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Abstract: Symmetry is repetitive self-similarity. We proved the stability problem by replicat-
ing the well-known Cauchy equation and the well-known Jensen equation into two variables. In
this paper, we proved the Hyers-Ulam stability of the bi-additive functional equation f (x + y, z +

w) = f (x, z) + f (y, w) and the bi-Jensen functional equation 4 f
(

x+y
2 , z+w

2

)
= f (x, z) + f (x, w) +

f (y, z) + f (y, w).

Keywords: stability; bi-additive mapping; bi-Jensen mapping

1. Introduction

A functional equation is stable if there is a function that exactly satisfies the given
equation in the vicinity of a function that approximately satisfies it. Any approximate
solution can actually be an exact solution. In Cauchy’s equation f (x + y) = f (x) + f (y)
we can deal with a class of approximate solutions defined by the functional inequality
introduced by Rassias.

‖ f (x + y)− f (x)− f (y)‖ ≤ ε(‖x‖p + ‖y‖p).

It turns out that for p 6= 1 each solution of the above inequality can be approximated by an
additive function A in such a way that the inequality

‖ f (x)− A(x)‖ ≤ kε‖x‖p.

holds, with a suitable k, on the whole domain (for p = 0 it coincides with the classical
Hyers–Ulam result).

Let us say X and Y are vector spaces. The mapping h : X → Y is called an additional
mapping (respectively, an affine mapping) if h satisfies the Cauchy functional equation h(x +

y) = h(x) + h(y)
(
respectively, the Jensen functional equation 2h

( x+y
2
)
= h(x) + h(y)

)
.

T. Aoki [1] and Th. M. Rassias [2,3] extended Hyers-Ulam stability taking into account the
variables for the Cauchy equation. S.-M. Jung [4] got the result of the Jensen equation. It
was also generalized as a functional case by P. Găvruta [5] and S.-M. Jung [6] and Y.-H. Lee
and K.-W. Jun [7].

The following functional Equations (1) and (3) are functional equations those combine
the existing well-known the Cauchy equation and the Jensen equation.

f (x + y, z + w) = f (x, z) + f (y, w). (1)

The authors [8] introduce the system of equations

2 f ( x+y
2 , z) = f (x, z) + f (y, z),

2 f
(
x, y+z

2
)
= f (x, y) + f (x, z).

(2)
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and the bi-Jensen functional equation

4 f
(

x + y
2

,
z + w

2

)
= f (x, z) + f (x, w) + f (y, z) + f (y, w). (3)

We made the above functional equations with a symmetrical structure. Symmetry is
repetitive self-similarity. The solution of (2) is coincide with the solution of (3). The solution
of (1) is of the form A1(x) + A2(y), where A1 and A2 are additive mappings. The solution
of (2) is of the form A1(x) + A2(y) + f (0, 0), where A1 and A2 are additive mappings.
The solution of (2) contains the solution of (1). The difference of the solutions (1) and (2) is
merely a constant, that is, the solutions (1) and (2) are similar.

Jun, Jung, and Lee [9] obtained the stability on a bi-Jensen functional equation in
Banach spaces. Additionally, the authors [10] proved the stability on a Cauchy-Jensen
functional equation Banach spaces.

In this paper, we investigate the generalized Hyers-Ulam stability of (1) in Banach
spaces and 2-Banach spaces. We proved the Hyers-Ulam stability of (2) and (3) in quasi-
Banach spaces.

2. Solution and Stability of a Bi-Additive Functional Equation

In the following theorem, we find out the general solution of the bi-additive functional
Equation (1).

Theorem 1. A mapping f : X × X → Y satisfies (1) if and only if there exist two additive
mappings A1, A2 : X ×X → Y such that

f (x, y) = A1(x) + A2(y)

for all x, y ∈ X .

Proof. We first assume that f is a solution of (1). Define A1, A2 : X → Y by A1(x) :=
f (x, 0) and A2(x) := f (0, x) for all x ∈ X . One can easily verify that A1, A2 are additive.
Letting y = z = 0 in (1), we get

f (x, w) = f (x, 0) + f (0, w) = A1(x) + A2(w)

for all x, w ∈ X .
Conversely, we assume that there is two additive mappings A1, A2 : X × X → Y ,

such that f (x, y) = A1(x) + A2(y) for all x, y ∈ X . Since A1, A2 are additive, we gain

f (x + y, z + w) = A1(x + y) + A2(z + w)

= A1(x) + A1(y) + A2(z) + A2(w)

= A1(x) + A2(z) + A1(y) + A2(w)

= f (x, z) + f (y, w)

for all x, y, z, w ∈ X .

From now on, let X and Y be a normed linear space and a Banach space, respectively.

Theorem 2. Let 0 < p < 1, ε > 0, δ ≥ 0 and f : X ×X → Y be a mapping such that

‖ f (x + y, z + w)− f (x, z)− f (y, w)‖ ≤ ε + δ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p) (4)

for all x, y, z, w ∈ X . Then there is unique bi-additive mapping F : X ×X → Y , such that

‖ f (x, y)− F(x, y)‖ ≤ ε +
2δ

2− 2p (‖x‖
p + ‖y‖p) (5)
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for all x, y ∈ X . The mapping F is given by F(x, y) := limj→∞
1
2j f (2jx, 2jy) for all x, y ∈ X .

Proof. Putting y = x and w = z in (4), we have∥∥∥∥ f (x, z)− 1
2

f (2x, 2z)
∥∥∥∥ ≤ ε

2
+ δ(‖x‖p + ‖z‖p)

for all x, z ∈ X . Thus, we obtain∥∥∥∥ 1
2j f (2jx, 2jz)− 1

2j+1 f (2j+1x, 2j+1z)
∥∥∥∥ ≤ ε

2j+1 + 2j(p−1)δ(‖x‖p + ‖z‖p)

for all x, z ∈ X and all j. Replacing z by y in the above inequality, we see that∥∥∥∥ 1
2j f (2jx, 2jy)− 1

2j+1 f (2j+1x, 2j+1y)
∥∥∥∥ ≤ ε

2j+1 + 2j(p−1)δ(‖x‖p + ‖y‖p)

for all x, y ∈ X and all j. For given integers l, m(0 ≤ l < m), we get∥∥∥∥ 1
2l f (2l x, 2ly)− 1

2m f (2mx, 2my)
∥∥∥∥ ≤ m−1

∑
j=l

[
ε

2j+1 + 2j(p−1)δ(‖x‖p + ‖y‖p)

]
(6)

for all x, y ∈ X . By (6), the sequence { 1
2j f (2jx, 2jy)} is a Cauchy sequence for all x, y ∈ X .

Since Y is complete, the sequence { 1
2j f (2jx, 2jy)} converges for all x, y ∈ X . Define

F : X ×X → Y by

F(x, y) := lim
j→∞

1
2j f (2jx, 2jy)

for all x, y ∈ X . By (4), we have

1
2j

∥∥∥∥ f
(
2j(x + y), 2j(z + w)

)
− f (2jx, 2jz)− f (2jy, 2jw)

∥∥∥∥
≤ ε

2j + 2j(p−1)δ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p)

for all x, y, z, w ∈ X and all j ∈ N. Letting j → ∞ in the above inequality, we see that
F satisfies (1). Setting l = 0 and taking m → ∞ in (6), one can obtain the inequality (5).
If G : X ×X → Y is another 2-variable additive mapping satisfying (5), we obtain

‖F(x, y)− G(x, y)‖

=
1
2n ‖F(2

nx, 2ny)− G(2nx, 2ny)‖

≤ 1
2n ‖F(2

nx, 2ny)− f (2nx, 2ny)‖+ 1
2n ‖ f (2nx, 2ny)− G(2nx, 2ny)‖

≤ 1
2n−1

[
ε +

2np+1

2− 2p δ(‖x‖p + ‖y‖p)

]
→ 0 as n→ ∞

for all x, y ∈ X . Hence the mapping F is the unique bi-additive mapping, as desired.

Corollary 1. Let f : X ×X → Y be a mapping such that

‖ f (x + y, z + w)− f (x, z)− f (y, w)‖ ≤ ε

for all x, y, z, w ∈ X . Then, there exists a unique mapping F : X × X → Y satisfying (1),
such that

‖ f (x, y)− F(x, y)‖ ≤ ε

2



Symmetry 2021, 13, 1180 4 of 12

for all x, y ∈ X .

Proof. If we insert δ = 0 in Theorem 2, we obtain ε as an estimate of the difference between
the exact and the approximate solution of the considered equation.

In the case p > 2 in Theorem 2, one can also obtain the similar result.
We explain some definitions [11,12] on 2-Banach spaces.

Definition 1. Let X be a vector space over R with dimension greater than 1 and ‖·, ·‖ : X 2 → R
be a function. Then we say (X , ‖·, ·‖) is a linear 2-normed space if

(a) ‖x, y‖ = 0 if and only if x and y are linearly dependent;
(b) ‖x, y‖ = ‖y, x‖;
(c) ‖αx, y‖ = |α|‖x, y‖;
(d) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖
for all α ∈ R and x, y, z ∈ X . In this case, the function ‖·, ·‖ is called a 2-norm on X .

Definition 2. Let X be linear 2-normed space and {xn} a sequence in X . The sequence {xn} is
said to convergent in X if there is an x ∈ X , such that

lim
n→∞

‖xn − x, y‖ = 0

for all y ∈ X . In this case, we say that a sequence {xn} converges to x, simply denoted by
limn→∞ xn = x.

Definition 3. Let X be linear 2-normed space and {xn} a sequence in X is called a Cauchy
sequence if for any ε > 0, there exists N ∈ N such that for all m, n ≥ N, ‖xm − xn, y‖ < ε for
all y ∈ X . For convenience, we will write limm,n→∞ ‖xn − xm, y‖ = 0 for a Cauchy sequence
{xn}. A 2-Banach space is defined to be a linear 2-normed space in which every Cauchy sequence
is convergent.

In the following lemma, we get some primitive properties in linear 2-normed spaces
that will be used to prove our stability results.

Lemma 1 ([13]). Let (X , ‖·, ·‖) be a linear 2-normed space and x ∈ X .
(a) If ‖x, y‖ = 0 for all y ∈ X , then x = 0.
(b)
∣∣‖x, z‖ − ‖y, z‖

∣∣ ≤ ‖x− y, z‖ for all x, y, z ∈ X .
(c) If a sequence {xn} is convergent in X , then limn→∞ ‖xn, y‖ = ‖ limn→∞ xn, y‖ for all

y ∈ X .

In the rest of this section, let X be a normed space and Y a 2-Banach space.

Theorem 3. Let p ∈ (0, 1), ε > 0, δ, η ≥ 0 and let f : X × X → Y be a surjective mapping
such that

‖ f (x + y, z + w)− f (x, z)− f (y, w), f (u, v)‖
≤ ε + δ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p) + η(‖u‖+ ‖v‖) (7)

for all x, y, z, w, u, v ∈ X . Then there exists a unique mapping F : X ×X → Y satisfying (1),
such that

‖ f (x, y)− F(x, y), f (u, v)‖ ≤ ε

2
+

2δ

2− 2p (‖x‖
p + ‖y‖p) +

η

2
(‖u‖+ ‖v‖) (8)

for all x, y, u, v ∈ X .
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Proof. Letting y = x and w = z in (7), we have∥∥∥∥ f (x, z)− 1
2

f (2x, 2z), f (u, v)
∥∥∥∥ ≤ ε

2
+ δ(‖x‖p + ‖z‖p) +

η

2
(‖u‖+ ‖v‖)

for all x, z, u, v ∈ X . Thus, we obtain∥∥∥∥ 1
2j f (2jx, 2jz)− 1

2j+1 f (2j+1x, 2j+1z), f (u, v)
∥∥∥∥

≤ ε

2j+1 + 2j(p−1)δ(‖x‖p + ‖z‖p) +
η

2j+1 (‖u‖+ ‖v‖)

for all x, z, u, v ∈ X and all j. Replacing z by y in the above inequality, we see that∥∥∥∥ 1
2j f (2jx, 2jy)− 1

2j+1 f (2j+1x, 2j+1y), f (u, v)
∥∥∥∥

≤ ε

2j+1 + 2j(p−1)δ(‖x‖p + ‖y‖p) +
η

2j+1 (‖u‖+ ‖v‖)

for all x, y, u, v ∈ X and all j. For given integers l, m(0 ≤ l < m), we get∥∥∥∥ 1
2l f (2l x, 2ly)− 1

2m f (2mx, 2my), f (u, v)
∥∥∥∥ (9)

≤
m−1

∑
j=l

[
ε

2j+1 + 2j(p−1)δ(‖x‖p + ‖z‖p) +
η

2j+1 (‖u‖+ ‖v‖)
]

for all x, y, u, v ∈ X . By (9), the sequence { 1
2j f (2jx, 2jy)} is a Cauchy sequence for all

x, y ∈ X . Since Y is complete, the sequence { 1
2j f (2jx, 2jy)} converges for all x, y ∈ X .

Define F : X ×X → Y by F(x, y) := limj→∞
1
2j f (2jx, 2jy) for all x, y ∈ X . By (7), we have∥∥∥∥ 1

2j f
(
2j(x + y), 2j(z + w)

)
− 1

2j f (2jx, 2jz)− 1
2j f (2jy, 2jw), f (u, v)

∥∥∥∥
≤ 1

2j

[
ε + 2jpδ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p) + η(‖u‖+ ‖v‖)

]
for all x, y, z, w, u, v ∈ X and all j. Letting j→ ∞, we see that F satisfies (1). Setting l = 0
and taking m→ ∞ in (9), one can obtain the inequality (8). If G : X ×X → Y is another
mapping satisfying (1) and (8), we obtain

‖F(x, y)− G(x, y), f (u, v)‖ = 1
2n ‖F(2

nx, 2ny)− G(2nx, 2ny), f (u, v)‖

≤ 1
2n ‖F(2

nx, 2ny)− f (2nx, 2ny), f (u, v)‖+ 1
2n ‖ f (2nx, 2ny)− G(2nx, 2ny), f (u, v)‖

≤ 2
2n

[
ε

2
+

2np+1δ

2− 2p (‖x‖
p + ‖y‖p) +

η(‖u‖+ ‖v‖)
2

]
→ 0 as n→ ∞

for all x, y, u, v ∈ X . Hence the mapping F is the unique mapping satisfying (1), as desired.

Corollary 2. Let f : X ×X → Y be a mapping, such that

‖ f (x + y, z + w)− f (x, z)− f (y, w), f (u, v)‖ ≤ ε

for all x, y, z, w, u, v ∈ X . Then there exists a unique mapping F : X × X → Y satisfying (1)
such that

‖ f (x, y)− F(x, y), f (u, v)‖ ≤ ε

2
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for all x, y, u, v ∈ X .

Proof. Taking δ = η = 0 in Theorem 3, we have the desired result.

In the case p > 2 in Theorem 3, one can also obtain the similar result.

3. Solution and Stability of a Bi-Jensen Functional Equation

In [14,15], one can find the concept of quasi-Banach spaces.

Definition 4. Let X be a real linear space. A quasi-norm is real-valued function on X satisfying
the following:

(i) ‖x‖ ≥ 0 for all x ∈ X and ‖x‖ = 0 if, and only if, x = 0.
(ii) ‖λx‖ = |λ|‖x‖ for all λ ∈ R and all x ∈ X .
(iii) There is a constant K ≥ 1, such that ‖x + y‖ ≤ K(‖x‖+ ‖y‖) for all x, y ∈ X .

The pair (X , ‖ · ‖) is called a quasi-normed space if ‖ · ‖ is a quasi-norm on X . The small-
est possible K is called the modulus of concavity of ‖ · ‖. A quasi-Banach space is a complete
quasi-normed space. A quasi-norm ‖ · ‖ is called a p-norm (0 < p ≤ 1) if

‖x + y‖p ≤ ‖x‖p + ‖y‖p

for all x, y ∈ X . In this case, a quasi-Banach space is called a p-Banach space.
A quasi-norm gives rise to a linear topology on X, namely the least linear topology

for which the unit ball B = {x ∈ X : ‖x‖ ≤ 1} is a neighborhood of zero. This topology is
locally bounded, that is, it has a bounded neighborhood of zero. Actually, every locally
bounded topology arises in this way.

From now on, assume that X is a quasi-normed space with quasi-norm ‖ · ‖X and
that Y is a p-Banach space with p-norm ‖ · ‖Y . Let K be the modulus of concavity of ‖ · ‖Y .

Let ϕ : X ×X ×X → [0, ∞) and ψ : X ×X ×X → [0, ∞) be two functions such that

lim
n→∞

1
3n ϕ(3nx, 3ny, z) = 0, lim

n→∞

1
3n ψ(3nx, y, z) = 0 (10)

and
lim

n→∞

1
3n ϕ(x, y, 3nz) = 0, lim

n→∞

1
3n ψ(x, 3ny, 3nz) = 0 (11)

for all x, y, z ∈ X , and

M(x, y, z) :=
∞

∑
j=0

1
3pj ϕ(3jx, 3jy, z)p < ∞ (12)

and

N(z, x, y) :=
∞

∑
j=0

1
3pj ψ(z, 3jx, 3jy)p < ∞ (13)

for all x, z ∈ X and all y ∈ {−x,−3x}.
We will use the following lemma in order to prove Theorem 4.

Lemma 2 ([16]). Let 0 ≤ p ≤ 1 and let x1, x2, · · · , xn be non-negative real numbers. Then(
n

∑
j=1

xj

)p

≤
n

∑
j=1

xj
p.
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Theorem 4. Let 0 < p ≤ 1 and suppose that a mapping f : X ×X → Y satisfies the inequalities∥∥∥2 f
( x + y

2
, z
)
− f (x, z)− f (y, z)

∥∥∥
Y
≤ ϕ(x, y, z), (14)∥∥∥2 f

(
x,

y + z
2

)
− f (x, y)− f (x, z)

∥∥∥
Y
≤ ψ(x, y, z) (15)

for all x, y, z ∈ X . Then there exists a unique additive-Jensen mapping J1 : X ×X → Y satisfying

‖ f (x, y)− f (0, y)− J1(x, y)‖Y ≤
K
3
[M(x, −x, y) + M(−x, 3x, y)]

1
p (16)

for all x, y ∈ X . There exists a unique Jensen-additive mapping J2 : X ×X → Y satisfying

‖ f (x, y)− f (x, 0)− J2(x, y)‖Y ≤
K
3
[N(x, y, −y) + N(x, −y, 3y)]

1
p (17)

for all x, y ∈ X .

Proof. Let g(x, y) := f (x, y) − f (0, y) for all x, y ∈ X . Then g(0, y) = 0 for all y ∈ X .
Letting y by −x in (14), we get

‖g(x, z) + g(−x, z)‖Y ≤ ϕ(x, −x, z)

for all x, z ∈ X . Replacing x by −x and y by 3x in (14), we have

‖2g(x, z)− g(−x, z)− g(3x, z)‖Y ≤ ϕ(−x, 3x, z)

for all x, z ∈ X . By two above inequalities and replacing z by y, we get

‖3g(x, y)− g(3x, y)‖Y ≤ K[ϕ(x,−x, y) + ϕ(−x, 3x, y)]

for all x, y ∈ X . Thus we have∥∥∥∥ 1
3j g(3jx, y)− 1

3j+1 g(3j+1x, y)
∥∥∥∥
Y
≤ K

3j+1 [ϕ(3
jx,−3jx, y) + ϕ(−3jx, 3j+1x, y)]

for all x, y ∈ X and all j. For given integer l, m (0 ≤ l < m), by Lemma 2, we get∥∥∥∥ 1
3l g(3l x, y)− 1

3m g(3mx, y)
∥∥∥∥p

Y
≤
(

K
3

)p m−1

∑
j=l

1
3pj

[
ϕ(3jx,−3jx, y)p + ϕ(−3jx, 3j+1x, y)p

]
(18)

for all x, y ∈ X . By (12), the sequence { 1
3j g(3jx, y)} is a Cauchy sequence for all x, y ∈ X .

Since Y is complete, the sequence { 1
3j g(3jx, y)} converges for all x, y ∈ X . Define J1 :

X ×X → Y by

J1(x, y) := lim
j→∞

1
3j g(3jx, y)

for all x, y ∈ X . Putting l = 0 and taking m→ ∞ in (18), one can obtain the inequality (16).
From the definition of J1, we get

3j J1(x, y) = J1(3jx, y) and J1(0, y) = 0 (19)

for all x, y ∈ X and all j. By (14), (16) and (19), we gain
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‖2J1(2x, y)− 4J1(x, y)‖ Y

= ‖2J1(2x, y)− J1(3x, y)− J1(x, y)‖ Y

≤ 3−j
∥∥∥2J1(3j · 2x, y)− J1(3j · 3x, y)− J1(3jx, y)

∥∥∥ Y

≤ 3−j
[∥∥∥2J1(3j · 2x, y)− 2 f (3j · 2x, y)

∥∥∥
Y
+
∥∥∥J1(3j · 3x, y)− f (3j · 3x, y)

∥∥∥
Y

]
+ 3−j

∥∥∥J1(3jx, y)− f (3jx, y)
∥∥∥
Y
+ 3−j

∥∥∥∥2 f
(

3j(3x + x)
2

, y
)
− f (3j · 3x, y)− f (3jx, y)

∥∥∥∥ Y

≤ 2 · 3−j−1K[M(3j · 2x, 3j(−2x), y) + M(3j · (−2x), 3j+1 · 2x, y)]
1
p

+ 3−j−1K[M(3j · 3x, 3j(−3x), y) + M(3j · (−3x), 3j+1 · 3x, y)]
1
p

+ 3−j−1K[M(3jx, 3j(−x), y) + M(3j · (−x), 3j+1x, y)]
1
p

+ 3−j ϕ(3jx, 3j+1x, y)

for all x, y ∈ X and all j. From this and (19), we obtain

2J1(x, y) = J1(2x, y) (20)

for all x, y ∈ X . From (12) and (14),∥∥∥∥2J1

(
x + y

2
, z
)
− J1(x, z)− J1(y, z)

∥∥∥∥ Y

= lim
j→∞

3−j
∥∥∥∥2J1

(
3jx + 3jy

2
, z
)
− J1(3jx, z)− J1(3jy, z)

∥∥∥∥ Y

≤ lim
j→∞

3−j ϕ(3jx, 3jy, z) = 0

for all x, y, z ∈ X . From (20) and the above inequality,

J1(x + y, z) = 2J1

(
x + y

2
, z
)
= J1(x, z) + J1(y, z)

for all x, y, z ∈ X . Hence
J1(x + y, z) = J1(x, z) + J1(y, z)

for all x, y, z ∈ X . That is, J1 is an additive mapping with respect to the first variable.
By (15), we get∥∥∥∥ 2

3j g
(

3jx,
y + z

2

)
+

1
3j g(3jx, y)− 1

3j g(3jx, z)
∥∥∥∥
Y
≤ 1

3j ψ(3jx, y, z)

for all x, y, z ∈ X and all j. Letting j → ∞ in the above inequality and using (10), J1 is a
Jensen mapping with respect to the second variable. To prove the uniqueness of J1, let S1
be another additive-Jensen mapping satisfying (16). Then we obtain

‖2S1(2x, y)− 4S1(x, y)‖p
Y

= ‖2S1(2x, y)− S1(3x, y)− S1(x, y)‖p
Y

= 3−jp‖2S1(2 · 3jx, y)− S1(3 · 3jx, y)− S1(3jx, y)‖Yp

≤ 3−jp‖2S1(2 · 3jx, y)− 2g(2 · 3jx, y)‖p
Y

+ 3−jp‖S1(3 · 3jx, y)− g(3 · 3jx, y)‖p
Y + 3−jp‖S1(3jx, y)− g(3jx, y)‖p

Y

+ 3−jp
∥∥∥∥2g

(
3j · 3x + x

2
, y
)
− g(3 · 3jx, y)− g(3jx, y)

∥∥∥∥p

Y
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for all x, y ∈ X and all j. It follows from (16), we have

‖J1(x, y)− S1(x, y)‖p
Y

=

∥∥∥∥ 1
3j J1(3jx, y)− 1

3j S1(3jx, y)
∥∥∥∥p

Y

≤
∥∥∥∥ 1

3j J1(3jx, y)− 1
3j f (3jx, y) +

1
3j f (0, y)

∥∥∥∥p

Y
+

∥∥∥∥ 1
3j f (3jx, y)− 1

3j f (0, y)− 1
3j S1(3jx, y)

∥∥∥∥p

Y

≤ 2Kp

3p(j+1)
[M(3jx, −3jx, y) + M(−3jx, 3j+1x, y)]

for all x, y ∈ X and all j. Taking j → ∞ in the above inequality and using (12), we get
J1 = S1.

Define J2 : X ×X → Y by

J2(x, y) := lim
j→∞

1
3j f (x, 3jy)

for all x, y ∈ X . By the same method in the above arguments, J2 is a unique Jensen-additive
mapping satisfying (17).

Corollary 3. Let 0 < p ≤ 1 and ε, δ > 0 be fixed. Suppose that a mapping f : X × X → Y
satisfies the inequalities ∥∥∥2 f

( x + y
2

, z
)
− f (x, z)− f (y, z)

∥∥∥
Y
≤ ε,∥∥∥2 f

(
x,

y + z
2

)
− f (x, y)− f (x, z)

∥∥∥
Y
≤ δ

for all x, y, z ∈ X . Then there exists a unique additive-Jensen mapping J1 : X × X → Y
satisfying

‖ f (x, y)− f (0, y)− J1(x, y)‖Y ≤ Kε

(
2

3p − 1

) 1
p

for all x, y ∈ X . There exists a unique Jensen-additive mapping J2 : X ×X → Y satisfying

‖ f (x, y)− f (x, 0)− J2(x, y)‖Y ≤ Kδ

(
2

3p − 1

) 1
p

for all x, y ∈ X .

Proof. Let ϕ(x, y, z) := ε and ψ(x, y, z) := δ for all x, y, z ∈ X . By Theorem 4, we have
an additive-Jensen mapping J1 and a Jensen-additive mapping J2, as desired.

From now on, let χ : X ×X ×X ×X → [0, ∞) be a function such that

lim
n→∞

1
4n χ(2nx, 2ny, 2nz, 2nw) = 0 (21)

and

L(x, y, z, w) :=
∞

∑
j=0

1
4pj χ(2jx, 2jy, 2jz, 2jw)p < ∞ (22)

for all x, y, z, w ∈ X .
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Theorem 5. Let 0 < p ≤ 1 and suppose that a mapping f : X ×X → Y satisfies f (x, 0) = 0
and the inequality∥∥∥∥4 f

(
x + y

2
,

z + w
2

)
− f (x, z)− f (x, w)− f (y, z)− f (y, w)

∥∥∥∥
Y
≤ χ(x, y, z, w) (23)

for all x, y, z, w ∈ X . Then the limit F(x, y) := limj→∞
1
4j f (2jx, 2jy) exists for all x, y ∈ X

and the mapping F : X ×X → Y is the unique bi-Jensen mapping satisfying

‖ f (x, y)− f (0, y)− F(x, y)‖Y ≤ χ̃(x, y)
1
p , (24)

where

χ̃(x, y) =
∞

∑
j=0

1
4p(j+1)

[
χ(2j+1x, 0, 2j+1y, 0)p + χ(0, 0, 2j+1y, 0)p

]
for all x, y ∈ X .

Proof. Replacing x by 2j+1x and putting y = 0, z = 2j+1y, w = 0 in (23), we gain∥∥∥∥ 1
4j f (2jx, 2jy)− 1

4j+1 f (2j+1x, 2j+1y)− 1
4j+1 f (0, 2j+1y)

∥∥∥∥
Y
≤ 1

4j+1 χ(2j+1x, 0, 2j+1y, 0) (25)

for all x, y ∈ X and all j. Letting x = 0 in (25), we get∥∥∥∥ 1
4j f (0, 2jy)− 2

4j+1 f (0, 2j+1y)
∥∥∥∥
Y
≤ 1

4j+1 χ(0, 0, 2j+1y, 0) (26)

for all y ∈ X and all j. By (25) and(26), we have∥∥∥∥ 1
4j

[
f (2jx, 2jy)− f (0, 2jy)

]
− 1

4j+1

[
f (2j+1x, 2j+1y)− f (0, 2j+1y)

]∥∥∥∥p

Y

≤ 1
4p(j+1)

[
χ(2j+1x, 0, 2j+1y, 0)p + χ(0, 0, 2j+1y, 0)p

]
(27)

for all x, y ∈ X and all j. Thus we have∥∥∥∥ 1
4l

[
f (2l x, 2ly)− f (0, 2ly)

]
− 1

4m [ f (2mx, 2my)− f (0, 2my)]
∥∥∥∥p

Y

≤
m−1

∑
j=l

1
4p(j+1)

[
χ(2j+1x, 0, 2j+1y, 0)p + χ(0, 0, 2j+1y, 0)p

]
(28)

for all integers l, m (0 ≤ l < m) and all x, y ∈ X . By (22), the sequence { 1
4j [ f (2jx, 2jy)−

f (0, 2jy)]} is a Cauchy sequence for all x, y ∈ X . Since Y is complete, the sequence
{ 1

4j [ f (2jx, 2jy)− f (0, 2jy)]} converges for all x, y ∈ X . So one can define the mapping
F : X ×X → Y by

F(x, y) := lim
n→∞

1
4n [ f (2nx, 2ny)− f (0, 2ny)] (29)

for all x, y ∈ X . Letting l = 0 and taking the limit m → ∞ in (28), we get (24). Now, we
show that F is a bi-Jensen mapping.

On the other hand it follows from (22), (23) and (29) that
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∥∥∥∥4F
( x + y

2
,

z + w
2

)
− F(x, z)− F(x, w)− F(y, z)− F(y, w)

∥∥∥∥p

Y

= lim
n→∞

1
4pn

∥∥∥∥4 f
(

2nx + 2ny
2

,
2nz + 2nw

2

)
− f (2nx, 2nz)− f (2nx, 2nw)− f (2ny, 2nz)

− f (2ny, 2nw)− 4 f
(

0,
2nz + 2nw

2

)
+ 2 f (0, 2nz) + 2 f (0, 2nw)

∥∥∥∥p

Y

= lim
n→∞

1
4pn [χ(2

nx, 2ny, 2nz, 2nw)p + χ(0, 0, 2nz, 2nw)p] = 0

for all x, y, z, w ∈ X . Hence the mapping F satisfies (3).
To prove the uniqueness of F, let G : X → Y be another bi-Jensen mapping satisfying (24).

It follows from (22) that

lim
n→∞

1
4pn L(2nx, 2ny, 2nz, 2nw) = lim

n→∞

∞

∑
j=n

1
4pj χ(2jx, 2jy, 2jz, 2jw)p = 0

for all x, y, z, w ∈ X . Hence limn→∞
1

4pn χ̃(2nx, 2ny) = 0 for all x, y ∈ X . It follows from
(21), (27) and (29) the above equality that

‖F(2x, 2y)− 4F(x, y)‖ Y

= lim
n→∞

∥∥∥∥ 1
4n f (2n+1x, 2n+1y)− f (0, 2n+1y)− 1

4n−1 f (2nx, 2ny) + f (0, 2ny)
∥∥∥∥ Y

= 4 lim
n→∞

∥∥∥∥ 1
4n [ f (2nx, 2ny)− f (0, 2ny)]− 1

4n+1 [ f (2n+1x, 2n+1y)− f (0, 2n+1y)]
∥∥∥∥ Y

≤ 4 lim
n→∞

1
4p(n+1)

[
χ(2n+1x, 0, 2n+1y, 0)p + χ(0, 0, 2n+1y, 0)p

]
= 0

for all x, y ∈ X . So F(2x, 2y) = 4F(x, y) for all x, y ∈ X . Thus it follows from (24) and (29) that

‖F(x, y)− G(x, y)‖p
Y = lim

n→∞

1
4pn ‖ f (2nx, 2ny)− f (0, 2ny)− G(2nx, 2ny)‖p

Y

≤ lim
n→∞

1
4pn χ̃(2nx, 2ny) = 0

for all x, y ∈ X . So F = G.

Corollary 4. Let 0 < p ≤ 1 and ε > 0 be fixed. Suppose that a mapping f : X ×X → Y satisfies
the inequalities∥∥∥∥4 f

(
x + y

2
,

z + w
2

)
− f (x, z)− f (x, w)− f (y, z)− f (y, w)

∥∥∥∥
Y
≤ ε

for all x, y, z, w ∈ X . Then there exists a unique bi-Jensen mapping F : X ×X → Y satisfying

‖ f (x, y)− f (0, y)− F(x, y)‖Y ≤ ε

(
2

4p − 1

) 1
p

for all x, y ∈ X .

Proof. Taking χ(x, y, z, w) := ε for all x, y, z, w ∈ X in Theorem 5, we obtain χ̃(x, y) =
2εp

4p−1 for all x, y ∈ X . Thus we obtain the estimate value χ̃(x, y)
1
p = ε

( 2
4p−1

) 1
p for all

x, y ∈ X .
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