
$$

for all $x, y, z \in \mathcal{X}$. Then there exists a unique additive-Jensen mapping $J_1 : \mathcal{X} \times \mathcal{X} \to \mathcal{Y}$ *satisfying*

$$
|| f(x, y) - f(0, y) - J_1(x, y)||_{\mathcal{Y}} \leq K \varepsilon \left(\frac{2}{3^p - 1} \right)^{\frac{1}{p}}
$$

for all x, y $\in \mathcal{X}$ *. There exists a unique Jensen-additive mapping J*₂ : $\mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ *satisfying*

$$
|| f(x, y) - f(x, 0) - J_2(x, y)||_{\mathcal{Y}} \leq K \delta \left(\frac{2}{3^p - 1} \right)^{\frac{1}{p}}
$$

for all x, $y \in \mathcal{X}$ *.*

Proof. Let $\varphi(x, y, z) := \varepsilon$ and $\psi(x, y, z) := \delta$ for all $x, y, z \in \mathcal{X}$. By Theorem 4, we have an additive-Jensen mapping J_1 and a Jensen-additive mapping J_2 , as desired. \Box

From now on, let $\chi : \mathcal{X} \times \mathcal{X} \times \mathcal{X} \times \mathcal{X} \to [0, \infty)$ be a function such that

$$
\lim_{n \to \infty} \frac{1}{4^n} \chi(2^n x, 2^n y, 2^n z, 2^n w) = 0
$$
\n(21)

and

$$
L(x, y, z, w) := \sum_{j=0}^{\infty} \frac{1}{4^{pj}} \chi(2^{j}x, 2^{j}y, 2^{j}z, 2^{j}w)^{p} < \infty
$$
 (22)

for all *x*, *y*, *z*, $w \in \mathcal{X}$.

Theorem 5. Let $0 < p \le 1$ and suppose that a mapping $f : \mathcal{X} \times \mathcal{X} \to \mathcal{Y}$ satisfies $f(x, 0) = 0$ *and the inequality*

$$
\left\| 4f\left(\frac{x+y}{2},\frac{z+w}{2}\right) - f(x,z) - f(x,w) - f(y,z) - f(y,w) \right\|_{\mathcal{Y}} \leq \chi(x,y,z,w) \tag{23}
$$

for all x, y, z, $w\in\mathcal{X}.$ Then the limit $F(x,\,y):=\lim_{j\to\infty}\frac1{4^j}f(2^jx,\,2^jy)$ exists for all $x,\,y\in X$ and the mapping $F : \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ is the unique bi-Jensen mapping satisfying

$$
|| f(x, y) - f(0, y) - F(x, y)||_{\mathcal{Y}} \leq \tilde{\chi}(x, y)^{\frac{1}{p}},
$$
 (24)

where

$$
\tilde{\chi}(x, y) = \sum_{j=0}^{\infty} \frac{1}{4^{p(j+1)}} \Big[\chi(2^{j+1}x, 0, 2^{j+1}y, 0)^p + \chi(0, 0, 2^{j+1}y, 0)^p \Big]
$$

for all x, $y \in \mathcal{X}$ *.*

Proof. Replacing *x* by $2^{j+1}x$ and putting $y = 0$, $z = 2^{j+1}y$, $w = 0$ in [\(23\)](#page-9-0), we gain

$$
\left\| \frac{1}{4^j} f(2^j x, 2^j y) - \frac{1}{4^{j+1}} f(2^{j+1} x, 2^{j+1} y) - \frac{1}{4^{j+1}} f(0, 2^{j+1} y) \right\|_{\mathcal{Y}} \le \frac{1}{4^{j+1}} \chi(2^{j+1} x, 0, 2^{j+1} y, 0) \tag{25}
$$

for all *x*, $y \in \mathcal{X}$ and all *j*. Letting $x = 0$ in [\(25\)](#page-9-1), we get

$$
\left\| \frac{1}{4^j} f(0, 2^j y) - \frac{2}{4^{j+1}} f(0, 2^{j+1} y) \right\|_{\mathcal{Y}} \le \frac{1}{4^{j+1}} \chi(0, 0, 2^{j+1} y, 0) \tag{26}
$$

for all $y \in \mathcal{X}$ and all *j*. By [\(25\)](#page-9-1) and[\(26\)](#page-9-2), we have

$$
\left\| \frac{1}{4^j} \left[f(2^j x, 2^j y) - f(0, 2^j y) \right] - \frac{1}{4^{j+1}} \left[f(2^{j+1} x, 2^{j+1} y) - f(0, 2^{j+1} y) \right] \right\|_{\mathcal{Y}}^p
$$

$$
\leq \frac{1}{4^{p(j+1)}} \left[\chi(2^{j+1} x, 0, 2^{j+1} y, 0)^p + \chi(0, 0, 2^{j+1} y, 0)^p \right]
$$
(27)

for all *x*, $y \in \mathcal{X}$ and all *j*. Thus we have

$$
\left\| \frac{1}{4^l} \left[f(2^l x, 2^l y) - f(0, 2^l y) \right] - \frac{1}{4^m} [f(2^m x, 2^m y) - f(0, 2^m y)] \right\|_{\mathcal{Y}}^p
$$

$$
\leq \sum_{j=l}^{m-1} \frac{1}{4^{p(j+1)}} \left[\chi(2^{j+1} x, 0, 2^{j+1} y, 0)^p + \chi(0, 0, 2^{j+1} y, 0)^p \right]
$$
(28)

for all integers *l*, $m (0 \le l < m)$ and all $x, y \in \mathcal{X}$. By [\(22\)](#page-8-0), the sequence $\{\frac{1}{4}, \frac{1}{2}\}$ 4 *j* [*f*(2 *^jx*, 2*jy*) − *f*(0, 2*jy*)]} is a Cauchy sequence for all $x, y \in \mathcal{X}$. Since \mathcal{Y} is complete, the sequence $\left\{\frac{1}{4}\right\}$ $\frac{1}{4}$ $[f(2^jx, 2^jy) - f(0, 2^jy)]\}$ converges for all $x, y \in \mathcal{X}$. So one can define the mapping $F: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y}$ by

$$
F(x, y) := \lim_{n \to \infty} \frac{1}{4^n} [f(2^n x, 2^n y) - f(0, 2^n y)] \tag{29}
$$

for all $x, y \in \mathcal{X}$. Letting $l = 0$ and taking the limit $m \to \infty$ in [\(28\)](#page-9-3), we get [\(24\)](#page-9-4). Now, we show that *F* is a bi-Jensen mapping.

On the other hand it follows from [\(22\)](#page-8-0), [\(23\)](#page-9-0) and [\(29\)](#page-9-5) that

$$
\left\|4F\left(\frac{x+y}{2},\frac{z+w}{2}\right)-F(x,z)-F(x,w)-F(y,z)-F(y,w)\right\|_{\mathcal{Y}}^p
$$
\n
$$
=\lim_{n\to\infty}\frac{1}{4^{pn}}\left\|4f\left(\frac{2^nx+2^ny}{2},\frac{2^nz+2^nw}{2}\right)-f(2^nx,2^nz)-f(2^nx,2^nw)-f(2^ny,2^nz)-f(2^ny,2^nx)-f(2^ny,2^nw)-4f\left(0,\frac{2^nz+2^nw}{2}\right)+2f(0,2^nz)+2f(0,2^nw)\right\|_{\mathcal{Y}}^p
$$
\n
$$
=\lim_{n\to\infty}\frac{1}{4^{pn}}\left[\chi(2^nx,2^ny,2^nz,2^nw)^p+\chi(0,0,2^nz,2^nw)^p\right]=0
$$

for all *x*, *y*, *z*, *w* \in *X*. Hence the mapping *F* satisfies [\(3\)](#page-1-0).

To prove the uniqueness of *F*, let $G : \mathcal{X} \to \mathcal{Y}$ be another bi-Jensen mapping satisfying [\(24\)](#page-9-4). It follows from [\(22\)](#page-8-0) that

$$
\lim_{n \to \infty} \frac{1}{4^{pn}} L(2^n x, 2^n y, 2^n z, 2^n w) = \lim_{n \to \infty} \sum_{j=n}^{\infty} \frac{1}{4^{pj}} \chi(2^j x, 2^j y, 2^j z, 2^j w)^p = 0
$$

for all *x*, *y*, *z*, *w* \in *X*. Hence $\lim_{n\to\infty} \frac{1}{4^{pn}} \tilde{\chi}(2^n x, 2^n y) = 0$ for all *x*, $y \in \mathcal{X}$. It follows from (21) , (27) and (29) the above equality that

$$
||F(2x, 2y) - 4F(x, y)||Y
$$

= $\lim_{n \to \infty} \left\| \frac{1}{4^n} f(2^{n+1}x, 2^{n+1}y) - f(0, 2^{n+1}y) - \frac{1}{4^{n-1}} f(2^n x, 2^n y) + f(0, 2^n y) \right\| Y$
= $4 \lim_{n \to \infty} \left\| \frac{1}{4^n} [f(2^n x, 2^n y) - f(0, 2^n y)] - \frac{1}{4^{n+1}} [f(2^{n+1} x, 2^{n+1} y) - f(0, 2^{n+1} y)] \right\| Y$
 $\leq 4 \lim_{n \to \infty} \frac{1}{4^{p(n+1)}} \left[\chi(2^{n+1} x, 0, 2^{n+1} y, 0)^p + \chi(0, 0, 2^{n+1} y, 0)^p \right] = 0$

for all *x*, $y \in \mathcal{X}$. So $F(2x, 2y) = 4F(x, y)$ for all $x, y \in \mathcal{X}$. Thus it follows from [\(24\)](#page-9-4) and [\(29\)](#page-9-5) that

$$
||F(x, y) - G(x, y)||_{\mathcal{Y}}^p = \lim_{n \to \infty} \frac{1}{4^{pn}} ||f(2^n x, 2^n y) - f(0, 2^n y) - G(2^n x, 2^n y)||_{\mathcal{Y}}^p
$$

$$
\leq \lim_{n \to \infty} \frac{1}{4^{pn}} \tilde{\chi}(2^n x, 2^n y) = 0
$$

for all $x, y \in \mathcal{X}$. So $F = G$. \Box

Corollary 4. Let $0 < p \le 1$ and $\varepsilon > 0$ be fixed. Suppose that a mapping $f : \mathcal{X} \times \mathcal{X} \to \mathcal{Y}$ satisfies *the inequalities*

$$
\left\|4f\left(\frac{x+y}{2},\frac{z+w}{2}\right)-f(x,z)-f(x,w)-f(y,z)-f(y,w)\right\|_{\mathcal{Y}}\leq\varepsilon
$$

for all x, y, z, w \in *X*. Then there exists a unique bi-Jensen mapping $F : X \times X \rightarrow Y$ satisfying

$$
|| f(x, y) - f(0, y) - F(x, y)||_{\mathcal{Y}} \le \varepsilon \left(\frac{2}{4^p - 1} \right)^{\frac{1}{p}}
$$

for all x, $y \in \mathcal{X}$ *.*

Proof. Taking $\chi(x, y, z, w) := \varepsilon$ for all $x, y, z, w \in \mathcal{X}$ in Theorem 5, we obtain $\tilde{\chi}(x, y) =$ 2*ε p* $\frac{2\varepsilon^p}{4^p-1}$ for all $x, y \in \mathcal{X}$. Thus we obtain the estimate value $\tilde{\chi}(x, y)$ $\frac{1}{p} = \varepsilon \left(\frac{2}{4^p-1}\right)^{\frac{1}{p}}$ for all *x*, *y* ∈ X . □

Author Contributions: Conceptualization, J.-H.B. and W.-G.P.; methodology, J.-H.B. and W.-G.P.; validation, J.-H.B. and W.-G.P.; investigation, J.-H.B. and W.-G.P.; writing—original draft preparation, J.-H.B. and W.-G.P.; writing—review and editing, J.-H.B. and W.-G.P.; project administration, J.- H.B. and W.-G.P.; funding acquisition, J.-H.B. and W.-G.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Aoki, T. On the stability of linear transformation in Banach spaces. *J. Math. Soc. Jpn.* **1950**, *2*, 64–66. [\[CrossRef\]](http://doi.org/10.2969/jmsj/00210064)
- 2. Rassias, T.M. On the stability of linear mappings in Banach spaces. *Proc. Am. Math. Soc.* **1978**, *72*, 297–300. [\[CrossRef\]](http://dx.doi.org/10.1090/S0002-9939-1978-0507327-1)
- 3. Rassias, T.M. On a modified Hyers-Ulam sequence. *J. Math. Anal. Appl.* **1991**, *158*, 106–113. [\[CrossRef\]](http://dx.doi.org/10.1016/0022-247X(91)90270-A)
- 4. Jung, S.-M. Hyers-Ulam-Rassias stability of Jensen's equation and its application. *Proc. Am. Math. Soc. USA* **1998**, *126*, 3137–3143. [\[CrossRef\]](http://dx.doi.org/10.1090/S0002-9939-98-04680-2)
- 5. G ˘avruta, P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. *J. Math. Anal. Appl.* **1994**, *184*, 431–436. [\[CrossRef\]](http://dx.doi.org/10.1006/jmaa.1994.1211)
- 6. Jung, S.-M. On the Hyers-Ulam-Rassias stability of approximately additive mappings. *J. Math. Anal. Appl.* **1996**, *204*, 221–226. [\[CrossRef\]](http://dx.doi.org/10.1006/jmaa.1996.0433)
- 7. Lee, Y.-H.; Jun, K.-W. A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation. *J. Math. Anal. Appl.* **1999**, *238*, 305–315. [\[CrossRef\]](http://dx.doi.org/10.1006/jmaa.1999.6546)
- 8. Bae, J.-H.; Park, W.-G. On the solution of a bi-Jensen functional equation and its stability. *Bull. Korean Math. Soc.* **2006**, *43*, 499–507. [\[CrossRef\]](http://dx.doi.org/10.4134/BKMS.2006.43.3.499)
- 9. Jun, K.-W.; Jung, I.-S.; Lee, Y.-H. Stability of a Bi-Jensen Functional Equation II. *J. Inequl. Appl.* **2009**. [\[CrossRef\]](http://dx.doi.org/10.1155/2009/976284)
- 10. Bae, J.-H.; Park, W.-G. Stability of a Cauchy-Jensen functional equation in quasi-Banach spaces. *J. Inequl. Appl.* **2010**, *2010*, 151547. [\[CrossRef\]](http://dx.doi.org/10.1155/2010/151547)
- 11. Gahler, S. 2-metrische Raume und ihre topologische Struktur. *Math. Nachr.* **1963**, *26*, 115–148. [\[CrossRef\]](http://dx.doi.org/10.1002/mana.19630260109)
- 12. Gahler, S. Lineare 2-normierte Raumen. *Math. Nachr.* **1964**, *28*, 1–43. [\[CrossRef\]](http://dx.doi.org/10.1002/mana.19640280102)
- 13. Chu, H.-Y.; Kim, A.; Park, J. On the Hyers-Ulam stabilities of functional equations on *n*-Banach spaces. *Math. Nachr.* **2016**, *289*, 1177–1188. [\[CrossRef\]](http://dx.doi.org/10.1002/mana.201400345)
- 14. Benyamini, Y.; Lindenstrauss, J. *Geometric Nonlinear Functional Analysis: Volume 1*; Colloquium Publications, American Mathematical Society: Providence, RI, USA, 2000; Volume 48.
- 15. Rolewicz, S. *Metric Linear Spaces*, 2nd ed.; PWN—Polish Scientific Publishers: Warsaw, Poland; D. Reidel Publishing Co.: Dordrecht, The Netherlands, 1984; p. xi+459.
- 16. Najati, A.; Moghimi, M.B. Stability of a functional equation deriving from quadratic and additive functions in quasi-Banach space. *J. Math. Anal. Appl.* **2008**, *337*, 399–415. [\[CrossRef\]](http://dx.doi.org/10.1016/j.jmaa.2007.03.104)