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Abstract: Symmetry is repetitive self-similarity. We proved the stability problem by replicat-
ing the well-known Cauchy equation and the well-known Jensen equation into two variables. In
this paper, we proved the Hyers-Ulam stability of the bi-additive functional equation f(x +y,z +

w) = f(x,z) + f(y,w) and the bi-Jensen functional equation 4f(xzﬂ, ”Tw) = f(x, z)+ f(x, w) +
fly, z) + f(y, w).

Keywords: stability; bi-additive mapping; bi-Jensen mapping

1. Introduction

A functional equation is stable if there is a function that exactly satisfies the given
equation in the vicinity of a function that approximately satisfies it. Any approximate
solution can actually be an exact solution. In Cauchy’s equation f(x +y) = f(x) + f(y)
we can deal with a class of approximate solutions defined by the functional inequality
introduced by Rassias.

1f(x+y) = f(x) = I < elllxllP +llylP)-

It turns out that for p # 1 each solution of the above inequality can be approximated by an
additive function A in such a way that the inequality

1£(x) = A < Kel[x]]P.

holds, with a suitable k, on the whole domain (for p = 0 it coincides with the classical
Hyers-Ulam result).

Let us say X and Y are vector spaces. The mapping h : X — Y is called an additional
mapping (respectively, an affine mapping) if h satisfies the Cauchy functional equation h(x +
y) = h(x) + h(y) (respectively, the Jensen functional equation 2h(#) = h(x) +h(y) ).
T. Aoki [1] and Th. M. Rassias [2,3] extended Hyers-Ulam stability taking into account the
variables for the Cauchy equation. S.-M. Jung [4] got the result of the Jensen equation. It
was also generalized as a functional case by P. Gdvruta [5] and S.-M. Jung [6] and Y.-H. Lee
and K.-W. Jun [7].

The following functional Equations (1) and (3) are functional equations those combine
the existing well-known the Cauchy equation and the Jensen equation.

fx+yz+w) = f(x,2) + f(y, w). O]

The authors [8] introduce the system of equations

2f(5Y, 2) = f(x, 2) + f(y, 2), @)
2f (x, 157) = f(x, y) + f(x, 2).
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and the bi-Jensen functional equation

af (5 00 = 2) 4 £ 0) 4 S0, + Sl ), ®

We made the above functional equations with a symmetrical structure. Symmetry is
repetitive self-similarity. The solution of (2) is coincide with the solution of (3). The solution
of (1) is of the form A;(x) + Az(y), where A; and A; are additive mappings. The solution
of (2) is of the form A;(x) + Ax(y) + £(0,0), where A; and A, are additive mappings.
The solution of (2) contains the solution of (1). The difference of the solutions (1) and (2) is
merely a constant, that is, the solutions (1) and (2) are similar.

Jun, Jung, and Lee [9] obtained the stability on a bi-Jensen functional equation in
Banach spaces. Additionally, the authors [10] proved the stability on a Cauchy-Jensen
functional equation Banach spaces.

In this paper, we investigate the generalized Hyers-Ulam stability of (1) in Banach
spaces and 2-Banach spaces. We proved the Hyers-Ulam stability of (2) and (3) in quasi-
Banach spaces.

2. Solution and Stability of a Bi-Additive Functional Equation

In the following theorem, we find out the general solution of the bi-additive functional
Equation (1).

Theorem 1. A mapping f : X x X — ) satisfies (1) if and only if there exist two additive
mappings A1, Ay : X x X — Y such that

f(xy) = Ar(x) + Aax(y)

forallx,y € X.

Proof. We first assume that f is a solution of (1). Define A1, Ay : X — Y by Aj(x) :=
f(x,0) and Ay(x) := f(0,x) for all x € X'. One can easily verify that A, A, are additive.
Letting y = z = 0in (1), we get

flx,w) = f(x,0) + f(0,w) = A1(x) + Az(w)

forall x,w € X.
Conversely, we assume that there is two additive mappings Aj, Ay : X x X — ),
such that f(x,y) = A1(x) + Ax(y) forall x,y € X. Since Aj, A are additive, we gain

fix+yz+w) = Ai(x+y)+ Az +w)
= A](X)+A1( )+A2( ) Az(W)
= A1(x) + Az(z) + A1(y) + Az(w)

f(x,z) + f(y, w)
forallx,y,z,we X. O

From now on, let X and Y be a normed linear space and a Banach space, respectively.
Theorem 2. Let0 < p <1,¢>0,0>0and f: X x X — Y be a mapping such that
1f (e +y 2+ w) = fx,2) = fly,w)l| < e+ S(Ix[17 + [yl + [Iz]]7 + [lw][)  (4)

forall x,y,z,w € X. Then there is unique bi-additive mapping F : X x X — Y, such that

26
1f (e y) = ECo )l < e+ 55 (" + llyll") ©)
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forall x,y € X. The mapping F is given by F(x,y) := lim; ;e %f(zf'x, 2iy) forall x,y € X.

Proof. Putting y = x and w = zin (4), we have

|,2) = 3@ 20)| < 5+ oCUeIP + 21P)

for all x,z € X. Thus, we obtain

1 . . 1 4 . L
Hzif(ZJx,Zfz)—Zjﬂf(2]“x,2]“2) < g +2PTVS( X + [|2)17)

forall x,z € & and all j. Replacing z by y in the above inequality, we see that
|5/ @2 - ar@ x4y < o520 Ve + i)

forall x,y € X and all j. For given integers [, m(0 < I < m), we get

1 T o o mlr e i
@2y - gosems )| < T [ 20 Vs )| @
j=I

for all x,y € X. By (6), the sequence {21] f(2/x,2/y)} is a Cauchy sequence for all x,y € X

Since ) is complete, the sequence { L f(2/x,2/y)} converges for all x,y € X. Define
F:XxX — Yby

F(x,y) = lim %f (2/x,2ly)

forall x,y € X'. By (4), we have

1
5

€ i(p—
=2 + 2P xl|P + |lyllP + I|z]1P + [|w]?)

£+, 2 ) = £2,22) — @y 2|

forall x,y,z,w € X and all j € N. Letting j — o in the above inequality, we see that
F satisfies (1). Setting I = 0 and taking m — oo in (6), one can obtain the inequality (5).
If G: X x X — Y is another 2-variable additive mapping satisfying (5), we obtain

IF(x,) - G(x,y)|
= o IF@x,2%) — 62" 2")|
< i IF@",2") — F2'x, 2| + 5] f(2",2") — G(2"x,2y)|

1 2np+1 » »
< oy e+ 2 sl + )

—0 as n— o0

for all x,y € X'. Hence the mapping F is the unique bi-additive mapping, as desired. [
Corollary 1. Let f : X x X — Y be a mapping such that
1f(x+y z+w) = flx,2) = flyw) < e

forall x,y,z,w € X. Then, there exists a unique mapping F : X x X — ) satisfying (1),

such that
If(x,y) — F(x,y)[l <

N[ ™
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forallx,y € X.

Proof. If we insert § = 0 in Theorem 2, we obtain ¢ as an estimate of the difference between
the exact and the approximate solution of the considered equation. [J

In the case p > 2 in Theorem 2, one can also obtain the similar result.
We explain some definitions [11,12] on 2-Banach spaces.

Definition 1. Let X' be a vector space over R with dimension greater than 1 and ||-,-|| : X> — R
be a function. Then we say (X, ||+, -||) is a linear 2-normed space if

(a) ||x,y|| = 0 if and only if x and y are linearly dependent;

®) ||l yll = lly, x|

(c) lax, yl| = |allx, yll;

@) [lx,y + 2] < lx,yll +[|x 2]

foralla € Rand x,y,z € X. In this case, the function ||-, || is called a 2-norm on X.

Definition 2. Let X be linear 2-normed space and {x, } a sequence in X. The sequence {x, } is
said to convergent in X if there is an x € X, such that

lim {|x, —x,y[| =0

forally € X. In this case, we say that a sequence {x,} converges to x, simply denoted by
limy, oo Xy = X.

Definition 3. Let X be linear 2-normed space and {x,} a sequence in X is called a Cauchy
sequence if for any € > 0, there exists N € N such that for all m,n > N, ||xy — xp,y|| < € for
all y € X. For convenience, we will write limy, n—e0 || Xn — Xm, y|| = 0 for a Cauchy sequence
{xn}. A 2-Banach space is defined to be a linear 2-normed space in which every Cauchy sequence
is convergent.

In the following lemma, we get some primitive properties in linear 2-normed spaces
that will be used to prove our stability results.

Lemma 1 ([13]). Let (X, ||-,-||) be a linear 2-normed space and x € X.

(a) If ||x,y|| =0forally € X, then x = 0.

(0 12,21 — 19,2l < ¥ — 2] forall x,,2 € X.

(c) If a sequence {x,} is convergent in X, then limy_,e0 || Xn, y|| = || limy—sc0 X, y|| for all
yeX.

In the rest of this section, let X’ be a normed space and ) a 2-Banach space.

Theorem 3. Let p € (0,1), & > 0,0,5 > Oandlet f : X x X — Y be a surjective mapping
such that

If(x+y,z+w) = f(x,2) = fy,w), f(u,0)]
< e+ 0(Ix17 + [IyllP + 12017 + llwll?) + n({lull + o) @)

forall x,y,z,w,u,v € X. Then there exists a unique mapping F : X x X — Y satisfying (1),
such that

1£Ce )~ FCo), fw,o)]| < 5+ s (el + Iyl?) + 2wl + o) ®)

forall x,y,u,v € X.
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Proof. Letting y = x and w = z in (7), we have

|#60,2) = 32,2, £l o)

€ Ui
< 5+ (P +zl1P) + 5 (lJull + [lol)
forall x,z,u,v € X. Thus, we obtain

1
H f(2/x,2]2) —2]— (21 x, 211 12), f(u,v)

< ﬁ +2PD6(|lx])” + [l2I1P) + 2]+1 (el +Tlol])
forall x,z,u,v € X and all j. Replacing z by y in the above inequality, we see that

1. 1 r
|3/ @2 - @ 15,2041y), f o)

7+2”’ Da([lxllP + lyl17) +

(lull+1l=1)

2]+1

forall x,y,u,v € X and all j. For given integers I, m(0 < [ < m), we get

m—1
S
< Z[sz”” S(lxl? + l=17) + ]H(llullﬂlz’l)]
=

21 F(@x,2ly) — S F(@, 2, £ (,0) ©)

for all x,y,u,v € X. By (9), the sequence {% f(2ix,2]y)} is a Cauchy sequence for all
x,y € X. Since )Y is complete, the sequence {% f(2/x,2/y)} converges for all x,y € X.
Define F : X x X — Y by F(x,y) := limj %f(ij, 2y) for all x,y € X. By (7), we have

1
2]

S (x+y), 2 (z+w)) ~ %f (2Zx,2z) - % F(2y,2w), f(u,0)
< %[eﬂ”ﬂé(llxn” + Iyl + NzlP + llwll?) + p(full + [lo[])]

forall x,y,z,w,u,v € X and all j. Letting j — oo, we see that F satisfies (1). Setting | = 0
and taking m — oo in (9), one can obtain the inequality (8). If G : X x X — ) is another
mapping satisfying (1) and (8), we obtain

||F(x/y) =G y), f(u0)] = 217||F(2”x,2”y) —G(2"x,2"y), f(u,0)|

< 5 LI 2") - £(2'x,2"), f(u,0)| + o IIf( x,2"y) = G(2"x, 2%), f(u, 0)|
< Z[E+ 220 (i + i) + M
—+0 as n—o0
forall x,y, u,v € X. Hence the mapping F is the unique mapping satisfying (1), as desired. I
Corollary 2. Let f : X x X — Y be a mapping, such that
If(x+y,z+w) = fx,2) = fy,w), f(u,0)] <e

forall x,y,z,w,u,v € X. Then there exists a unique mapping F : X x X — Y satisfying (1)

such that
If(x,y) = F(x,y), f(u,0)] <

NI ™
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forall x,y,u,v € X.

Proof. Taking 6 = # = 0 in Theorem 3, we have the desired result. O

In the case p > 2 in Theorem 3, one can also obtain the similar result.

3. Solution and Stability of a Bi-Jensen Functional Equation

In [14,15], one can find the concept of quasi-Banach spaces.

Definition 4. Let X be a real linear space. A quasi-norm is real-valued function on X satisfying
the following:

(i) ||x|| > 0 forall x € X and || x|| = 0 if, and only if, x = 0.

(ii) ||Ax|| = |A|||x|| forall A € Rand all x € X.

(iii) There is a constant K > 1, such that ||x + y|| < K(||x|| + [ly||) forall x, y € X.

The pair (X, || - ||) is called a quasi-normed space if || - || is a quasi-norm on X'. The small-
est possible K is called the modulus of concavity of || - ||. A quasi-Banach space is a complete
quasi-normed space. A quasi-norm || - || is called a p-norm (0 < p < 1) if

[l +ylIP < [lx[1” + [lyl]”

forall x, y € X. In this case, a quasi-Banach space is called a p-Banach space.

A quasi-norm gives rise to a linear topology on X, namely the least linear topology
for which the unitball B = {x € X : ||x|| < 1} is a neighborhood of zero. This topology is
locally bounded, that is, it has a bounded neighborhood of zero. Actually, every locally
bounded topology arises in this way.

From now on, assume that X’ is a quasi-normed space with quasi-norm || - || y and
that ) is a p-Banach space with p-norm || - ||y. Let K be the modulus of concavity of || - ||y.

Letp: X X A XX = [0,00)and ¢ : X X X x X — [0, c0) be two functions such that

1
n — _
nlgrolo—q)( "x, 3", z) =0, hrn L Y3, y, z) = (10)
and 1
lim o(xy,3'5) =0, lim o p(x, 3"y, 3"2) =0 (11)

forallx, y, z € X, and

e — J J 14
M(x,y, z): ];) 3p].<p(3 x, 3y, z)! < o0 (12)
and -
N(z, x, y) Z% (z,3x, 3/y)? < 0 (13)

forallx, z € X and ally € {—x, —3x}.
We will use the following lemma in order to prove Theorem 4.

Lemma 2 ([16]). Let 0 < p < land let x1, xp, - -+ , X, be non-negative real numbers. Then

(£) <o
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Theorem 4. Let 0 < p < 1and suppose that a mapping f : X x X — Y satisfies the inequalities

X+
l2f (552 2) = fe 2 = £, 2) |, < ol 2), (14)
+z
|2f (v 55) — Fx ) = f(x2)||, < 9(xw,2) (15)
forall x, y, z € X. Then there exists a unique additive-Jensen mapping J; : X x X — Y satisfying
K 1
1f G y) = (O, y) = Ii(x )y < 5 IM(x, —x, y) + M(=x, 3%, y)]? (16)
forall x, y € X. There exists a unique Jensen-additive mapping Jo : X x X — Y satisfying
K 1
1f(x, y) = £, 0) = (2, y)lly < 5 IN(x, y, —y) + N(x, —y, 3y)]? (17)

forallx, y € X.

Proof. Let g(x,y) := f(x,y) — f(0,y) for all x,y € X. Then g(0,y) = Oforally € X.
Letting y by —x in (14), we get

lg(x, z) +8(=x 2)lly < ¢(x, —x, 2)
forall x, z € X. Replacing x by —x and y by 3x in (14), we have
l2g(x, 2) — g(~x, 2) — g(3x, 2)lly < 9(~x, 3%, 2)
forall x, z € X. By two above inequalities and replacing z by y, we get

13g(x,y) — g(Bx,y)lly < Klp(x, —x,y) + ¢(—x,3x,y)]

for all x,y € X. Thus we have

’ 1

3j

. 1 , K o
g(¥x,y) — 3j+1g(3]+1X,y)Hy < Ty [p(3x, —3/x,y) + ¢(—3/x,31x,y)]

forall x,y € X and all j. For given integer /,m (0 < < m), by Lemma 2, we get

‘ 1

! Lo (gm ’ K\ = 1 j ix, )P ix, 31y, )P
7800 Y) — 5,83"x,y) L5 \3 Z o |9(3/x,=3x,y)" + p(=31x, 37 1x,y)? | (18)

for all x,y € X. By (12), the sequence { % ¢(3/x,y)} is a Cauchy sequence for all x,y € X.

Since Y is complete, the sequence {31—] ¢(3/x,y)} converges for all x,y € X. Define J; :
A xX = Yby

1
Ji(x,y) == lim —¢(3/x,y)
j—o0 3/

for all x,y € X. Putting I = 0 and taking m — oo in (18), one can obtain the inequality (16).
From the definition of J;, we get

3(x,y) =1(3xy) and J;(0,y) =0 (19)

forall x,y € X and all j. By (14), (16) and (19), we gain
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12]1(2x,y) — 41 (x, y)|| Y
= 2)1(2x,y) = 1%, y) — h(xy)[| Y

<379|n(E 20y — K3 - 3vy) — Ky ¥
<37 [Hzmsf 25,) =23 2,y)| | + [ 3xy) - £ 3x,y>Hy]

2f<3j(3xz+x),y) — f(3-3x,y) —f(3jx,y)H Y

<2-3717IK[M(3 - 2x, 3/(—2x), y) + M(3/ - (—2x), 3*1 . 2x, y)]
437 IK[M(3 - 3x, 31(=3x), y) + M(3 - (=3x), 311 - 3x, y)]?

43 IKM(3x, 3 (—x), y) + M(3 - (—x), 3%, y)]P
+3_j(;)(3jx,3j+1x,y)

+37| 1 @xy) ~ FEx )| +37

==

forall x,y € X and all j. From this and (19), we obtain

2Ji(x,y) = 1(2x,y) (20)
forall x,y € X. From (12) and (14),

H%("j%z) ~h(x2) - hy2)| Y

. ix 43 . .
= lim 37/ 2]1(“2+3y,z> —11(3x,2z) = 1(3y,2)
]—)OO

< lim 37 (3/x,3/y,2z) = 0
]

Y

forall x,y,z € X. From (20) and the above inequality,

]1(x+yrz) = 2]1(x;yrz> = ]1(x,z) +]1(y,Z)

forall x,y,z € X. Hence
J(x+y,z) =Ti(xz) + 1(y,2)

for all x,y,z € X. That is, J; is an additive mapping with respect to the first variable.
By (15), we get

’ 2

2 (a5 Y2 0 iy Logsi
28(95 157 ) + 8@xy) - 580

1 .
— J
= 7 ¥Exy.2)

forall x,y,z € X and all j. Letting j — oo in the above inequality and using (10), J; is a
Jensen mapping with respect to the second variable. To prove the uniqueness of |, let S
be another additive-Jensen mapping satisfying (16). Then we obtain

1251(2x, y) — 451(x, )15,

= [1251(2x,y) = $13x,y) = S1(x, Y}

=377|251(2-3x,y) — S1(3-3/x,y) — $1(3x,y)||YP

< 377|281 (2- 3%, y) — 2g(2- 3x, y) |5,

+377(51(3 - 3x, y) = 8(3-3x, Y} +377[51(3'x, y) — g (3%, )

S 3x+x ' : P
2g<3]~ 5 /y>—g(3-3’x,y)—g(3fx/y)

+37P

y
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forall x,y € X and all j. It follows from (16), we have
171(x,y) = S1.(x )15

l] (3/x )—ls (3/x )Hp
3] 1 /y 3] 1 /y v

1 . 1 . 1 4 1 ' 1 1 ' p
_ ] - ] . = j 1 1
< H 3j11(3 x,y) 3]-f(3 xy) + 3]-f(0,y) y + ’ 3]-f(3 x,Y) 3]-f(0,y) 3].51(3]x,y) )
< K[M(g,jx —3/x, y) + M(=3/x, 371, )]
— 3p(+D) ’ ’ , p

forall x,y € X and all j. Taking j — oo in the above inequality and using (12), we get

1 =51
Define [ : X x X — ) by

1 ,
J2(x,y) == lim —f(x,3y)
j—oo 3/

for all x,y € X. By the same method in the above arguments, J, is a unique Jensen-additive
mapping satisfying (17). O
Corollary 3. Let 0 < p < 1ande, § > O be fixed. Suppose that a mapping f : X x X — Y

satisfies the inequalities

x+y

21 (5% %) - fw ) - s )| < e
Hzf(x' T) —flx y) = f(x, Z)Hy <4

forall x,y, z € X. Then there exists a unique additive-Jensen mapping J; : X x X — Y
satisfying

Il f(x,y)—f(0,y) = Ji(x, y)||y < K£<3p21)p

forall x, y € X. There exists a unique Jensen-additive mapping J» : X x X — Y satisfying

1f(x, y) = f(x, 0) = Ja(x, y)[ly < K5(3p2_ 1) '
forallx, y € X.

Proof. Let ¢(x, y, z) := eand ¥(x, y, z) := d forall x, y, z € X. By Theorem 4, we have
an additive-Jensen mapping J; and a Jensen-additive mapping J», as desired. [

Fromnow on, let xy : X X X x X x X — [0, 00) be a function such that

L n n n _
nh_r)r(}o X( "x, 2"y, 2"z, 2"w) =0 (21)

and .
L(x,y,z,w) := Z %x(fo 2]3/, 2z, 2]w)7” < 0 (22)

]:
forallx, y,z, w € X.
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Theorem 5. Let 0 < p < 1 and suppose that a mapping f : X x X — Y satisfies f(x,0) =0
and the inequality

(52 5T) e S S S 0| <xtewzw @)

forall x, y, z, w € X. Then the limit F(x, y) := lim; . %f(zjx, 2y) exists forall x, y € X
and the mapping F : X x X — Y is the unique bi-Jensen mapping satisfying
1
1f (e, y) = £0, y) = ECo y)lly < X(x, v)7, (24)

where

[e9)

~ 1 ) . )
X y) = Y o X(27*1x, 0,271y, 0)7 4 x(0, 0, 271y, 0)7]
j=0

forallx, y € X.

Proof. Replacing x by 2/+1x and putting y = 0, z = 2/1y, w = 0 in (23), we gain

1 S 1 ) ) 1 ) 1 ) )
| 570520 - Gt @2y - 02| < a0, 241 0) @29

forall x, y € X and all j. Letting x = 0 in (25), we get

forall y € & and all j. By (25) and(26), we have

1 ; 2 ; 1 ;
/020~ Faf0.0)| < 0,027, 0) @)

i , . - | )
H‘U [f(zjx’zjy) —f(0,27y)} ETEsy [f(Z/Hx,z]Hy) _ f(0,2”1y)}
y
1 j i .
< 20D [X(zfﬂx, 0, 21y, 0) 4+ x(0, 0, 21y, 0),,} )
forall x, y € X and all j. Thus we have
1 1 i 1 1 m " " 4
L[Fe'x2y) — £(0.2)] - Sl 27y - £(0,27)
y
m—1 1 - » »
< i i p J )
= 4p(j+1) {X(Z x, 0,2y, 0)P +x(0, 0, 27"y, 0) } (28)

for all integers I, m (0 < I < m) and all x, y € X. By (22), the sequence {%[f(ij, 2jy) —

f(0,2/ y)l} is a Cauchy sequence for all x, y € X. Since Y is complete, the sequence
{%[ f(2/x,2y) — £(0,27y)]} converges for all x, y € X. So one can define the mapping
F: X xX —Yby

F(x, y) = Jim 2 [f(2"x,2") — £(0,2"y)] 29)

forall x, y € X. Letting | = 0 and taking the limit m — oo in (28), we get (24). Now, we
show that F is a bi-Jensen mapping.
On the other hand it follows from (22), (23) and (29) that
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4
H4F(x+y, z+w> —F(x,z) —F(x, w) — F(y, z) — F(y, w)
2 2 ’
n n n n
— lim — 4f<2 x+2ly 2z 42w ) — f(2"x, 2"z) — f(2"x, 2"w) — f(2"y, 2"z)
n—oo 4PN 2
n n 4
— f(2"y, 2"w) — Af (o, ZZZZZ") +2£(0,2"z) + 2£(0, 2"w)
y

_ 1 1 n n n n,\p n n,\p] —
f}}g}ow[;((z x, 2"y, 2"z, 2"w)?P + x(0, 0, 2"z, 2"w)P] = 0
for all x, y, z, w € X. Hence the mapping F satisfies (3).

To prove the uniqueness of F, let G : X — ) be another bi-Jensen mapping satisfying (24).
It follows from (22) that

oo

L J ooy omy ony ony — L iy iy 2l 2iep)P —
nlgloloélTL( x,2"y,2"z,2"w) = lim ZEX(Z x,2y,2z,2w)f =0

n—oo =

forall x, y, z, w € X. Hence lim;, 4,,n7((2”x 2"y) = 0forall x, y € X. It follows from
(21), (27) and (29) the above equality that

IF(2x, 2y) — 4F(x, y)[| Y

1 1
= lim | 72, 2041y £0,2y) = L@, 2) + 50,2)| ¥

=4 lim

@ 2) = £0,2%)] - i 21, 2) = 0.2 ) | ¥

1 n+1 n+1 [4 n+1 r| —
<4J§&W[7‘(2 x, 0, 21y, 0)7 + x(0, 0, 2 y,o)}_o
forallx, y € X.So F(2x, 2y) = 4F(x, y) forallx, y € X. Thus it follows from (24) and (29) that

IE(x, y) = G(x, y)|}, = lim —olF@', 2") - £(0, 2"y) - G(2", 2"y

n—soo 4PN

. 1
< lim pnx(Z”x, 2"y) =0

n—oo 4

forallx, yec X.SoF=G. O

Corollary 4. Let 0 < p < lande > 0 be fixed. Suppose that a mapping f : X x X — ) satisfies
the inequalities

(52 5) st st st s <

forall x, y, z, w € X. Then there exists a unique bi-Jensen mapping F : X x X — Y satisfying

10, ) = £0,9) ~ Fx wly < e )

forallx, y € X.

Proof. Taking x(x, y, z, w) :=eforall x, y, z, w € X in Theorem 5, we obtain
42,,9 for all x,y € X. Thus we obtain the estimate value f(x, y)P = e(g*1
x,wyeX. O

n 7(x, ) =
)5

for all
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